Observations and simulations of receiver-induced refractivity biases in GPS radio occultation

G. Beyerle,1 T. Schmidt,1 J. Wickert,1 S. Heise,1 M. Rothacher,1 G. König-Langlo,2 and K. B. Lauritsen3

Received 15 September 2005; revised 11 January 2006; accepted 1 March 2006; published 16 June 2006.

[1] An analysis of 206,422 atmospheric refractivity profiles observed by the CHAMP georesearch satellite between 14 May 2001 and 30 June 2005 reveals significant biases compared to European Centre for Medium-Range Weather Forecasts meteorological fields at altitudes below 5 km. The mean bias decreases down to −2% at altitudes below 2 km; in the Amazon region, positive biases exceeding +1% are observed. In order to identify bias contributions caused by the receiver signal tracking process an end-to-end simulation study implementing different signal tracking modes was performed. The end-to-end simulations are based on 1992 radiosonde profiles obtained regularly aboard R/V Polarstern since December 1982 and were conducted with four receiver models using closed-loop, fly wheeling, and open-loop signal tracking methods. The simulation results confirm that open-loop tracking yields significantly smaller biases and standard deviations of the fractional refractivity errors compared to fly wheeling enabled receivers. In addition, we analyze closed-loop tracking with a second-order loop and demonstrate that similar reductions in biases and standard deviations can be obtained.

1. Introduction

[2] Since February 2001 a Global Positioning System (GPS) radio occultation (RO) experiment aboard the CHAMP (Challenging Minisatellite Payload) georesearch satellite [Reigber et al., 2002, 2005] monitors atmospheric temperature and water vapor with high vertical resolution. The “BlackJack” GPS receiver aboard CHAMP records characteristic signal amplitude and phase changes induced by the ionosphere and neutral atmosphere. From the observed signal phase and amplitude the ray bending angle profile σ(p) and subsequently the atmospheric refractivity profile \(N(z) = (n(z) - 1) \times 10^6\) are derived. Here, \(n(z)\) denotes the real part of the atmospheric refractive index, \(p\) and \(z\) are the ray impact parameter and the altitude, respectively. For the history and detailed accounts of the radio occultation technique, see, e.g., Yunck et al. [2000], Melbourne et al. [1994], Kursinski et al. [1997], and Hajj et al. [2002].

[3] Since activation of the RO experiment aboard CHAMP on 11 February 2001 more than 300,000 occultation events have been observed, 64% of which could be successfully processed and converted to profiles of atmospheric temperature [Wickert et al., 2001, 2004; Hajj et al., 2004]. At altitudes between about 7–8 km and 35 km good agreement between RO measurements and meteorological analyses is found. In the lower troposphere, however, CHAMP validation studies consistently report on a negative refractivity bias of several percent [Wickert et al., 2004; Marquardt et al., 2003; Ao et al., 2003; Hajj et al., 2004]. This negative \(N\) bias is well known from the proof-of-concept GPS/MET mission and was first described by Rocken et al. [1997] within the GPS/MET data validation study.

[4] The \(N\) bias may be attributed to two factors. First, for vertical refractivity gradients below a threshold value of \(dN/dz \approx 10^6/r_E \approx -157\) km\(^{-1}\) the ray’s local radius of curvature falls below \(r_E\), Earth’s local radius of curvature. Ray tangent points within the critical layer are inaccessible using a RO geometry with the transmitters located above the layer [Ao et al., 2003; Sokolovskiy, 2003, 2004]. In occultation events affected by critical refraction the retrieved bending angles and, subsequently, the retrieved refractivities are systematically smaller than the true values [Sokolovskiy, 2004]. Second, the signal tracking process performed by the occultation receiver may induce carrier phase errors which also contribute to the refractivity bias [see e.g., Gorbunov, 2002; Ao et al., 2003; Beyerle et al., 2003].

[5] Closed-loop receivers track the incoming GPS carrier signal by correlating it with a model signal generated by a numerically controlled oscillator (NCO) [Kaplan, 1996; Misra and Enge, 2002]. The NCO’s frequency, in turn, is steered toward the incoming signal’s frequency with the aid
Before about 50 s occultation time, the profile’s overall shape is characterized by the smooth relative motion between the transmitter aboard the occulting GPS and the receiver aboard the LEO spacecraft. Later, the impact of the neutral atmosphere delays the signal reducing the magnitude of the mean phase path acceleration from about 3 m s\(^{-2}\) to less than 1 m s\(^{-2}\). In this simulated event the Doppler frequency visibly deviates at about 50 s occultation time corresponding to a tangent point altitude of about 28 km. We note, however, that RO observations contain information on atmospheric refractivity at significantly higher altitudes reaching the upper stratosphere [Kursinski et al., 1997]. During the final stage of the occultation, starting at about 67 s occultation time, multipath signal propagation in the midtroposphere and lower troposphere produces interference patterns on the smooth background profile. These phase fluctuations are frequently accompanied by amplitude changes of more than an order of magnitude within a few seconds (Figure 1 insert). The insert shows the Doppler profile within the multipath zone (bottom) together with the corresponding voltage signal-to-noise ratio (top).

Tracking loops of conventional GPS positioning instruments are designed to accommodate arbitrary receiver movements that cause unpredictable phase accelerations; the corresponding voltage signal-to-noise ratio (SNR\(_v\)) values, however, are in general considered comparatively stable [Kaplan, 1996; Misra and Enge, 2002]. Occultation receivers, on the other hand, are exposed to strong SNR\(_v\) changes with approximately smooth background Doppler frequencies. The results presented here suggest that in radio occultations it is more important to prevent loss of lock due to low SNR\(_v\), and accept larger NCO phase errors than reducing the NCO phase deviations at the risk of losing the signal within regions of low SNR\(_v\).

The outline of the paper is as follows. In section 2 the two observational data sets, a database of radiosonde observations collected aboard R/V Polarstern and archived by Alfred Wegener Institute for Polar and Marine Research (AWI) as well as the CHAMP satellite observations are briefly described. Section 3 discusses the end-to-end simulation chain emphasizing the signal tracking models. In section 4, biases of CHAMP refractivity profiles with respect to meteorological analyses are described and discussed. We restrict the comparisons to atmospheric refractivity; for discussions of temperature and water vapor retrievals, see, e.g., Healy [2001], Marquardt et al. [2001], Kursinski and Hajj [2001], and Heise et al. [2006]. Furthermore, the simulation results using closed-loop and open-loop signal tracking schemes are analyzed. Section 5 comments on the feasibility of data wipe off to permit the implementation of four-quadrant carrier phase extraction, and section 6 summarizes the main conclusions.

