
ORIGINAL PAPER

Sven Thatje Æ Rosa Bacardit Æ Wolf E. Arntz

Larvae of the deep-sea Nematocarcinidae
(Crustacea: Decapoda: Caridea) from the Southern Ocean

Received: 11 June 2004 / Revised: 23 September 2004 / Accepted: 29 September 2004 / Published online: 18 November 2004
� Springer-Verlag 2004

Abstract The early larval stages of the deep-sea
Nematocarcinidae, Nematocarcinus longirostris Bate,
1888, from the south-western Atlantic Ocean, and N.
lanceopes Bate, 1888, from the high Antarctic Weddell
Sea, were obtained from plankton catches, described
and illustrated. Furthermore, field collected larvae of N.
lanceopes were compared with larvae hatched and reared
under constant laboratory conditions. The morphology
of larvae in both species clearly indicates a plankto-
trophic and extended mode of larval development. This
is an outstanding feature in deep-sea and especially in
high-latitudinal caridean shrimp species, and the conse-
quence of such reproductive trait for life history adap-
tations to both deep-sea and polar environments is
discussed.

Introduction

The deep sea is the largest aquatic environment on
earth, but still belongs to the least studied areas. It is
principally characterised by low temperatures, high
pressure, and low food availability for organisms living
there (Thiel et al. 1996). Except for the effect of
pressure, very similar conditions are found in polar
seas, in particular in the Antarctic realm (Clarke
1987). Consequently, adaptation to both low food
availability and low temperatures is not exceptional,

but rather the rule in the marine realm, and thus
should have forced a great variety of evolutionary
responses to the life history challenges under such
environmental conditions.

Very little is known about the early life history of
deep-sea decapods (Anger 2001). Life history studies
under similar conditions in the Antarctic, however,
revealed strong adaptation in both adults and larval
decapods to low temperatures and limited food avail-
ability (Arntz et al. 1992; Gorny et al. 1992; Clarke
1993a, b; Thatje et al. 2003). Among other adaptations
(see Thatje 2004), larval developments in caridean
shrimp at high latitudes are characterised by large and
advanced larvae at hatching, abbreviated larval devel-
opment and reduced variability in the number of
developmental pathways (variability in the number of
larval stages), and a high resistance to starvation, at least
in the first zoeal stage (Wehrtmann 1991; Thatje et al.
2003; Thatje et al. 2004a, b). Some lithodid crab species
even evolved completely food independent lecitho-
trophic larval development in the cold, which enabled
them to uncouple from the mismatch of prolonged
developmental times at low temperatures and short
periods of primary production and, consequently, food
availability (Clarke 1982, 1987, 1993b; Anger et al. 2003,
2004; Calcagno et al. 2003). Such complete reduction of
pelagic life stages is, however, almost unknown in
marine shrimp (for discussion see Thatje et al. 2003,
2004a).

The Nematocarcinidae are a typical deep-sea cari-
dean family with a wide bathyal distribution (Wenner
1979; Iwasaki and Nemoto 1987; Retamal 1981; Boschi
et al. 1992; Cartes 1993; Spivak 1997; Burukovsky 2001).
Nematocarcinus longirostris is known to occur in South
Chilean waters, the Southern Atlantic, and circum-
Antarctic eastwards to Marion and Crozet Islands. It
has been recorded off Japan and South Africa and in
Eastern Antarctica, including the Indian Ocean sector of
the Southern Ocean and parts of the Ross Sea (Kirk-
wood 1984; Gorny 1999). N. longirostris has been
described either as a bathypelagic or bathybenthic
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species and shows a bathymetric distribution from about
500 to 3,531 m (Yaldwyn 1965; Zarenkov 1968; Kirk-
wood 1984). Zarenkov (1968) was the first to suggest
that N. longirostris is a synonym for N. proximatus (e.g.
Boschi et al. 1992), thus greatly expanding its geographic
range as to the depth and distribution.

