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prospects of proposals such as quantum-interferometric optical
lithography. The method can be adapted to generate entangled
states of arbitrarily large photon number. Because prior entangle-
ment is not required, the procedure would work well with single-
photon-on-demand sources®**, which promise to be more efficient
and scalable than down-conversion sources. Scalability would also
be enhanced by the use of photon-number-resolving detectors. The
construction proceeds from spatially separated, unentangled pho-
tons to a maximally entangled state in a single spatial mode, a state
suitable for Heisenberg-limited phase measurements. (]
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The last interglacial period (about 125,000 years ago) is thought
to have been at least as warm as the present climate'. Owing to
changes in the Earth’s orbit around the Sun, it is thought that
insolation in the Northern Hemisphere varied more strongly
than today on seasonal timescales’, which would have led to
corresponding changes in the seasonal temperature cycle’. Here
we present seasonally resolved proxy records using corals from
the northernmost Red Sea, which record climate during the last
interglacial period, the late Holocene epoch and the present. We
find an increased seasonality in the temperature recorded in the
last interglacial coral. Today, climate in the northern Red Sea is
sensitive to the North Atlantic Oscillation*®, a climate oscillation
that strongly influences winter temperatures and precipitation
in the North Atlantic region. From our coral records and
simulations with a coupled atmosphere—ocean circulation
model, we conclude that a tendency towards the high-index
state of the North Atlantic Oscillation during the last interglacial
period, which is consistent with European proxy records®?,
contributed to the larger amplitude of the seasonal cycle in the
Middle East.

The Arctic Oscillation/North Atlantic Oscillation (AO/NAO), the
Northern Hemisphere’s dominant mode of atmospheric variability,
exerts a strong influence on mid- and high-latitude continental
climate by modulating the strength of the subpolar westerlies at
interannual to interdecadal timescales™'. Previous work has shown
that the northernmost Red Sea represents a location to study past
AO/NAO-related atmospheric variability over the Northern Hemi-
sphere, and that annually banded corals from this subtropical site
provide proxy records of this variability over the past centuries®.
This narrow, desert-enclosed ocean basin is influenced by mid-
latitude continental climate>'' and is sensitive to atmospheric
processes owing to a weak water column stratification'?.

Two fossil coral colonies (Porites) were collected near Aqaba on
the Jordanian coast of the Gulf of Aqaba, the northeastern extension
of the northernmost Red Sea (Fig. 1a). Colony AQB-10-B was
recovered from a canal cut into the modern reef flat, whereas colony
AQB-3-A was collected from a complex of raised reef terraces.
X-radiographs revealed annual density bands and were used to
identify areas within the colonies that appear to be unaffected by
diagenetic alteration (Fig. 1b, ¢). X-ray diffraction analyses of these
areas indicate an aragonite content of 98-99%, and petrographic
thin sections show only traces of secondary aragonite. The
bimonthly resolution time series of both coral §'*0 and 8"°C (not
shown) generated from these areas show clear annual cycles,
suggesting that the sampled sections were not subject to major
diagenetic alterations with respect to stable isotopes (see Methods
and Supplementary Information).
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Radiocarbon dating indicates that coral AQB-10-B grew 2.9 kyr
ago during the late Holocene. The age of coral AQB-3-A is 121.9
(4+7.0/—6.3) kyr, based on U-series dating including a correction
for open-system behaviour. Additional uncertainty due to model
assumptions is reflected in the larger age error compared to usual
U-series dating of corals” (see Methods). The latter coral grew
during the last interglacial period, which, in the Middle East, is
documented between 124 and 119 kyr ago based on a U-series dated
speleothem record of eastern Mediterranean climate', with the
main peak at 122 kyr coinciding with the coral’s age.