2. Observational Data Sets

2.1. Polarstern Radiosonde Data

Starting in December 1982 the AWI radiosonde data set comprises almost 25,000 profiles observed aboard R/V Polarstern at latitudes between 78.2°S and 89.9°N. Balloon-borne sondes measure temperature, pressure and humidity data with a vertical resolution of about 20–50 m (corresponding to 5–10 s sampling time at 4–5 m s\(^{-1}\)
balloon rise velocity). Sounding aboard Polarstern is performed with Vaisala RS80 radiosondes [Vaisala, 1989]. The manufacturer quotes the following repeatabilities of calibration: 0.2–0.4°C temperature accuracy between −90°C and +60°C, 0.5 hPa pressure accuracy between 1060 hPa and 3 hPa and 2% RH relative humidity accuracy between 0 and 100% RH. At low temperatures it is known that the accuracy of the humidity measurements decreases further [see, e.g., Leiterer et al., 1997].

[12] With very few exceptions critical refraction in the lower troposphere is caused by strong vertical gradients induced by the water vapor field [von Engeln et al., 2003; A. von Engeln et al., The impact of thin water vapor layers on CHAMP radio occultation measurements, submitted to Radio Science, 2005]; humidity values at high latitudes are in general too low to produce critical refraction layers. Thus we focus in the following on the subset of 1992 sonde profiles recorded at midlatitudes and low latitudes ranging from 45oS to 45°N. The corresponding launch dates cover the time period between 29 December 1982 and 16 June 2005. Figure 2 shows the geographical locations of the corresponding sonde launches.

[13] Refractivity N is calculated from observed pressure p, water vapor partial pressure p_w and temperature T from [Bevis et al., 1994]

$$N = k_1 \frac{p - p_w}{T} + k_2 \frac{p_w}{T} + k_3 \frac{p_w}{T^2}$$

(1)

with $k_1 = 0.7760$ K Pa$^{-1}$, $k_2 = 0.704$ K Pa$^{-1}$, and $k_3 = 3.739 \times 10^3$ K² Pa$^{-1}$. Above the balloon burst height z_B the refractivity profiles are extrapolated using

$$N(z) = N(z_B) \exp \left(-\frac{z - z_B}{H}\right) \quad z > z_B$$

(2)

where $H = 7$ km denotes the scale height.

2.2. CHAMP Satellite Observations

[14] As of 30 June 2005 (day of year 181), 320,904 occultation events have been recorded aboard CHAMP since activation of the operational occultation mode on 14 May 2001 (day of year 134). Out of these, 206,422 observations (64.3%) pass the quality criteria imposed by the operational processing system and produce validated refractivity profiles (level 3 data). The current version of the GFZ’s occultation processing system (version 5) uses double differencing to retrieve excess phase paths [Wickert et al., 2001, 2004] and the full spectrum inversion (FSI) method [Jensen et al., 2003] to obtain bending angles at tropospheric altitudes. The bending angle profiles are truncated at that impact parameter value where the smoothed FSI amplitude drops to 50% of the maximum value. For a detailed discussion of the data processing and analysis, see Wickert et al. [2001, 2004].

[15] The observed CHAMP refractivity profiles are intercompared with meteorological analysis results provided by the European Centre for Medium-Range Weather Forecasts (ECMWF). ECMWF pressure and temperature values are calculated by linear interpolation between grid points (0.5° × 0.5° resolution). Linear interpolation in time is performed between 6 h ECMWF analyses fields. The vertical resolution of the observed RO refractivity profiles is 200 m [Wickert et al., 2004]; the comparison between observation and ECMWF, however, is performed on the 60 levels provided by the ECMWF atmospheric model ranging from the ground surface up to about 60 km altitude. Geopotential height at each level is calculated from the analysis fields using the hydrostatic equation and converted to geometric height (M. J. Mahoney, A discussion of various measures of altitude, available at http://mtp.jpl.nasa.gov/notes/altitude/altitude.html). Within the altitude range relevant for this study vertical spacing of the model grid points are of the same order as the observations increasing from about 200 m at 1 km altitude to about 700 m at 10 km altitude. (For a discussion of possible aliasing effects, however, see Kursinski et al. [2000] and Kuo et al. [2004].)

[16] Negative biases in the lower troposphere are well known from CHAMP and other satellite RO missions [see, e.g., Rocken et al., 1997; Ao et al., 2003; Hajj et al., 2004]. The exact shape of the fractional refractivity error, however, depends on the number of data points retrieved at a given altitude z, in the following denoted by $m(z)$; the loss-of-lock altitude $z_{50\%}$ refers to the altitude at which the number of successfully retrieved data points is reduced to 50%. If, e.g., more restrictive quality control criteria are employed removing outlier observations, $z_{50\%}$ increases correspondingly. If the fraction is above 50% within the full altitude range, $z_{50\%}$ is undefined. A plot of $m(z)$ is attached to all figures showing the fractional refractivity error $\Delta N/N_{\text{true}} = (N - N_{\text{true}})/N_{\text{true}}$ in order to emphasize the mutual dependence between fractional refractivity error and $m(z)$.

3. End-to-End Simulations

[17] Starting from a refractivity profile $N(z)$, the atmospheric propagation of a GPS signal is modeled using the inverse FSI technique [Gorbunov, 2003; Gorbunov and Lauritsen, 2004]. With the FSI method the simulated amplitude and phase data are converted to bending angle
profiles \cite{Jensen et al., 2003}. Finally, refractivity profiles are retrieved by Abel transforming the bending angle profiles thereby closing the simulation loop \cite{Ao et al., 2003}. Optionally, a simplified signal receiver model can be inserted in the end-to-end simulation chain. Its schematic is shown in Figure 3. For each receiver model and three noise levels 1992 simulation runs are performed using spherically symmetric refractivity fields derived from the Polarstern radiosonde profiles as described in section 2.1.

[18] For numerical efficiency the simulations are simplified in a number of ways:

[19] 1. The GPS and LEO orbits are assumed to be coplanar and circular with radii of $r_G = 26,800$ km and $r_L = 6800$ km, respectively. Thus FSI and inverse FSI are efficiently implemented using the Fast Fourier Transform without the requirement of vacuum propagation of the wavefield or the addition of phase correction terms \cite{Jensen et al., 2003; Gorbunov, 2003; Gorbunov and Lauritsen, 2004}.

[20] 2. Since the optical path difference between interfering rays in multipath regions are much smaller than the C/A code chip (and navigation bit) lengths, as already indicated \cite{Beyerle et al., 2003; Gorbunov, 2003; Gorbunov and Lauritsen, 2004}. First, the bending angle profile $\alpha(p)$ is a function of impact parameter p determined from the observed refractive index profile $n(p)$ using the inverse Abel transform \cite{Fieldbo et al., 1971}:

$$\alpha(p) = -2p \int_{-\infty}^{\infty} \frac{dx}{\sqrt{x^2 - p^2}} \ln(n(x))$$

where the integral’s upper limit is approximated as $r_F + 150$ km. From $\alpha(p)$ the signal amplitude $A(t)$ and phase $\Phi(t)$ at the LEO’s location is calculated with the inverse FSI method \cite{Gorbunov, 2003; Gorbunov and Lauritsen, 2004}. Random sign changes every 20 ms simulate the 50 Hz data modulation of the signal $u(t)$, i.e.,

$$u(t) \equiv D(t)A(t)\cos(\Phi(t) - \Phi_0)$$

with data modulation $D(t) = \pm 1$ \cite{Ao et al., 2003} and $\Phi_0 \equiv \Phi(t = 0)$. $D(t)$ is taken to be piecewise constant over periods of 20 ms.