Nematocarcinus lanceopes is endemic to Antarctic
waters of the Weddell and Scotia Seas (south of 55�30S)
(Retamal 1981; Arntz and Gorny 1991; Boschi et al.
1992; Gorny 1999). It is distributed from about 840 m
water depth off the high Antarctic shelf to abyssal
depths of at least 4,000 m (Gutt et al. 1991; Arntz et al.
1999; Gorny 1999; Romero et al. 2003). Occasionally, N.
lanceopes was also found on the continental slope south
off Tierra del Fuego, at the southernmost tip of South
America (Arntz et al. 1999). Both N. lanceopes and N.
longirostris show overlapping areas of distribution in
waters off South Georgia and the Sandwich Islands in
the Scotia Sea, as has been confirmed recently (Boschi
et al. 1992; Spivak 1997; Romero et al. 2003).

In the present work we describe and illustrate the first
two zoeal stages of N. lanceopes and N. longirostris as
well as one advanced zoeal stage in the latter. So far
there are only a few, but not very detailed, data of larvae
of this genus available (Williamson 1962). Our labora-
tory rearing of larvae of N. lanceopes from the high
Antarctic Weddell Sea is one of very few successful
attempts in deep-sea shrimp. The larval developmental
cycle is discussed in relation to the conditions cha-
racterising cold deep-sea and high-latitude environ-
ments.

Materials and methods

The larval material of N. longirostris was collected
during the cruises of the vessels ‘‘Walther Herwig’’ and
‘‘Shinkai Maru’’ carried out on the Argentine shelf and
the continental slope in the south-western Atlantic
Ocean (Fig. 1A, C) in 1978 and 1979, respectively.
Samples were collected vertically from the seafloor to the
surface or 100 m to the surface by means of a Bongo net
of 330 lm mesh size, and were preserved in 3% formalin
solution buffered with hexamethylenetetramine. Com-
plete descriptions of the cruises and additional infor-
mation on oceanographic measurements can be
obtained from Ciechomski et al. (1979) and Cousseau
et al. (1979).

Larval material of N. lanceopes (zoeal stages I+II)
was obtained from vertical multinet hauls (100 lm mesh
size) in the high Antarctic Weddell Sea during the RV
‘‘Polarstern’’ campaign ANT XXI/2 in November/
December 2003 (Fig. 1B, C). The plankton material
obtained during this cruise has been compared with
larvae reared on board RV ‘‘Polarstern’’ (zoeal stages
I+II) during the same cruise.

Ovigerous females were caught using an Agassiz
trawl (AGT) at about 1,488–1534 m water depth
(PS65/109-1 70�47.88¢S; 11�21.56¢W). Since all egg
carrying females obtained from that haul did not
appear sufficiently healthy to survive the rearing stress,
we decided to dissect the egg batches from the female
pleopods and incubated the batch of one female, which

Fig. 1 Sampling locations of
larvae of Nematocarcinus in the
Southern Ocean. A Overview of
study areas, B N. lanceopes in
the Weddell Sea (Antarctica),
C N. longirostris in the south-
western Atlantic Ocean; zoeal
stages I+II of N. longirostris
and N. lanceopes were caught in
October 1978 and November/
December 2003, respectively.
The advanced larva of N.
longirostris was caught in May
1979 (C).
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already showed hatched larvae trapped between the
pleopods. The batch was kept in an aerated beaker of
1.5 l water content and maintained at 0�C (SD ±1�C;
salinity about 34) and the larvae hatched independently
during the first night of incubation. On the following
morning, larvae were then selected with a long glass
pipette from the bottom of the beaker since larvae
showed rather low capability of swimming actively.
Only actively moving larvae were considered for the
study of larval development and morphology. The
larvae hatched during several days. Several cohorts
from subsequent hatching days were maintained in
individual culture (one larva per 100 ml cup). Water
was changed every day and food in the form of ice
algae (the algae cocktail was obtained from plankton
hauls) was given every second day. Larvae of N.
lanceopes reached the zoea II instar after 21±3 days
(n=12) in development. Rearing of larvae of N.
lanceopes on board RV ‘‘Polarstern’’ needed to be fin-
ished at the end of cruise ANT XXI/2, which unfor-
tunately did not allow for completing the larval
development study.

