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Abstract

Currently there are different approaches to filter algorithms based on the Kalman
filter. One of the most used filter algorithms is the Ensemble Kalman Filter (EnKF).
It uses a Monte Carlo approach to the filtering problem. Another approach is given
by the Singular Evolutive Extended Kalman (SEEK) and Singular Evolutive Inter-
polated Kalman (SEIK) filters. These filters operate explicitly on a low-dimensional
error space which is represented by an ensemble of model states. The EnKF and the
SEIK filter have been implemented within a parallel data assimilation framework
in the Finite Element Ocean Model FEOM. In order to compare the filter per-
formances of the algorithms, several data assimilation experiments are performed.
The filter algorithms have been applied with a model configuration of FEOM for
the North Atlantic to assimilate the sea surface height in twin experiments. The
dependence of the filter estimates on the represented error subspace is discussed.
In the experiments the SEIK algorithm provides better estimates than the EnKF.
Furthermore, the SEIK filter is much cheaper in terms of computing time.
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1 Introduction

Filter algorithms based on the Kalman filter (KF) are widely used to perform
data assimilation with atmospheric and oceanographic problems. The aim
of these algorithms is to combine the information provided by observations
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with the state of a numerical model in order to estimate the real state of
the geophysical system. The filters assimilate the available observational data
in a sequential manner. In a forecast phase, the model is integrated up to
the time when observations are available. At this time, a new model state
is computed in an analysis phase on the basis of the predicted model state
and the observations with weights computed from error estimates of both the
observations and the model state estimate. Subsequently a new forecast phase
is performed. The algorithms based on the KF share the virtue that they not
only integrate the state estimate but also an estimate of the error in the state
which is prescribed by the state error covariance matrix. The propagation of
the error estimate by the model dynamics has the potential to provide more
accurate error estimates than methods like optimal estimation which rely on
static error estimates or empiric propagation of the errors. KF algorithms
are of multivariate nature. In the case that observations of only one type of
physical field are available, like satellite altimetry which is commonly used,
other fields of the numerical model are updated in the analysis phase via
cross-correlations contained in the error covariance matrix.

There a several advanced filter algorithms based on the KF which have been
developed for data assimilation with large-scale numerical models. The En-
semble Kalman Filter (EnKF) (Evensen, 1994; Burgers et al., 1998), including
several of its variants, is one of the most used filter algorithms. A review on
applications of the EnKF can be found in (Evensen, 2003). The Singular Evo-
lutive Extended Kalman (SEEK) filter (Pham et al., 1998a) and the Singular
Evolutive Interpolated Kalman (SEIK) filter (Pham et al., 1998b) provide al-
ternative approaches. These filters have been used in several applications, e.g.
in the Tropical Pacific (Hoteit et al., 2002) or in the North Atlantic (Brusdal
et al., 2003). In the latter article, the SEEK filter has been compared with
the EnKF in a realistic configuration of an OGCM. Only 8 model state eval-
uations were necessary in the SEEK filter to obtain comparable estimation
errors to the EnKF which operated with an ensemble size of 150. This points
to the possibility that there are alternatives to the EnKF which might allow
for data assimilation with much smaller computing times. Since data assimi-
lation has very high demands on computing time, it is of highest interest to
find the algorithm which provides the best filter results - in terms of the esti-
mated model state - with the lowest required computing time. The result by
Brusdal et al. (2003) is, however, difficult to interpret, since this study used
slightly different model configurations and different initial conditions for the
compared filters and the dependence of the filter results on the ensemble size
has not been studied. A first quantitative comparison of the EnKF with the
SEEK and SEIK filters with a simple shallow-water model has been performed
by Nerger et al. (2005a). In this study the SEIK filter was superior to both
the EnKF and the SEEK filter. First, the SEIK filter behaved more stable
than the SEEK filter. Second, while also the EnKF behaves rather stable, it
requires significantly more computing time than the SEIK filter to obtain the
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same filter performance. This difference was due to fact that, for equal filter
performance, the EnKF required the ensemble size to be between 1.5 and 2
times larger than the ensemble size required for the SEIK filter.

To get further insight into the relative filter performances of the EnKF and
the SEIK filter, we compare the filter performance of the SEIK filter with that
of the EnKF using a realistic configuration of the Finite Element Ocean Model
FEOM (Danilov et al., 2005) for the North Atlantic. Hence, this study extends
the idealized experiments of Nerger et al. (2005a). To allow for a quantitative
comparison of the filter behavior, both filters are applied to the same model
in an identical configuration. Further, the filter initialization is performed in
equal manner for both algorithms. The filters are applied in twin experiments,
assimilating synthetic observations of the sea surface height. The influence of
the data assimilation on the estimate of the sea surface height is examined
and the relation of the assimilation updates of the state estimate to the true
errors and estimated errors is discussed.