3.2. Receiver Models

[25] The receiver tracks the signal $u(t)$ by correlating $u(t)$ with replica signals $\nu'(t) \equiv \cos[\phi^{NCO}(t)]$ and $\nu''(t) \equiv -\sin[\phi^{NCO}(t)]$. The replicas $\nu'(t)$ and $\nu''(t)$ are generated by the receiver’s NCO \cite{Kaplan, 1996; Tsui, 2000; Misra and Enge, 2002}. In our simulation the NCO’s frequency $f^{NCO}(t)$ is updated at a rate of $1/7 = 1$ kHz, i.e., $f^{NCO}(t)$ is piecewise constant for $t_n \leq t < t_{n+1}$, $f^{NCO} = f^{NCO}(t_n)$. Provided the amplitude $A(t)$ and frequency $f(t) \equiv 1/(2\pi)d\Phi/dt$ can be approximated as piecewise constant functions, $A_n \equiv A(t_n)$ and $f_n \equiv f(t_n)$, the inphase and quadrature correlation sums are given by

$$i_n \equiv \frac{2}{T} \int_{t_n}^{t_n + T} u(t)v'(t)dt + N'_n$$

$$= D_n A_n \sin(\pi \Delta f_n T) \cos(\pi \Delta \Phi_n T + \Delta \Phi_n) + N'_n$$

$$= D_n A_n \sin(\pi \Delta f_n T) \cos\left(\frac{\Delta \Phi_n + \Delta \Phi_{n+1}}{2}\right) + N'_n$$

\[5\] Since the simulations are focused on altitudes below 10 km, signal propagation through the ionosphere is not taken into account. In real RO events the ionosphere induces carrier phase path deviations on the order of several tens of meters which have to be corrected for by simultaneous observations at both GPS frequencies, L1 and L2 \cite[see, e.g., Syndergaard, 2000]. In this study, however, dispersion is ignored and only L1 data are generated.

3.1. Forward Propagation

[24] The optical path length differences between interfering rays in multipath regions are much smaller than the C/A code chip (and navigation bit) lengths, as already indicated \cite{Beyerle et al., 2003}. In order to efficiently simulate the propagation process from the transmitter to the receiver the signal is modeled as modulation-free, i.e., a pure tone. Atmospheric propagation of GPS signals is implemented using the inverse FSI technique \cite{Gorbunov, 2003; Gorbunov and Lauritsen, 2004}. For numerical efficiency the simulations are simplified in a number of ways:

[19] 1. The GPS and LEO orbits are assumed to be coplanar and circular with radii of $r_G = 26,800$ km and $r_L = 6800$ km, respectively. Thus FSI and inverse FSI are efficiently implemented using the Fast Fourier Transform without the requirement of vacuum propagation of the wavefield or the addition of phase correction terms \cite{Jensen et al., 2003; Gorbunov, 2003; Gorbunov and Lauritsen, 2004}.

[20] 2. Since the optical path difference between interfering rays in multipath regions are much smaller than the C/A code chip (and navigation bit) lengths, as already indicated \cite{Beyerle et al., 2003; Gorbunov, 2003; Gorbunov and Lauritsen, 2004}. First, the bending angle profile $\alpha(p)$ is a function of impact parameter p determined from the observed refractive index profile $n(p)$ using the inverse Abel transform \cite{Fieldbo et al., 1971}:

$$\alpha(p) = -2p \int_{-\infty}^{\infty} \frac{dx}{\sqrt{x^2 - p^2}} \ln(n(x))$$

where the integral’s upper limit is approximated as $r_F + 150$ km. From $\alpha(p)$ the signal amplitude $A(t)$ and phase $\Phi(t)$ at the LEO’s location is calculated with the inverse FSI method \cite{Gorbunov, 2003; Gorbunov and Lauritsen, 2004}. Random sign changes every 20 ms simulate the 50 Hz data modulation of the signal $u(t)$, i.e.,

$$u(t) \equiv D(t)A(t)\cos(\Phi(t) - \Phi_0)$$

with data modulation $D(t) = \pm 1$ \cite{Ao et al., 2003} and $\Phi_0 \equiv \Phi(t = 0)$. $D(t)$ is taken to be piecewise constant over periods of 20 ms.

3.2. Receiver Models

[25] The receiver tracks the signal $u(t)$ by correlating $u(t)$ with replica signals $\nu'(t) \equiv \cos[\phi^{NCO}(t)]$ and $\nu''(t) \equiv -\sin[\phi^{NCO}(t)]$. The replicas $\nu'(t)$ and $\nu''(t)$ are generated by the receiver’s NCO \cite{Kaplan, 1996; Tsui, 2000; Misra and Enge, 2002}. In our simulation the NCO’s frequency $f^{NCO}(t)$ is updated at a rate of $1/7 = 1$ kHz, i.e., $f^{NCO}(t)$ is piecewise constant for $t_n \leq t < t_{n+1}$, $f^{NCO} = f^{NCO}(t_n)$. Provided the amplitude $A(t)$ and frequency $f(t) \equiv 1/(2\pi)d\Phi/dt$ can be approximated as piecewise constant functions, $A_n \equiv A(t_n)$ and $f_n \equiv f(t_n)$, the inphase and quadrature correlation sums are given by

$$i_n \equiv \frac{2}{T} \int_{t_n}^{t_n + T} u(t)v'(t)dt + N'_n$$

\[5\] Since the simulations are focused on altitudes below 10 km, signal propagation through the ionosphere is not taken into account. In real RO events the ionosphere induces carrier phase path deviations on the order of several tens of meters which have to be corrected for by simultaneous observations at both GPS frequencies, L1 and L2 \cite[see, e.g., Syndergaard, 2000]. In this study, however, dispersion is ignored and only L1 data are generated.
and

\[q_n \equiv \frac{2}{T} \int_{t_n}^{t_n+T} u(t) \sin(\Delta f_n T) dt + N_n^q \]
\[\approx D_n A_n \sin(\pi \Delta f_n T) \sin(\pi \Delta f_n T + \Delta \Phi_n) + N_n^q \]
\[= D_n A_n \sin(\pi \Delta f_n T) \sin\left(\frac{\Delta \Phi_n + \Delta \Phi_{n+1}}{2}\right) + N_n^q \]