Carapace (CL) and total lengths (TL) of the larvae
were measured from the base of the rostrum between
the eyes to the posterior dorsal margin of the cara-
pace, and to the posterior margin of the telson,
respectively. The terminology used for the differentia-
tion of the larval phases, larval morphology and the
worked out characteristics between species and lar-
val stages corresponds to that suggested by Gurney
(1942), Williamson (1962, 1982), and Haynes (1981,
1985).

Description of zoeal stages

Order Decapoda Latreille, 1802
Suborder Pleocyemata Burkenroad, 1963
Family Nematocarcinidae Smith, 1884

Remark The first zoeal stages are described and illus-
trated in detail, and only the changes are described and
illustrated in subsequent stages.

Nematocarcinus longirostris Bate, 1888

Zoea I (Fig. 2A–K)

CL=1.9 mm SD±0.05; TL=7.3 mm SD±0.05; N=8

Carapace (Fig. 2A, B) Eyes sessile, rostral spine pres-
ent, without denticles; pterygostomic spines present;
posterior margin of carapace rounded; 1 dorsal anterior
protuberance.

Antennule (Fig. 2C) Uniramous, peduncle unseg-
mented, with 1 distal seta in inner side; outer flagellum
unsegemented, bearing 4 aesthetascs and 1 seta.

Antenna (Fig. 2D) Biramous, protopod unsegmented
with 1 well-developed spine at inner distal part; exopod
6-segmented, with 1/1, 0/1, 1/1 0/1, 1/1, 4 plumodentic-
ulate setae;1 strong ventral spine at basis.

Mandible (Fig. 2E) Incisor process with strong teeth;
molar process with abundant small teeth; without palp.

Maxillule (Fig. 2F) Coxal endite with 7 setae; basial
endite with 2 strong and 3 thinner plumodenticulate
cuspidate setae; palp 2-segmented with 2, 3 setae; outer
lobe represented by 1 small protuberance and 3 plumose
setae.

Maxilla (Fig. 2G) Proximal coxal endite with 11 setae;
distal endite with 4 setae; basial endites with 4 setae
each; palp incompletely 4-segmented, with 3, 2, 1, 2, 2
setae; scaphognathite with 1 terminal flagellum.

Maxilliped 1 (Fig. 2H) Coxa with 6 setae; basis with 4
groups of 3 setae each; exopod with 1 subterminal and 3
terminal setae; endopod 4-segmented with 2, 1, 2 and
1+3 setae.

Maxilliped 2 (Fig. 2I) Coxa with 2 setae; basis with 4
groups of 1, 2, 3, and 3 setae, from proximal to distal
segment; exopod with 2 subterminal and 3 terminal se-
tae; endopod 4-segmented with 3, 1, 2, and 5 setae.

Maxilliped 3 (Fig. 2J) Basis with 4 setae; exopod with 2
subterminal and 3 terminal setae; endopod 4-segmented
with 2, 1, 2, and 1+3 setae.

Pereiopods (Fig. 2A) Absent.

Pleon (Fig. 2A) Somites 1–3 partly fused; somite 3 with
1 conspicuous dorsal prominence; somites 4–5 with la-
tero-ventral margins rounded; margins of all somites
smooth; somite 6 fused with telson; pleopods absent.

Telson (Fig. 2K) Convex, spatulous, without medial
indentation; posterior margin with 7+7 plumose setae;
pairs of different length, only pairs 2 and 5 of similar
length.

Nematocarcinus longirostris Bate, 1888

Zoea II (Fig. 3A–F)

CL=2.4 mm SD±0.05; TL=9.1 mm SD±0.05; N=5

Carapace (Fig. 3A, B) Eyes pedunculated; carapace
similar to previous stage; with 2 dorsal protuberances.

Antennule (Fig. 3C) Peduncle 3-segmented; first seg-
ment with 6 setae above distal outer margin and 1 large
seta above inner margin; segments 2 and 3 with 5 and
2 setae above distal outer margin; outer flagellum
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unsegmented, with 4 apical aesthetascs; inner flagellum
represented by 1 large plumose seta, broadened at base.

Antenna (Fig. 3D) Biramous, protopod unsegmented
with 1 well-developed spine at inner distal part; exopod
5-segmented, with 2/2, 0/1, 0/1 0/1, 5 plumodenticulate
setae;1 strong ventral spine at basis.