The late Holocene and last interglacial corals provide bimonthly
resolution 8'®0 time series for time windows of 98 and 44 I,
respectively. Multitaper method spectral analysis reveals significant
variance at interannual periods of 5-6 yr in both records (Fig. 2¢, d),
which can be interpreted as an indication of AO/NAO-like atmos-
pheric variability over the Northern Hemisphere at 2.9 and 122 kyr
ago. Similar variability is evident in the time series of a modern coral
from the northernmost Red Sea (Fig. 2a), where it is strongly linked
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Figure 1 Maps of the northernmost Red Sea, and X-radiographs of the two fossil Porites
corals. a, The sites of coral collection in the northern Gulf of Agaba. Coral AQB-10-B was
collected at 34°57.84" E, 29°22.91" N; coral AQB-3-A was collected at 34°58.28" E,
29°27.12" N. MBL/UO, H. Steinitz Marine Biology Laboratory/Underwater Observatory,
Eilat; MSS, Marine Science Station, Agaba; sea surface temperature was measured at
U0%. b, ¢, X-radiograph positive prints of 5-mm-thick slabs sliced parallel to the growth
axis of coral AQB-10-B (b; 2.9 kyr) and coral AQB-3-A (¢; 122 kyr). Alternating bands of
high (dark colour) and low skeletal density (light colour) are visible. One year is
represented by a high-density/low-density band pair. The sampling transect appears as a
white line. The corals are about 60 ¢cm high and 25-30 cm in diameter. Scale bars,
10cm.
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with regional sea surface temperature (SST) and the AO/NAO*.
Cross-spectral analysis reveals that this interannual variability is
highly coherent and in phase with the AO index (Fig. 2b), although
a minor fraction is associated with weaker and non-stationary
tropical Pacific teleconnections modulated by higher-latitude
atmospheric circulation®". Although the AO/NAO is most pro-
nounced during winter, it is present throughout the year'>'e.
Consequently, spectral analyses were performed with bimonthly
resolution time series, reflecting variability throughout the year.
This procedure is supported by the finding that the physical
mechanism that provides a link between the AO/NAO and Middle
East climate during winter® is similar to that for interannual
variability throughout the year (see Supplementary Fig. S1): a
high-pressure anomaly over the Mediterranean Sea associated
with the AO/NAO favours an anticyclonic flow of surface winds
in the eastern Mediterranean, which results in advection of colder
air from southeastern Europe, controlling SST and coral 3'%0
variability in the northern Red Sea’.

The most striking feature of the coral 8'®O time series is increased
seasonality in the last interglacial record compared to the modern
and late Holocene records (Fig. 2). Because coral 8'%0 is influenced
by both temperature and 8'®0 of sea water, we applied the coral
Sr/Ca palaeothermometer to the fossil corals and to three modern
reference corals. Combined Sr/Ca and §'®0 analyses on modern
corals show that both proxies satisfactorily document the seasonal
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Figure 2 Time series of coral 8'80 based on modern, late Holocene, and last interglacial
Porites colonies from the northernmost Red Sea and their spectral properties. Bimonthly
coral '80 time series (Ieft panel) and results of multitaper method spectral analysis with
red noise null hypothesis® (number of tapers, 3; bandwidth parameter, 2; 99%
significance level is indicated) (right panel) for @, a modern coral from Ras Umm Sidd*
(RUS-95, ap 1750—1995), ¢, a late Holocene coral (AQB-10-B, 2.9kyr) and d, a last
interglacial coral (AQB-3-A, 122 kyr) from Agaba. b, Bimonthly time series of the Arctic
Oscillation (AO) index'® (left panel). Cross-spectral analysis between the time series of the
modern coral and the AO index (right panel). The 90% confidence level for coherency is
indicated. Spectral analyses were performed for bimonthly, detrended and normalized
time series with the average seasonal cycle removed.
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SST cycle of 5.4°C, indicating a seasonal cycle between 4.5 and
5.6°C (Fig. 3a), in agreement with earlier findings that 3'*0
seasonality in northern Red Sea corals is mainly controlled by
temperature®. Both Sr/Ca and §'®0 of the late Holocene coral
indicate a seasonal SST cycle of 5.2°C at 2.9kyr ago (Fig. 3b),
similar to today. In contrast, in the last interglacial coral both
proxies indicate increased SST seasonality of 8.4°C at 122 kyr ago
(Fig. 3d) (see Methods and Supplementary Information).