(6)

respectively, with \(\sin(x) \equiv \sin(x)/x \) and \(D_n \equiv D(t_n) \). Here, \(\Delta f_n \equiv f_n - f_{\text{NCO}} \) and \(\Delta \Phi_n \equiv \Phi_n - \Phi_{\text{NCO}} \) denote the difference between the true frequency \(f_n \) and the NCO frequency \(f_{\text{NCO}} \) and the difference between the true phase \(\Phi_n \) and the NCO phase \(\Phi_{\text{NCO}} \), respectively. Here and in the following the subscript \(n \) denotes the corresponding function value at time \(t_n \), i.e., \(f_n \equiv f(t_n) \) and \(\Phi_n \equiv \Phi(t_n) \), except where noted otherwise. The NCO and true phases follow from

\[\Phi_{\text{NCO}}^n \equiv 2\pi T \sum_{j=1}^{n-1} f_{\text{NCO}} \]
[10]
\[\Phi_n \equiv 2\pi T \sum_{j=1}^{n-1} f_j \]

(7)

We note that \(\Phi_{\text{NCO}}^n \) and \(\Phi_n \) are accumulated phases and not restricted to the interval \([-\pi, +\pi] \). Gaussian white noise, \(N_n^q \) and \(N_n^\Phi \), with zero mean and standard deviations

\[\sigma(N_n^q) = \frac{A^{(0)}}{2 \sqrt{T} 10^{C/20}} \]

(8)

is added to the correlation sums, \(i_n \) and \(q_n \) (equations (5) and (6)), where \(A^{(0)} \) denotes the amplitude for vacuum propagation and \(C/N_0 \) is the carrier-to-noise density ratio expressed in dB Hz [Kaplan, 1996].

[26] The total accumulated phase is the sum of NCO phase \(\Phi_{\text{NCO}}^n \) and residual phase \(\Phi_{r}^n \) (see section 3.2.1):

\[\Phi_{r}^n \equiv \Phi_{\text{NCO}}^n + \Phi_{r}^n \]

(9)

Finally, output data volume is compressed from \(1/T = 1 \text{ kHz} \) to 50 Hz by coherent summation over \(K = 20 \) samples

\[I_k = \sum_{j=-k}^{k} i_j \]
\[Q_k = \sum_{j=-k}^{k} q_j \]
\[\Phi_{r}^n = \frac{1}{K} \sum_{j=-k}^{k} \Phi_{r}^n \]

(10)

In the following, \(I_k \) and \(Q_k \) are denoted as coherent inphase and quadphase correlation sums, respectively. We note that according to equation (10), \(\Phi_{r}^n \) is taken to be the mean value of \(\Phi_{r}^n \). Thomas [1989] discusses more sophisticated alternatives. From the coherent correlation sums the signal amplitudes

\[A_k^R = \sqrt{(I_k^2 + Q_k^2)} \]

(11)

are obtained. Signal tracking is accomplished in either closed-loop or open-loop mode. The two modes will be discussed in sections 3.2.2 and 3.2.3.

3.2.1. Residual Phase Extraction

[27] The residual phases \(\Phi_{r}^n \) (equation (9)) are extracted from the correlation sums (equations (5) and (6)) using two different methods. Within the two-quadrant phase extraction scheme the residual phases are

\[\Phi_{r}^{n+1} = \text{atan}\left(\frac{q_n}{i_n}\right) \]

(12)

Provided \(|i_n| \gg |N_n^q| \) and \(|q_n| \gg |N_n^\Phi| \) (equations (5) and (6)), equation (12) may be approximated by

\[\Phi_{r}^{n+1} \approx \text{atan}\left(\frac{\Delta \Phi_n + \Delta \Phi_{n+1}}{2}\right) \]

(13)

Two-quadrant phase extraction is commonly used in GPS receivers since \(\Phi_{r}^{n+1} \), as derived from equation (13), does not depend on the data modulation values \(D_n \) [Kaplan, 1996]. On the other hand, the validity of equation (12) (and (13)) is restricted to the phase interval \([-\pi/2, +\pi/2] \). If the phase deviations exceed \(\pm \pi/2 \) an erroneous offset of \(\pm \pi \) between derived residual phase and true phase error is introduced since atan(tan(x)) = x only if \(-\pi/2 \leq x \leq \pi/2 \), but atan(tan(x)) = \(x \pm \pi \) otherwise.

[28] To obtain valid residual phases for phase deviations larger than \(\pi/2 \) and smaller than \(-\pi/2 \), the following four-quadrant phase extraction scheme is used

\[\Phi_{r}^{n+1} = \text{atan2}\left(\frac{q_n}{D_n} \cdot \frac{i_n}{D_n}\right) + C_n \]

(14)

Four-quadrant phase extraction according to equation (14), though, presupposes knowledge of the data modulation \(D_n \).

[29] In closed-loop mode the phase-locked loop (PLL) steers the residual phase \(\Phi_{r}^{n+1} \) toward zero, i.e., \(|i_n| \gg |q_n| \) if the tracking loop is locked to the signal. In open-loop mode (section 3.2.3), however, received and replica signals are no longer phase locked, \(\Phi_{r}^{n+1} \) possibly exceeds the interval \([-\pi, +\pi] \) and use of equation (14) would introduce a cycle slip whenever \(\Phi_{r}^{n+1} \) passes \(\pm \pi \). These cycle slips are eliminated by adding the number of full cycles to \(\Phi_{r}^{n+1} \), i.e., equation (14) is modified by

\[\Phi_{r}^{n+1} = \text{atan2}\left(\frac{q_n}{D_n} \cdot \frac{i_n}{D_n}\right) + C_n \]

(15)
where

\[
C_n = \begin{cases}
 C_{n-1} - 2\pi : & \text{atan2} \left(\frac{q_n}{D_n}, \frac{i_n}{D_n} \right) - \text{atan2} \left(\frac{q_{n-1}}{D_{n-1}}, \frac{i_{n-1}}{D_{n-1}} \right) < -\pi \\
 C_{n-1} + 2\pi : & \text{atan2} \left(\frac{q_n}{D_n}, \frac{i_n}{D_n} \right) - \text{atan2} \left(\frac{q_{n-1}}{D_{n-1}}, \frac{i_{n-1}}{D_{n-1}} \right) > +\pi \\
 C_{n-1} : & \text{else}
\end{cases}
\] (16)

and \(C_1 = 0 \).

[30] In the current CHAMP occultation, receiver closed-loop tracking with two-quadrant phase extraction is implemented [Ao et al., 2003]. Four-quadrant phase extraction, on the other hand, records the data modulation bits and introduces half cycles whenever a bit transition occurs. Thus four-quadrant phase extraction presupposes the removal of the 50 Hz data modulation prior to signal correlation (data demodulation or data wipe off) and necessitates knowledge of the navigation message. We comment on the feasibility of data wipe off in section 5.