Mandible Without changes.

Maxillule Coxal endite with 8 setae; basial endite with 3
strong and 4 thinner plumose spines.

Maxilla (Fig. 3E) Coxal endite proximally with 13–14
setae.

Maxilliped 1 Basis with 4 groups of 3, 3, 5, and 3 setae
from proximal to distal part; endopod with 3, 1, 2, and 4
setae, respectively.

Maxilliped 2 Exopod with 2 apical setae and 4 pairs of
subterminal setae; endopod with incomplete segmenta-
tion between carpus and propodus, ischium with 4
internal setae.

Maxilliped 3 Exopod with 2 apical setae and 6 pairs of
subterminal setae; endopod of 5 segments, carpus with 1
outer and without inner seta.

Pereiopods First pair of pereiopods represented by small
buds.

Pleon Without changes.

Telson (Fig. 3F) Convex, with 8+8 plumose setae,
central pair of minor size; pairs 2 and 3 of similar length;
the other pairs of different length; with 3+3 short lateral
plumose setae.

Nematocarcinus longirostris Bate, 1888

Zoea, advanced stage (Fig. 4A–I)

CL=5.4 mm; TL=21.9 mm; N=1

Fig. 2 Nematocarcinus longirostris Bate, 1888. Zoea I; A general
aspect, lateral view, B cephalothorax, dorsal view, C antennule, D
antenna, E mandible, F maxillule, G maxilla, H maxilliped 1, I
maxilliped 2, J maxilliped 3, K telson, dorsal view. Scale bars
a=1 mm (A, B, K), b=0.2 mm (E–G), c=0.5 mm (C, D);
d=0.5 mm (H–J).
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Carapace (Fig. 4A) Rostrum straight, with 12 dorsal
and 2 ventral spines; antennal and pterygostomic spines
present; 1 dorsal anterior protuberance.

Antennule (Fig. 4B) Peduncle 3-segmented; first seg-
ment with 2 strong medial spines and 6 setae above inner
margin, outer margin with various distal setae; inner
flagellum multi-articulated, with 1 small seta in each
segment; outer flagellum multi-articulated, with various
aesthetascs on basial segments.

Antenna (Fig. 4C) Biramous, protopod unsegmented
with 3 apical setae; exopod with 1 strong outer spine and
41 marginal setae.

Mandible (Fig. 4D) Without palp.

Maxillule Segmented palp with 4 apical setae, and 2
reduced setae and 1 reduced spine on basial segment;
coxal endite with 34 setae; basal endite with 4 setae
above coxal margin and 4 marginal setae and 10 mar-
ginal spines; outer lobe reduced, without setae.

Maxilla (Fig. 4E) Coxal endite with 33 setae; distal
endite with 4 setae; basial endites with 8 setae each; palp
with 4 apical setae; scaphognathite with 66–68 marginal
setae.

Maxilliped 1 Coxa with 16 marginal setae; basis with 35
marginal setae; exopod with 4 apical and 2+2 subter-
minal setae; endopod of 4 segments, ischium, merus, and
carpus with 7/2, 4/1, and 3/0 inner/outer setae, respec-
tively, dactylus with 3 terminal and 1 subterminal setae.

Maxilliped 2 Coxa with 3 large setae; basis with 14 setae
of variable length; exopod with 4 apical setae and 3
subterminal pairs of setae; ischium with 4 inner setae, 1
medial and 1 distal seta; carpus without setae; propodus
with 3 inner setae; dactylus with 7 apical setae, of which
6 large and 1 short, and 1 short subterminal seta.

Maxilliped 3 Coxa and basis with 4 inner setae each;
exopod with 4 apical setae and 6 pairs of subterminal
setae; ischium and carpus with 4 and 2 and 1 inner setae,
respectively; propodus with 3 inner setae, 1 medial and 2
outer ones; dactylus with 3 apical and 1 subterminal
setae.

Pereiopods 1+2 (Fig. 4F) Both pereiopods very simi-
lar; basis with 2, 2, and 3 setae; endopod 5-segmented
with 3, 2, 0, 2, 3 setae; exopod with 18 pairs and 2
terminal setae.