In order to understand the physical mechanisms responsible for
increased SST seasonality in the northernmost Red Sea during the
last interglacial, and seasonality similar to today at 2.9 kyr ago, we
performed coupled atmosphere—ocean general circulation model
simulations (ECHO-G) for last interglacial, late Holocene, pre-
industrial, and modern conditions (see Methods). Consistent with
coral-based results, the corresponding modelled SST indicates
increased seasonality during the last interglacial, and seasonality
similar to modern and pre-industrial conditions at 3kyr ago
(Fig. 3¢, e). Consistent with model-based SST, the modelled Middle
East surface air temperature (SAT) anomalies indicate warmer

summers and colder winters relative to modern conditions during
the last interglacial (Fig. 4a, b). This increased seasonality would
usually be explained by an amplified seasonal insolation cycle at that
time (see Supplementary Fig. S4).

Indeed, our model suggests that warmer Middle East summers
during the last interglacial result from increased summer insolation,
as they are part of a spatially homogenous warming pattern over
mid-latitude continental areas where insolation was enhanced
(Fig. 4b). However, the model suggests that colder Middle East
winters at that time did not solely result from reduced winter
insolation at these latitudes, but are associated with the AO/NAO.
The modelled winter SAT difference between last interglacial and
modern climate reveals a warming and cooling pattern over the
North Atlantic and adjacent continental areas that cannot be
explained by differences in direct insolation forcing, but that
resembles the spatial signature of the AO/NAO*'. This winter
SAT anomaly indicates a tendency towards the AO/NAO high-
index state during the last interglacial, with warmer winters in
central Europe owing to increased advection of warm oceanic air
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Figure 3 Coral-based sea surface temperature (SST) anomalies for the northernmost
Red Sea and ECHO-G model-based SST and AO/NAQ indices. Bimonthly Porites coral
8'80 (red) and Sr/Ca (blue) time series and coral-based SST anomalies (respective mean
was subtracted). a, Modern corals EILAT-15B (left), AQ2 (centre), EILAT-1 (right), in situ
SST? (dotted line); b, late Holocene (AQB-10-B; 2.9kyr) and d, last interglacial coral
(AQB-3-A; 122 kyr). ¢, e, Modelled monthly SST index of the coral region for 3 kyr (e, red),
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123 kyr (e, red), pre-industrial (around Ap 1830; ¢, black) and modern conditions
(around AD 1980; e, black). f, Modelled AO/NAQ index (December—February). Three
greenhouse gas scenarios (black lines) and the ensemble mean (red ling) for the period AD
1800-2000 (centred 41-yr running means). Mean standard deviations for 41 winters
centred at 122 kyr, 3kyr and the pre-industrial period (thick horizontal bar) are shown on
the right. See Supplementary Fig. S7 for index definitions.
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from the west, and colder winters in the Middle East owing to
increased advection of cold continental air from the north (Fig. 4a).
This implies that the AO/NAO contributed to increased SST
seasonality in the northernmost Red Sea during the last interglacial
through winter cooling. This is consistent with (1) coral-based
results of AO/NAO-like interannual variability during the last

124 kyr winter (anomaly from modern climate)

2 m air temperature anomaly (°C)

-0.5 0 0.5 1
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interglacial, (2) observations during recent decades where a
shift towards the high-index AO/NAO is accompanied by colder
winters in the northernmost Red Sea leading to increased season-
ality, and (3) a strong relationship between interannual variability of
modelled regional winter SST and the AO/NAO (see Supplementary
Figs S5, S6). Furthermore, a tendency towards the high-index
AO/NAO provides an explanation for warmer winters in central
Europe during the last interglacial, as indicated by terrestrial proxy
climate records®®, a finding in conflict with an explanation via
reduced winter insolation at these latitudes.

Consistent with coral- and model-based SST, the modelled
northernmost Red Sea SAT anomalies indicate seasonality similar
to modern and pre-industrial conditions at 3 kyr ago (Fig. 4c, d).
The winter SAT anomaly indicates a tendency towards the high-
index AO/NAO at 3 kyr ago relative to pre-industrial conditions,
which is less pronounced compared to the last interglacial. Com-
pared to the latter, the amplified seasonal insolation cycle at 3 kyr
ago is also less pronounced (see Supplementary Fig. S4). For the last
interglacial, the winter SAT anomaly from pre-industrial climate
indicates a more pronounced tendency towards the high-index
AO/NAO compared to that from modern conditions (see Sup-
plementary Fig. S8).