3.2.2. Closed-Loop Tracking

[31] To study the sensitivity of retrieved refractivities with respect to the chosen tracking loop parameters, the simulation receiver’s carrier loop bandwidths are varied between 5 and 30 Hz and loops of order two and three are implemented. In closed-loop mode the NCO frequency is adjusted every C/A code period (about 1 ms) by \(\beta_{NCO} \). The frequency adjustment for the time interval \([t_{n-1}, t_n]\) is

\[
\beta_{NCO} = \frac{1}{T} \left(\frac{K_1^{(2)} + K_2^{(2)}}{2\pi} \Phi_R + \frac{-K_1^{(2)}}{2\pi} \Phi_n \right)
\] (17)

(second-order loop) or

\[
\beta_{NCO} = \frac{1}{T} \left(\frac{K_1^{(3)} + K_2^{(3)} + K_3^{(3)}}{2\pi} \Phi_R + \frac{-2K_1^{(3)} - K_2^{(3)}}{2\pi} \Phi_R + \frac{K_1^{(3)} + K_3^{(3)}}{2\pi} \Phi_n \right)
\] (18)

(third-order loop), respectively, where the residual phase \(\Phi_R \) is given in radian and \(K_1^{(2)} = 7.358 \times 10^{-2}, K_2^{(2)} = 2.810 \times 10^{-3} \) for a standard-underdamped second-order loop and \(K_1^{(3)} = 7.172 \times 10^{-2}, K_2^{(3)} = 2.383 \times 10^{-3}, K_3^{(3)} = 3.020 \times 10^{-5} \) for a standard-underdamped third-order loop [Stephens and Thomas, 1995]. In both cases, tracking loop bandwidth is taken to be 30 Hz. For comparison, simulation runs with loop bandwidth reduced to 5 Hz are performed as well; 5 Hz was chosen since it is the smallest bandwidth value given by Stephens and Thomas [1995]. The corresponding third-order loop parameters are \(K_1^{(3)} = 1.283 \times 10^{-2}, K_2^{(3)} = 7.365 \times 10^{-5} \) and \(K_3^{(3)} = 1.590 \times 10^{-7} \). With \(\beta_{NCO} \) the NCO frequency of the \((n + 1)\)th update interval follows from \(f_{NCO}^{(n+1)} = \beta_{NCO} + f_{NCO}^{(n)} \) and subsequently \(i_{n+1} \) and \(q_{n+1} \) are calculated using equations (7), (5), and (6).

3.2.3. Open-Loop Tracking

[32] Open-loop tracking is commonly considered a possible solution to the problem of premature loss of lock in closed-loop receivers [Sokolovskiy, 2001]. In open-loop mode the loop feedback \(\delta f_{NCO}^{(n)} \) is calculated from a Doppler frequency model \(f_{model}^{(n)} \), i.e.,

\[
f_{NCO}^{(n+1)} = f_{model}^{(n)}
\] (19)

and therefore

\[
\delta f_{NCO}^{(n)} = f_{model}^{(n)} - f_{NCO}^{(n)}
\] (20)

For simplicity, in this study the model \(f_{model}^{(n)} \) is taken to be the ensemble average

\[
f_{model}^{(n)} = \frac{1}{N_R} \sum_{i=1}^{N_R} f_i^{(n)} \equiv \langle f_i^{(n)} \rangle
\] (21)

where \(N_R = 1992 \) and \(f_i^{(n)} \) is the true signal frequency derived from the \(j \)th simulated Doppler profile at time interval \(n \). The one-sigma standard deviation is about 10–20 Hz in good agreement with Sokolovskiy [2001]. Total phase is calculated from equation (9), with \(\Phi_R \) extracted from equation (15) and \(\Phi_{NCO} \) is derived from the NCO frequency (equation (7)). Analogous to the closed-loop case the sampling rate is reduced from 1 kHz to 50 Hz using equation (10), and equation (11) yields the signal amplitude. Thus, in open-loop mode the total phase is not a raw data product provided by the receiver, but instead is calculated in postprocessing from the inphase and quadrature correlation sums taking into account the (known) 50 Hz navigation data.

3.2.4. Fly Wheeling Mode Tracking

[33] The first occultation measurements from the proof-of-concept GPS/MET mission frequently suffered from loss of lock already in the upper or midtroposphere in particular at low latitudes [Rocken et al., 1997]. To solve this problem, the Jet Propulsion Laboratory developed and implemented the fly wheeling tracking method [Hajj et al., 2004]. The fly wheeling mode was successfully used in later phases of the GPS/MET mission and is the nominal tracking mode on the CHAMP and SAC-C satellites.

[34] Fly wheeling tracking is activated when SNR drops below a predefined threshold value SNR. Once activated, the tracking loop is opened and \(f_{NCO}^{(n+1)} \) is calculated from the previous \(L \) NCO frequencies by extrapolating a polynomial fit through \(f_{NCO}^{(n-L+1)}, \ldots, f_{NCO}^{(n)} \). Thus, during fly wheeling the carrier tracking loop is no longer phase locked to the signal \(u(t) \). The phasor \(I + \text{iQ} \) starts to rotate freely in \(I - Q \) space, effectively randomizing the residual phase values and thereby enhancing the occurrence probability of carrier phase cycle slips. However, signal loss is less likely during fly wheeling since large residual phase errors no longer cause \(f_{NCO} \) to sheer out.
Our fly wheeling simulations show that the results depend strongly on the selected fly wheeling parameters: the number of samples \(L \) included in the polynomial fit, the degree of the extrapolation polynomial, the amplitude thresholds for activation and deactivation, possible time delays, etc. In our implementation the following parameters were found to give best results: \(L = 2000 \) corresponding to a time period of 2 s, a linear fit and a threshold value of \(\text{SNR}^*_k = 40 \, \text{V/V} \). If the observed amplitude falls below \(\text{SNR}^*_k \) for more than 100 ms, fly wheeling is activated for at least 2 s. We stress that the design choices of our fly wheeling implementation were made to achieve consistency with the CHAMP occultation data; the implementation should not be regarded as an accurate model of the Blackjack receiver aboard CHAMP.

3.3. Backward Model

From the amplitudes \(A_k^{Rev} \) and phases \(\Phi_k^{Rev} \) (equation (10)) bending angle profiles are derived with the FSI technique [Jensen et al., 2003; Gorbunov and Lauritsen, 2004]. The bending angle profiles are inverted to refractivity profiles using the Abel transform [Fjeldbo et al., 1971] thereby closing the simulation chain.