Pereiopod 3 (Fig. 4G) Basis with 3 setae; endopod
5-segmented with 2, 3, 1, 2, 4 setae; exopod with 15 pairs
and 2 terminal setae.

Pereiopod 4 (Fig. 4H) Basis with 2 setae; endopod
5-segmented with 2, 4, 1, 2, 3 setae; exopod with 13 pairs
and 2 terminal setae.

Pereiopod 5 (Fig. 4I) Basis with 2 setae; endopod
5-segmented with 1, 1, 1, 2, 3 setae; exopod reduced.

Pleon (Fig. 4A) Somites 1–3 partly fused, somite 4 free;
ventro-lateral margins of somites 1–5 with long thin
setae.

Pleopods (Fig. 4A) Pleopods present as rudimentary
buds on somites.

Uropods (Fig. 4J) Exopod with 1 outer and approxi-
mately 53 marginal setae; endopod with 47 marginal
setae.

Telson (Fig. 4J) Outer pair of posterior pro-
cesses longer than the other 4 inner pairs, of which
the innermost is longer; 10 pairs of lateral marginal
spines.

Nematocarcinus lanceopes Bate, 1888

Zoea I (Fig. 5A–K)

CL=2.0 mm SD±0.05; TL=7.5 mm SD±0.05; N=15

Carapace (Fig. 5A, B) Eyes sessile; with rostral spine,
without denticles; pterygostomic spines present; poster-
ior margin of carapace rounded; 1 dorsal anterior pro-
tuberance.

Antennule (Fig. 5C) Peduncle unsegmented, with 1 in-
ner and 1 distal plumose seta; outer flagellum unseg-
mented, bearing 4 aesthetascs and 1 seta.

Antenna (Fig. 5D) Biramous, protopod unsegmented
with 1 well-developed spine at inner distal part; exopod
6-segmented, with 1/1, 0/1, 1/1 0/1, 1/1, 4 plumodentic-
ulate setae; 1 strong ventral spine at basis.

Mandible (Fig. 5E) Incisor process with a few strong
teeth; molar process with abundant small teeth; without
palp.

Maxillule (Fig. 5F) Coxal endite with 7 setae; basial
endite with 5 strong plumodenticulate cuspidate setae;
palp 2-segmented with 3 apical setae on distal and 2 on
proximal segment; outer lobe represented by 1 small
protuberance and 3 plumose setae.

Maxilla (Fig. 5G) Proximal coxal endite with 11 setae;
distal endite with 4 setae; basial endites with 4 setae
each; palp incompletely 4-segmented, with 3, 2, 1, 1, 2
setae; scaphognathite with 1 small inner seta, 4 marginal
plumose setae and 1 terminal flagellum.

Fig. 3 Nematocarcinus longirostris Bate, 1888. Zoea II; A cepha-
lothorax, lateral view, B cephalothorax, dorsal view, C antennule, D
antenna, Emaxilla, F telson, dorsal view. Scale bars a=0.2 mm (E),
b=1 mm (A, B, F), c=0.5 mm (C, D).
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Fig. 4 Nematocarcinus longirostris Bate, 1888. Advanced zoeal stage; A general aspect, lateral view, B antennule, C antenna, D mandible,
E scaphognathite and palp of maxilla, F pereiopod 1 and 2, G pereiopod 3, H pereiopod 4, I pereiopod 5. Scale bars a=2 mm (A, J),
b=1 mm (B, C), c=1 mm (E–I), d=0.5 mm (D).
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Maxilliped 1 (Fig. 5H) Coxa with 3 setae; basis with 4
groups of 3 setae each; exopod with 3 apical setae; en-
dopod of 4 segments with 2, 1, 2, and 4 (3 apical and 1
subterminal) setae.

Maxilliped 2 (Fig. 5I) Coxa with 2 setae; basis with 4
groups of 1, 2, 3, and 3 setae, from proximal to distal
segment; exopod with 4 apical setae; endopod of 4 seg-
ments with 2, 1, 2, and 4 (3 apical 1 subapical) setae.

Maxilliped 3 (Fig. 5J) Basis with 3 setae; exopod with 5
apical setae; endopod of 4 segments with 2, 1, 2, and 2
apical setae.