The modelled SAT anomalies, as well as the modelled AO/NAO
indices, suggest a combined response of the AO/NAO to seasonal
insolation changes on orbital timescales and to atmospheric
greenhouse gases (Fig. 3f). Consistent with other model-based
studies'”'®, a greenhouse gas increase from pre-industrial to modern
values results in a slight tendency towards the high-index AO/NAO.
The pronounced last interglacial high-index AO/NAO relative to
3 kyr ago and pre-industrial climate, however, can only be explained
by differences in insolation forcing, as greenhouse gas concen-
trations were similar. Interestingly, the interannual AO/NAO varia-
bility is nearly unaffected by the orbital forcing, consistent with
coral-based results. The physical mechanism linking orbital forcing
and the last interglacial high-index AO/NAO most probably
involves reduced boreal winter insolation in the tropics (Sup-
plementary Fig. S4). In the model, this leads to a reduced pole-to-
equator temperature gradient, and a subsequent weakening of
the Hadley cell accompanied by planetary wave activity, with
increased Icelandic low and subtropical North Atlantic/eastern
Mediterranean highs. The anomalous circulation pattern represents
a quasi-equilibrium response to thermal forcing linked to land—sea
temperature contrasts and orography'®. Furthermore, a northward
shift of the North American and Atlantic jet stream by downward
propagating stratospheric anomalies is consistent with the high-
index AO/NAO™.

The AO/NAO, the dominant mode of Northern Hemisphere
climate variability on interannual to interdecadal timescales™'’, has
also been suggested to be important on millennial timescales*>*'. In
addition, our approach (of combining seasonal resolution coral
proxy records from a climatically sensitive, exceptionally northern,
subtropical reef site with coupled atmosphere—ocean circulation

Figure 4 Near-surface air temperature anomalies for the last interglacial and the late
Holocene based on the coupled atmosphere—ocean general circulation model ECHO-G.
Difference between last interglacial (124 kyr) and modern climate (a0 1975-85) for a,
winter (December, January, February; DJF) and b, summer (June, July, August; JJA). The
corresponding anomalies from pre-industrial climate are shown in Supplementary Fig. S8.
Difference between late Holocene (3 kyr) and pre-industrial climate (ap 1820-50) for ¢,
winter (DJF) and d, summer (JJA). The corresponding anomalies from modern climate are
shown in Supplementary Fig. S9. Near surface wind anomaly is schematically represented
as white arrows. An average of 11 simulation years has been applied to the last
interglacial and late Holocene climate centred at the respective time period. The region of
coral collection in the northernmost Red Sea is marked by a white circle.
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model simulations) suggests an important role of the AO/NAO in
modulating regional Northern Hemisphere climate patterns and
seasonality on orbital timescales. The cross-validation of well-dated,
high-resolution palaeoclimatic records and state-of-the-art climate
models provides a strong tool for evaluating the sensitivity of
different modes of climate variability to natural and anthropogenic
forcing factors. This provides a crucial step in understanding and
predicting pronounced changes in past, present and future
climate. d

Methods

Microsampling, oxygen isotope and Sr/Ca analyses, age model

Microsampling, 3'®0 analyses, age model construction, and interpolation to a bimonthly
resolution were performed as recently described for a modern coral from the
northernmost Red Sea*. The microdrill bit diameter was adapted to a coral’s mean growth
rate as estimated from X-radiographs in order to obtain at least six samples per year on
average by continuous spot-sampling. For Sr/Ca analyses, inductively coupled plasma
mass spectrometry was used (see Supplementary Information).