4. Analysis and Discussion

4.1. Sonde and Satellite Observations

From the Polarstern in situ measurements all soundings located between 45\(^\circ\)S and 45\(^\circ\)N latitude are selected and the refractivity profiles \(N(z) \) are calculated. Eighty-four out of 2076 soundings are removed from the data set since they contain discontinuities in the relative humidity values exceeding 50% RH or consist of less than 10 measurement samples. The remaining 1992 profiles are linearly interpolated on an altitude grid with 5 m resolution and low-pass filtered using a running mean with 150 m width to reduce measurement noise introduced by the humidity sensor [Vaisala, 1989]. We ignore the sonde’s horizontal motion during ascent (or, equivalently, we assume spherical symmetry of the refractivity field) and identify the changes of \(N(z) \) with the vertical refractivity gradient \(dN/dz \). The occurrence distribution of the smallest value of \(dN/dz \) is shown in Figure 4; 58.3% (1162 profiles) exhibit critical refraction with \(dN/dz < -157 \, \text{km}^{-1} \) (dashed line). These percentage estimates, however, should be regarded as an upper limit for the occurrence of critical refraction in the marine environment at low and midlatitudes, since radiosonde data represent point measurements without information on the horizontal extent of the observed layers [see, e.g., von Engeln et al., 2003]. The probability for the occurrence of critical refraction as a function of altitude can be inferred from Figure 5 which shows the altitude distribution of the highest layer obeying \(dN/dz < -157 \, \text{km}^{-1} \). Figure 5 suggests that critical refraction is a phenomenon restricted to the PBL at altitudes below 2–2.5 km. Above 3 km, critical layers are unlikely to occur [see also Gorbunov et al., 1996].

The CHAMP refractivity bias derived from 11,626 observations over the Atlantic Ocean between 45\(^\circ\)S–0\(^\circ\)S, 45\(^\circ\)W–15\(^\circ\)E and 0\(^\circ\)N–45\(^\circ\)N, 45\(^\circ\)W–15\(^\circ\)W is plotted in Figure 6 (solid lines). While the \(N \) bias is below 0.2% in the midtroposphere at altitude between 5 and 13 km, it decreases to –3% within the PBL. The occurrence distribution shown in Figure 5 suggests that critical refraction contributes to the observed deviation only below 3 km. The smaller negative bias between 3 and 5 km altitude, however, most likely is caused by the receiver tracking as discussed in section 4.2.

The large volume of the CHAMP occultation data set allows for a \(N \) bias analysis not only in terms of zonal and/or meridional averages but also as a function of longitude and latitude. 206,422 profiles of the fractional refractivity deviation between CHAMP and ECMWF are sorted in \(10^\circ \times 10^\circ \) longitude/latitude bins. Within each bin the mean value between 3 and 5 km altitude is computed and plotted...
in Figure 7. On average, there are 306 ± 101 observations per bin.

[40] At high latitudes the fractional refractivity error remains below ±0.3%, at midlatitudes and low latitudes the bias reaches below −1% on a global scale. The geographical distribution, however, exhibits pronounced patterns with small and medium-scale biases exceeding +1% over South America and −2% over the eastern tropical Pacific. The simulation results discussed below suggest that the negative bias is consistently explained by receiver-induced tracking errors (within the altitude range of 3–5 km the occurrence of critical refraction is not expected). The explanation for the positive biases over the Amazon region and Indonesia requires a detailed analysis which is beyond the scope of this study. One of the possibilities that should be investigated is the occurrence of positive vertical refractivity gradients (refractivity increases with altitude) leading to subrefraction; Sokolovski (2004) discusses an individual sonde profile that exhibits subrefraction and yields a positive refractivity bias. The solid white lines mark the geographical region of observations plotted as solid lines in Figure 6, and the Amazon data are plotted as dashed lines. Figure 6 demonstrates the positive bias of this subset and its enhanced standard deviation (thin dashed lines). The corresponding 50% altitudes are 2.5 km (Atlantic) and 2.8 km (Amazon region), respectively.

4.2. End-to-End Simulations

[41] The task of interpreting the N bias below 5 km (Figure 6) is approached by a series of end-to-end simulation runs; the results are presented in Figures 8–13. Figures 8 (left) to 13 (left) show the mean fractional difference between retrieved and true refractivity (thick lines). Thin lines mark the one-sigma standard deviation. In addition, the number of retrieved data points as function of altitude is indicated as well (Figures 8, right, to 13, right).

[42] The simulations are performed for signal-to-noise density ratios of 40, 45 and 50 dB Hz. This choice is...
motivated by SNR values typically observed in CHAMP occultation events. Figure 14 shows the normalized histogram distribution of C/A SNR, derived from 4526 CHAMP observations collected during January 2004. While at mid-latitudes and high latitudes SNR varies between about 200 and 900 V/V with a mean value of 576 V/V (dashed line), in the Tropics SNR extends from about 200 V/V (C/N₀ = 43.0 dB Hz) to about 700 V/V (C/N₀ = 53.9 dB Hz) with a mean value of 511 V/V (solid).

The simulation results without signal tracking (ideal receiver) are plotted in Figure 8. In a control run we restrict the comparison to the height range above z_{CR} + 100 m and obtain a mean fractional retrieval error and standard deviation below 0.01% and 0.03%, respectively (dashed lines). Here, z_{CR} denotes the largest altitude where critical refraction is observed. As noted above, 58.3% of the refractivity profiles exhibit critical refraction; below 3 km this subset generates a negative bias of up to −1% and a standard deviation of about 2% (solid lines).

In all, the simulations are performed with five different signal tracking models:

1. Model A is the ideal receiver which exactly reproduces the signal at its input; noise contributions are not included in the simulations using model A.

Figure 8. The simulation results without signal tracking (ideal receiver) are plotted.

Figure 9. Same as Figure 8 but with signal tracked in closed-loop mode with fly wheeling enabled (model B). Values of z_{50%} are 3.4, 2.3, and 1.5 km for 40, 45, and 50 dB Hz, respectively. The solid line (Figure 9, left) marks the ideal receiver (“ideal rcvr.”) result (Figure 8).

Figure 10. Same as Figure 8 but with signal tracked in open-loop mode (model C). Value of z_{50%} is 0.023 km for 50 dB Hz. At 40 and 45 dB Hz the number of retrieved data points exceeds 50% at all heights rendering z_{50%} undefined.

Figure 11. Same as Figure 10 but with signal tracked in closed-loop mode with carrier loop bandwidth reduced to 5 Hz (model D). Values of z_{50%} are 0.11, 0.025, and 0.039 km for 40, 45, and 50 dB Hz, respectively.

Figure 12. Same as Figure 10 but with Doppler frequency model shifted by +10 Hz. Values of z_{50%} are 0.023 and 0.086 km for 45 and 50 dB Hz.
2. The reference receiver (model B) uses closed-loop tracking, two-quadrant phase extraction with a third-order loop and 30 Hz loop bandwidth; model B is capable of fly wheeling. Qualitatively, model B corresponds to the current configuration of the Blackjack receiver aboard CHAMP.