Pereiopods (Fig. 5A) Absent.

Pleon (Fig. 5A) Somites 1–3 partly fused; somite 3 with
1 conspicuous dorsal prominence; somites 4–5 with la-
tero-ventral margins rounded; margins of all somites
smooth; somite 6 fused with telson; pleopods absent.

Telson (Fig. 5K) Convex, spatulous, without medial
indentation; posterior margin with 7+7 plumose setae.
Inner 5 pairs (except pair 4) ending at same length to
form straight postero-lateral setal margin.

Nematocarcinus lanceopes Bate, 1888

Zoea II (Fig. 6A–F)

CL=2.5 mm SD±0.05; TL=9.3 mm SD±0.05; N=7

Carapace (Fig. 6A, B) Eyes pedunculated; carapace
similar to previous stage; with 2 dorsal protuberances.

Antennule (Fig. 6C) Peduncle 3-segmented; first seg-
ment with 6 setae above distal outer margin and 1 large
seta above outer margin; segments 2 and 3 with 5 and 2
setae above distal outer margin; outer flagellum unseg-
mented, with 4 apical aesthetascs; inner flagellum rep-
resented by 1 large plumose seta, broadened at base.

Antenna (Fig. 6D) Biramous, protopod unsegmented
with 1 well-developed spine at inner distal part; exopod
5-segmented, with 1/2, 1/1, 0/1 0/1, 5 plumodenticulate
setae; 1 strong ventral spine at basis.

Mandible Without changes.

Maxillule Coxal endite with 8 setae; basial endite with 3
strong and 4 thinner plumose spines.

Fig. 5 Nematocarcinus lanceopes Bate, 1888. Zoea I; A general
aspect, lateral view, B cephalothorax, dorsal view, C antennule, D
antenna, E mandible, F maxillule, G maxilla, H maxilliped 1, I
maxilliped 2, J maxilliped 3, K telson, dorsal view. Scale bars
a=1 mm (A, B, K), b=0.2 mm (E, F, G), c=0.5 mm (C, D),
d=0.5 mm (H–J).
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Maxilla (Fig. 6E) Coxal endite proximally with 13–14
setae.

Maxilliped 1 Basis with 4 groups of 3, 3, 5, and 3 setae
from proximal to distal part; endopod with 3, 1, 2, and 4
setae.

Maxilliped 2 Exopod with 2 apical setae and 4 pairs of
subterminal setae; endopod with incomplete segmenta-
tion between carpus and propodus, ischium with 4
internal setae.

Maxilliped 3 Exopod with 2 apical setae and 6 pairs of
subterminal setae; endopod of 5 segments, carpus with 1
outer and without inner seta; the other segments without
changes to previous stage.

Pereiopods First pair of pereiopods represented by small
buds.

Pleon Without changes.

Telson (Fig. 6F) Convex, with 8+8 processes, central
pair of minor size; pairs 2–4 and 6 ending at same length
to form straight postero-lateral setal margin; with 3+3
short lateral spines.

Discussion

Sampling and rearing method

One of the great advantages of deep-sea studies in polar
seas is the comparatively low variability of temperature
throughout the water column when compared to other
seas. This facilitates the sampling of live deep-sea
organisms without causing too much physiological
damage to the animals from great temperature shocks
while the sampling gear comes up to the sea surface and,
in addition, without great technical needs. Most crucial
for the survival of shrimp specimens in the present case
was the amount of benthos material and the size of
stones and gravel trawled and mixed with the live bio-
logical material when using an AGT. In the case of the
fragile Nematocarcinidae, this often caused loss of
antennae and legs. Especially the loss of legs affected the
survival of ovigerous females negatively. Embedded in
mud, shrimps generally survived the sampling much
better and physical damage to the specimens appeared to
be reduced. Whereas non-ovigerous females of
N. lanceopes in many cases recuperated quickly from the
sampling stress once they were kept in the aquarium,
ovigerous females hardly recovered. This might be cer-

tainly due to great changes in pressure during sampling
causing irreversible damage. However, in addition, our
impression was that the egg batch impeded enhanced
ventilation by pleopodal movements, which may in-
crease the provision of oxygen-rich water towards the
gill chambers. Such ventilation activity was the only
obvious behaviour in non-ovigerous specimens for many
hours until complete recovery from the sampling stress.