Radiocarbon and U-series dating

An accelerator mass spectrometry (AMS) ¢ date of 3,290 * 35 yr before present (Bp)
was determined on coral AQB-10-B (KIA13708) at the Leibniz-Labor for Radiometric
Dating and Isotope Research (Kiel, Germany). The "*C age was converted to calendar age
using the CALIB 4.3 calibration program®, yielding an age of 2,910 calibrated yr Bp

(20 range: 3,002-2,807 cal. yr BP). A AR value of 154 yr was used to correct for regional
differences in reservoir age, based on six AMS 14¢C dates determined on two modern coral
cores with established age models and data from the Marine Reservoir Correction
Database (see Supplementary Table S1). Six thermal ionization mass spectrometry (TIMS)
U-series dates were determined on coral AQB-3-A at the Forschungsstelle fiir
Radiometrische Altersbestimmungen of the Heidelberger Akademie der Wissenschaften
(Heidelberg, Germany).

The U-series ages range from 137.3 to 126.4kyr ago and the initial 5***U values are
elevated, ranging from 215%o to 385%o and suggesting open-system behaviour of U-series
isotopes. In order to solve this problem, a model approach was applied that yields an
isochron age of 121.9 (47.0/ —6.3) kyr (20 range)"’. The larger age error compared to usual
U-series dating of corals arises from additional uncertainty due to the model assumptions.
The age is consistent with peak sea-level conditions during the last interglacial, based on
dated coral reef terraces from the Red Sea” (136 to 118 kyr ago) and elsewhere* (128 to
121 kyr ago), as well as with the last interglacial period in the Middle East'* (124 to 119 kyr
ago). Moreover, coral AQB-3-A was collected from a complex of raised reef terraces with
an elevation in the range of other last interglacial reef terraces along the Red Sea coast™.

Calibration of the proxies

The seasonal maxima and minima in the Sr/Ca record of a modern coral (EILAT-15B)
were tied to the corresponding extreme values in a monthly record of in situ SST*. A linear
least-squares regression was then carried out for bimonthly interpolated Sr/Ca and SST
data (with SST defined as the independent variable), giving a relationship of:

Sr/Ca X 10° = 10.781(%0.1181) — 0.0597(£0.00501) X SST (r* = 0.78). The slope of
this regression equation is similar to that of calibrations at other locations®. The same
procedure was applied to the coral §'0 record of EILAT-15B, giving a relationship of:
3'%0 = 0.801(*+0.2773) — 0.1514(+0.01176) X SST (r* = 0.81). The slope is similar to
that of a calibration from the region®.

Using these equations to convert coral Sr/Ca and 830 to SST reveals large offsets in the
coral-based mean SST between coral EILAT-15B and two other modern corals (AQ2,
EILAT-1) for both proxies, most probably due to so-called vital effects. We therefore do
not interpret coral Sr/Ca and 5'%0 in terms of absolute SST, but quantitative estimates of
the range of the seasonal SST cycle are possible, as the slope of the proxy-SST calibrations
remains unaffected. Modern coral §'®0 data are from ref. 27, age models were constructed
according to ref. 4.

Global circulation model and experimental set-up

The coupled atmosphere—ocean general circulation model ECHO-G is applied®®. The
atmospheric part of ECHO-G is the general circulation model ECHAM4 with its T30
resolution, which corresponds to a gaussian longitude-latitude grid of approximately
3.8° % 3.8°. ECHAM4 is coupled to the HOPE ocean model including a dynamic-
thermodynamic sea-ice model. ECHO-G was adapted to account for the influence of
variations in the annual distribution of solar radiation resulting from the varying orbital
parameters®, which were calculated after ref. 2. The timescale of the astronomical forcing
was shortened by an acceleration factor of 100 to enable simulations of a >100 kyr period
with ECHO-G¥. The insolation trends of the last 140 kyr are represented in 1,400
simulation years. Three ensemble experiments for the period 140 kyr ago to AD 1800 were
performed with orbital forcing” only. Throughout the experiments, the greenhouse gas
concentrations were fixed (latest Holocene values: 280 p.p.m. CO,, 700 p.p.b. CH,,

265 p.p.b. N,0) and modern values for vegetation, sea level, and distribution of land,
ocean and continental ice were used. The experiments were continued from Ap 1800
onward with increasing greenhouse gas concentrations, reaching 370 p.p.m. CO, in AD
2000. The temperature anomalies induced by anthropogenic greenhouse gases are shown
in Supplementary Fig. S10.
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