3. Model C is the implementation of an open-loop receiver which outputs inphase and quadphase correlation sums together with the phase model. In postprocessing, the total carrier phase φ_n^{Rec} (equation (9)) is extracted from the correlation sums taking into account the 50 Hz navigation bits (section 3.2.3).

4. Model D uses closed-loop tracking with a third-order loop, however, at reduced loop bandwidth of 5 Hz; fly wheeling is deactivated.

5. Model E is an implementation of closed-loop tracking with 30 Hz loop bandwidth, but the loop order is reduced from three to two. Model E as well as model D employ four-quadrant phase extraction (data wipe off), again fly wheeling is not active.

The models’ receiver parameters are summarized in Table 1.

The retrieval results obtained from models B–E are presented in Figures 9–13. Figures 9 (left) to 13 (left) show mean and one-sigma standard deviation profiles obtained by linear interpolation of the individual retrieval results on an equidistant altitude grid with 50 m step size; the vertical resolution of the individual profiles is about 10–15 m. No profile selection with respect to critical refraction has been performed.

The retrieval results may directly be compared to the solid line in Figure 8 (left). For that purpose the ideal receiver profile (thick solid line in Figure 8 (left)) is repeated in Figures 9–13. We note that $m(z)$ in Figure 8 (right) starts to decrease already at 2 km altitude. Below that altitude the occurrence of critical layers introduces sharp cutouts in the FSI amplitude. If these amplitude drops reach below 50% of the maximum FSI amplitude the bending angle profile is clipped already at that altitude (see section 2.2). By adding noise to the signal (receiver models B–E) the FSI amplitude gaps are washed out and drops below 50% occur less frequently. Within the PBL, therefore, $m(z)$ (shown in Figures 9, left, to 13, left) may exceed the number of data points obtained from the ideal receiver (Figure 8).

The onset of a decrease in $m(z)$ already at 4–8 km altitude (Figure 9, right) shows that the fly wheeling receiver (model B) frequently loses tracking lock in the mid troposphere before reaching layers of critical refraction. Since loss of lock tends to occur at or above critical layers one would expect that the subset of successfully tracked signals minimizes the bias. However, a significant negative bias is observed below 5 km altitude. Within the PBL critical refraction might contribute to the negative N bias; above 3 km receiver-induced errors are the most likely cause, since the occurrence of critical refraction above that altitude can be excluded.

The comparison between simulation results obtained by the open-loop receiver (Figure 10) and results produced by the fly wheeling receiver with two-quadrant phase extraction (Figure 9) highlights the significant negative bias and enhanced standard deviation introduced by the latter. The open-loop refractivities (dashed, dash-dotted and dotted lines in Figure 10) exhibit almost no bias and reduced standard deviation with respect to the ideal receiver (solid line).

The choice of the open-loop Doppler model (equation (21)) implies that the retrieved frequency profiles f_n^{Rec} are bias-free with respect to the true profiles. In order to address the question whether f_n^{Rec} remains bias-free if the model is biased with respect to the truth, i.e., $(f_n^{\text{model}} - f_n^{0})$...
0, the open-loop simulation was repeated with the Doppler model \(f_n^{\text{model}} \) replaced by \(f_n^{\text{model}} + \Delta f \) and \(\Delta f = +10 \text{ Hz} \); Figure 11 shows the result. Whereas the frequency offset has no visible effect at density ratios of 45 and 50 dB Hz, at \(C/N_0 = 40 \text{ dB Hz} \) a positive bias on the order of 0.5% is observed. Clearly, these systematic deviations between retrieved and true frequencies are correlated with low signal strength. The relation between frequency bias and SNR, is shown in Figure 15 using data from simulation run 10 (compare Figure 1). The mean deviation averaged over SNR, bins of width 10 \(\text{V/V} \) is plotted for \(\Delta f = 0 \text{ Hz} \) (solid line), \(\Delta f = +10 \text{ Hz} \) (dashed) and \(\Delta f = -10 \text{ Hz} \) (dash-dotted). For clarity the scale of vertical axis has been restricted to \(\pm 5 \text{ Hz} \), the individual data points (marked in grey) extend to about \(\pm 40 \text{ Hz} \) at SNR, \(< 20 \text{ V/V} \).

The fact that a bias in the model frequency \(f_n^{\text{model}} \) introduces a corresponding bias in the retrieved frequency \(f_n^{\text{Rev}} \) for SNR, \(0 \) can be understood by writing equation (9) in terms of frequencies; we obtain

\[
f_n^{\text{Rev}} = f_n^{\text{model}} + \frac{\langle \Phi_{n+1}^R - \Phi_n^R \rangle}{(2\pi T)}
\]

with \(f_n^{\text{model}} = f_n^{\text{NCO}} \). For SNR, \(0 \) the residual phases \(\Phi_n^R \) and \(\Phi_{n+1}^R \) are randomly distributed between \(-\pi\) and \(+\pi\),

\[
\langle f_n^{\text{Rev}} \rangle = f_n^{\text{model}} + \frac{\langle \Phi_{n+1}^R - \Phi_n^R \rangle}{(2\pi T)} \rightarrow f_n^{\text{model}}
\]

Here, angle brackets denote the ensemble mean over the simulation data set (equation (21)). If \(f_n^{\text{model}} \) is biased with respect to the true frequency, then, in the limit \(\text{SNR}_n \rightarrow 0 \), \(f_n^{\text{Rev}} \) will be biased as well. We note, however, that this open-loop bias is a minor effect in the midtroposphere and lower troposphere and is relevant only for weak signals (Figure 11).

In comparing the results obtained by open- and closed-loop tracking, it is instructive to illuminate the role played by the NCO phase. In the closed-loop approach the loop is designed to follow all phase accelerations within multipath regions; the residual phase adds only minor corrections to the total phase. In open-loop mode, on the other hand, the NCO phase characterizes the smooth background state and the small-scale structures induced by multipath interference patterns are captured by the residual phase. We propose a combination of both techniques: the sensitivity of the loop is degraded to achieve a better resistivity against noise-induced phase accelerations. The multipath interference patterns are then recovered to a lesser extent from the NCO phase and to a higher degree from the residual phase (see discussion of Figure 16).

Two methods to reduce the loop sensitivity are investigated: first, the loop bandwidth is reduced from 30 to 5 Hz (model D), the result is plotted in Figure 12. The comparison with Figure 9 shows an improvement, both in terms of bias and standard deviation. In addition, receiver model D tracks to significantly lower altitudes with \(\pm 50\% \) of 0.11, 0.025 and 0.039 km for \(C/N_0 = 40, 45 \) and 50 dB Hz, respectively. Still, at \(C/N_0 = 40 \text{ dB Hz} \) the retrieved refractivities are biased by up to +0.5% and standard deviations exceed 2%.