Due to the problem of keeping live ovigerous females
of N. lanceopes, the incubation of an advanced egg batch
was the only possibility to obtain larvae, which, in
addition, allowed for direct species identification. Larvae
hatched during the first night of incubation (see also
Materials and methods) showed no variability in mor-
phology and were actively moving; thus they are as-
sumed to resemble larvae hatched in nature. Hatches
from subsequent nights showed a high degree of mor-
tality and consequently have been discarded. Presum-
ably, lacking parental care, such as cleaning of the egg
batch and/or oxygen provision through pleopodal
movements/ventilation by the female, did not allow for
optimal developmental conditions.

Larval identification

The Nematocarcinidae are a true deep-sea family. Its
taxonomic status, identification and species distribution
suffered from great confusion in past work, including
synonymous use of species names (e.g. Zarenkov 1968;
Retamal 1981; Kirkwood 1984; Boschi et al. 1992).
Adult specimens in many cases are difficult to distin-
guish, which holds especially true for N. lanceopes and
N. longirostris. Both species are distinguished mainly by
the number of dorsal rostral spines and the presence/
absence of pterygostomian spines (after Kirkwood
1984; Tiefenbacher 1990; see also Boschi et al. 1992).
Whereas more recent work has shown that N. lanceopes
is endemic to the high Antarctic Weddell Sea and great
parts of the Scotia Sea (Arntz and Gorny 1991; Gutt
et al. 1991; Gorny 1999; Romero et al. 2003), the wide
circum-Antarctic and eastern-Antarctic distribution of
N. longirostris (compare with Introduction; Kirkwood
1984; Gorny 1999) in some cases is doubtful. This has
been supported by Burukovsky (2000), who supposed
N. longirostris to be a complex of three species. Recent
investigations, however, so far confirm that the species
found in the south-western Atlantic is N. longirostris
(e.g., Boschi et al. 1992; Gorny 1999; Burukovsky
2000).

Since the first two zoeal stages obtained from
plankton hauls in this area did not show morphological
variability and can thus be undoubtedly assigned to one
single species, its relation to N. longirostris is very likely.
The advanced larva obtained from these catches does
already resemble particular rostral characteristics of the
adult stage (cf. Kirkwood 1984; Boschi et al. 1992),
albeit a clear relation to the early zoeal stages is not
possible due to the lack of intermediate stages.

Fig. 6 Nematocarcinus lanceopes Bate, 1888. Zoea II; A cephalo-
thorax, lateral view, B cephalothorax, dorsal view, C antennule, D
antenna, Emaxilla, F telson, dorsal view. Scale bars a=0.2 mm (E),
b=1 mm (A, B, F), c=0.5 mm (C, D).
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The early larval stages of both species described in
this work are very difficult to distinguish. This resem-
bles, on the one hand, the taxonomic problem within the
adult Nematocarcinidae. On the other hand, it is also
typical of early ontogenetic stages within the Caridea in
general (e.g. Albornoz and Wehrtmann 1997). The first
two zoeal stages of both species can only be clearly
distinguished by the length and position of the setae on
the postero-lateral margin of the telson (compare
Fig. 2K with Fig. 5K, and Fig. 3F with Fig. 6F). In
addition, the basis, the third and fourth segments of the
endopod of the third maxilliped of the zoea I instar
(Figs. 2J, 5J), as well as the coxal setation of the first
maxilliped (Figs. 2H, 5H), and the first segment of the
endopod of the second maxilliped (Figs. 2I, 5I) show
differences in setation in both species, which may aid
larval identification. Morphological and intraspecific
variability should increase in the subsequent ontogenetic
stages, which remains an important subject for future
study. Morphological similarity in the early zoeal stages
again underlines the need for molecular markers in order
to facilitate identification.

The early larvae of both N. lanceopes and N. longi-
rostris are of primitive morphology with no indication of
pereiopods and pleopodal buds. Even the advanced
stage of N. longirostris (Fig. 4A) from our point of view
still needs at least two further moults to reach a benthic
decapodid stage, since the pereiopodal exopods do not
yet show an indication of reduction (only in the
pereiopod 5, Fig. 4I). The same holds true for the
pleopods, which lack development and are still present
as rudimentary buds only (Fig. 4A).

Caridean reproduction in the (polar) deep sea

Larval morphology in both nematocarcinid species
clearly indicates an extended larval developmental mode
though various zoeal stages; the detailed description of
the complete developmental mode remains for further
study in laboratory rearing. This is an outstanding fea-
ture for shrimp living in deep-sea and/or high-latitudinal
environments, since caridean reproductive modes and
larval developments have been frequently shown to
follow a latitudinal and thus temperature-dependent
shift, resulting, e.g., in a latitudinal cline in egg size
(Gorny et al. 1992) and larval size at hatching, a
reduction in the number of eggs/larvae per female and
morphologically advanced larvae at hatching (Thatje
2004). Traits to abbreviate larval developments, princi-
pally a higher energetic investment into the individual
larva by the female (Thatje et al. 2004a; b), from an
evolutionary point of view should have been forced by
the mismatch of prolonged developmental times (low-
ered metabolism) and short periods of primary pro-
duction at (sub-) polar temperatures (Clarke 1982,
1993a; Thatje et al. 2003). These characteristics coincide
very well with the largest aquatic environment on earth,

the deep sea, except for the factor pressure, which is
unique to this environment (Thiel et al. 1996). Although
various autecological studies on shrimp reproduction at
high latitudes have shown that shrimp in general follow
a latitudinal pattern in reproduction (Thatje 2004, and
references therein), the reproductive strategy in the
Southern Ocean Nematocarcinidae remains surprising.
In several aspects, such as low fecundity and big sized
eggs (Gorny et al. 1992; Gorny and George 1997), the
Nematocarcinidae follow some commonly known
adaptations to low temperatures and short periods of
food availability in the Caridea. However, the extended
mode in larval development is a new observation for
Antarctic shrimp, and actively feeding larvae already in
the first zoeal stage require an exportation of larvae
from the deep sea into the euphotic zone. In southern
spring, in the widely ice-covered Weddell Sea, primary
production begins in the coastal polynia. These open
waters are locally restricted and show great variability in
extension, which mainly depends on the intensity of
katabatic winds. One suggestion might be that nemato-
carcinid larvae in the high Antarctic Weddell Sea use
deep-water upwelling phenomena in the polynia as a
passive transport mechanism into the euphotic zone. In
the laboratory larvae showed rather low motility and
larvae do not contain large amounts of lipids, which
would facilitate their upward drift to shallower depths.

Another potential life history adaptation, however, of
adults to support the planktotrophic life of their larvae
might be their occasional occurrence in the pelagic. Al-
though at least N. lanceopes has been observed quite
often on the seafloor in situ (Gutt et al. 1991), and its
feeding mode and morphology of the mouthparts should
not allow for planktonic feeding (Kirkwood 1984;
Storch et al. 2001), nematocarcinid species, such as
N. longirostris, have been obtained occasionally from
pelagic trawls. For this reason they have been frequently
described as either bathypelagic or bathybenthic (Yald-
wyn 1965; Kirkwood 1984; Iwasaki and Nemoto 1987).
The intriguing question is whether the occasional pelagic
occurrence of adult Nematocarcinidae is a family-
specific behaviour related to larval release into the water
column. Interestingly, we caught pelagic first zoeae of
N. lanceopes right at the beginning of the spring bloom
in the polynia, indirectly indicating a direct response in
larval release to improved food availability.

It is not yet clear whether nematocarcinid larvae
show a partially endotrophic mode combined with fac-
ultative feeding in the first zoea. Although large lipid
reserves were not visible microscopically, a certain
degree of endotrophy may still be possible in the first
zoeal stage, and would also allow for enduring periods
of starvation. Such adaptation might be crucial to sur-
vive variable food availability in early spring (e.g.,
opening and closing of the polynia). A high resistance to
starvation, however, may be assumed and is known to
be a common feature in caridean larvae in general
(Wehrtmann 1991; Thatje et al. 2004a, b).
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