In the second approach the loop order is reduced from three to two, whereas the loop bandwidth is kept at 30 Hz. The retrieval results plotted in Figure 13 compare favorably with the open-loop results (Figure 10) with respect to bias, standard deviation and loss-of-lock altitude. Indeed, closed-loop tracking with a second-order loop seems to be less sensitive to noise-induced phase accelerations and succeeds in shifting the loss-of-lock altitude downward. The improvements gained by model E over a third-order loop, but otherwise identical receiver is exemplarily illustrated in Figure 16. It shows the NCO frequency profiles obtained from simulation run 10 (compare Figure 1) during the last 10 s of the occultation event. The second-order loop (model E) maintains lock until 90.5 s occultation time, whereas the third-order loop loses the signal already 5 s earlier. For comparison the true frequency (thin solid line) is plotted as well. Comparison with the insert in Figure 1 shows that the third-order loop’s loss of lock at 85.2 s is not triggered by enhanced phase accelerations, but by low SNR, \(< 30 \text{ V/V} \). We note that in this simulation event the fly
Kaplan and those occultation events recorded with a wrong /C0

BEYERLE ET AL.: REFRACTIVITY BIASES

is compared to the true data

NCO Doppler frequency for second-order

versions of subframe 4 and 5) remain constant with a repeat

the 53 different types of subframes (subframes 1–3 and 25

676,873 subframes. Our prediction algorithm assumes that

navigation messages of all 28 active GPS satellites, in total

13.07

67,873 (less than 2%) predictions fail.

6. Conclusions

An analysis of 1992 radiosonde soundings over

the Atlantic Ocean between 45°S and 45°N shows that critical

refraction in the marine environment is restricted to altitudes

below 3 km. Within the PBL more than 50% of the observations

show vertical refractivity gradients below the value of −157 km⁻¹.

CHAMP refractivities observed within the same

geographical region exhibit a negative bias with respect to

ECMWF at altitudes of up to 5 km. The bias below 3 km

may contain contributions from critical refraction; in most

occultation events, however, the fly wheeling receiver loses

lock at or above the critical refraction layer. The qualitative

agreement between the simulated and observed results

suggests that the CHAMP bias above 3 km is related to

fly wheeling and two-quadrant phase extraction. Receivers

using open-loop tracking or closed-loop tracking with a

reduced loop order yield improvements in the midtropo-

sphere and lower troposphere at altitude below 6–8 km in

terms of retrieval bias, standard deviation and loss-of-lock

altitude. At low signal-to-noise ratios of 141 V/V (C/N₀ =

40 dB Hz) our open-loop tracking results are biased toward

the Doppler frequency model. Though, this bias should not

be regarded as a serious limitation of future open-loop

receivers, since their specifications call for significantly

larger C/N₀ values.

The simulation results show that open-loop tracking

as well as closed-loop tracking with reduced loop order

yield significantly smaller biases and standard deviations of

the fractional refractivity errors compared to fly wheeling

enabled receivers. Thus we consider second-order closed-

loop tracking a viable alternative to open loop. Regardless

of which option is selected in future receivers we expect the

most significant bias reduction in the midtroposphere at

altitudes between 3 and 5 km. Below 3 km a large fraction

of the observations at low latitudes are affected by critical

refraction layers causing current RO receivers to lose

tracking lock too early. Since the occurrence of critical

refraction introduces negative biases as well, provided

signal tracking lock is maintained down to the ground, the

expected bias reduction due to improved tracking techni-

ques may partly be outweighed by the lowering of the loss-
of-lock altitude. Furthermore, throughout the lower and

midtroposphere the standard deviation of the fractional

refractivity error is estimated to be significantly smaller

compared to current CHAMP observations.

Acknowledgments. We thank H.-H. Benzon, J. Christensen,
A. von Engeln, M. E. Gorbunov, A. S. Jensen, T. Meehan, R. Neuber, and
S. Sokolovskiy for helpful suggestions and fruitful discussions. Comments
by anonymous reviewers on several versions of this paper are gratefully
acknowledged. Their corrections, suggestions and remarks considerably
improved the quality of this study. The European Centre for Medium-Range
Weather Forecasts provided meteorological analysis fields. Part of this work

Figure 16. NCO Doppler frequency for second-order
(solid) and third-order (dashed) closed-loop tracking as a
function of occultation time. The second-order loop
experience loss of lock at 90.5 s occultation time; the
third-order loop already at 85.2 s. The thin line marks the
true Doppler profile. An offset of 42.5 kHz is subtracted for
clarity.

wheeling receiver (model B) ceases to track the signal
already at 67.5 s occultation time.

5. Feasibility of Data Wipe Off

It was noted that signal tracking using four-quadrant
phase extraction requires knowledge of the 50 Hz data bit in
order to demodulate the signal. Since to the best of our
knowledge the GPS navigation messages are not publicly
available prior to transmission the data bits have to be
predicted, transmitted by the receiver and compared to the
true data bits (monitored by an appropriate ground station
network) during postprocessing. We briefly discuss the
feasibility of this approach.

The GPS navigation message is organized in frames
of 1500 bit transmitted during 30 s. Each frame consists of
five 300 bit subframes [Kaplan, 1996; Misra and Enge,
2002]. Subframes 1 to 3 repeat every 30 s, subframes 4 and
5 change 25 times increasing the repetition interval to
12.5 min. Demodulation is performed with predicted nav-
igation data bits $D_n^{(p)}$. A receiver capable of data wipe off
outputs $D_n^{(p)}$ in addition to phase and amplitude data. During
postprocessing of the data $D_n^{(p)}$ is compared to the true data
bits D_n and those occultation events recorded with a wrong
prediction are flagged and removed from data set.

In order to obtain an estimate on the predictability of
D_n, one week of GPS data collected by a modified GPS
receiver at GeoForschungsZentrum Potsdam (52.38°N,
13.07°E) was analyzed. From 13 June to 19 June 2004
(GPS week number 1275) the instrument recorded the
navigation messages of all 28 active GPS satellites, in total
676,873 subframes. Our prediction algorithm assumes that
the 53 different types of subframes (subframes 1–3 and 25
versions of subframe 4 and 5) remain constant with a repeat

cycle of 12.5 min except for the time information (time-of-
week count message) [Kaplan, 1996; Misra and Enge,
2002]. The predicted time tag in the second word of each
subframe is obtained by incrementing the time-of-week
count message. Despite the algorithmic simplicity 664,717
subframes are predicted correctly, only 12,156 out of
676,873 (less than 2%) predictions fail.
was performed when the first author was GRAS SAF visiting scientist at the Danish Meteorological Institute, Copenhagen, Denmark.

References

Reiger, C., H. Lühr, P. Schwintzer, and J. Wickert (2005), Earth Observation With CHAMP: Results From Three Years in Orbit, Springer, New York.