2 Filter algorithms

The filter algorithms under consideration, the EnKF and the SEIK filter, are
shortly discussed here. For a detailed description including all equations of the
algorithms we refer to Nerger et al. (2005a). Both algorithms rely on the rep-
resentation of the error statistics, i.e. the state estimate and the corresponding
state covariance matrix, by an ensemble of model states. In the theory of the
Kalman filter, the state covariance matrix represents the uncertainty in the
state estimate. In data assimilation (DA) this matrix is usually interpreted as
an error covariance matrix of the state. For this reason, we use the expres-
sion error covariance matrix in the sequel. The major differences between the
EnKF and SEIK algorithms stem from the initialization of the state ensemble
and the analysis phase of the filters as will be discussed below.

The Ensemble Kalman Filter (EnKF) (Evensen, 1994) applies a Monte-Carlo
approach to the KF. The state estimate x0 of dimension n and the correspond-
ing error covariance matrix P0 are sampled by an ensemble of N model state
realizations {x(i), i = 1, . . . , N}. Thus, the ensemble approximates the matrix
P0. Using the ensemble representation, the forecast phase is computed by in-
tegrating each ensemble state by the numerical model. The statistics of the
forecasted ensemble, i.e. the ensemble mean and covariance matrix, represent
the estimate of both the state and the covariance matrix at the observation
time. In the analysis phase, the available observations are assimilated by up-
dating each ensemble state according to the analysis equations of the KF.
For consistency of the error estimate after the analysis, an ensemble of obser-
vations has to be generated for the analysis which represents the covariance
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matrix of the observation errors (Burgers et al., 1998). The initial state en-
semble and the observation ensemble can be generated by a transformation of
independent random numbers. Let the state error covariance matrix of rank q
be given in the form P = LLT where the N×q matrix L can be obtained, e.g.,
by a singular value decomposition of P. Now an ensemble state with index i is
given by x(i) = x0 + Lb(i) where b(i) is a random vector of dimension q filled
by numbers from a normal distribution of zero mean and unit variance. Due to
the finite ensemble size, the mean of the generated ensemble usually deviates
from x0. This deviation can be corrected, e.g., by shifting the ensemble to the
correct mean. Note that this initialization technique is not a pure Monte-Carlo
sampling, but represents the covariance matrix following the relative weights
of its singular vectors.

The SEIK filter (Pham et al., 1998b) is equivalent with the EnKF in the
forecast phase. Both filters integrate an ensemble of model states to propagate
the state estimate as well as the error covariance matrix of the state. However,
the initialization and analysis phases of the SEIK filter are distinct from those
of the EnKF. The SEIK filter is based on a low-rank approximation of the
initial error covariance matrix P0. This is typically done by a truncated eigen-
value decomposition (or singular value decomposition) of P0 which only retains
a small number r of leading eigen-values and corresponding eigen-vectors (or
eigen-modes). With this P0 is approximated in a decomposed for as VUVT ≈
P0 where U is a diagonal r × r matrix which holds the leading eigenvalues.
The matrix V holds in its r columns the corresponding eigen-modes. For
the forecast phase a random ensemble {x(i), i = 1, . . . , N} of minimum size
N = r + 1 is generated which has the properties that it exactly represents
the state estimate x0 and the approximated covariance matrix. This ensemble
can be obtained by second-order exact sampling, see e.g. Pham (2001). Based
on the fact that the EnKF and SEIK algorithms are in fact independent
from the method used to generate the ensemble, see (Nerger, 2003), Evensen
(2004) proposed to use a sampling scheme for the EnKF which is analogous to
the scheme just described. If this scheme is used, the difference of the filters
remains in the analysis phase. In the case of the SEIK filter, the analysis
equations of the KF are applied to update the ensemble mean state and the
matrix U. The equations are formulated to treat the covariance matrix in
the decomposed form VUVT . Subsequently to the analysis phase, the state
ensemble is transformed in a re-initialization phase to represent the updated
state estimate and the corresponding error covariance matrix.

Both filter algorithms are commonly used in conjunction with a so-called for-
getting factor ρ (Pham et al., 1998a), (0 < ρ ≤ 1). In the context of the
EnKF, this technique is typically applied as an inflation factor, see e.g. (An-
derson, 2001). The forgetting factor increases the error estimates in the error
covariance matrix. This can stabilize the filter process as both the EnKF and
SEIK algorithms are known to underestimate variances. For the EnKF, the
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forgetting factor is used to inflate the ensemble around its mean by the inverse
of the square-root of the given value ρ.

3 Experimental Setup

The data assimilation experiments are performed with an eddy-permitting
configuration of the 3D finite-element primitive-equation ocean model FEOM
(Danilov et al., 2004) for the North Atlantic. FEOM is based on the primi-
tive equations using a splitting of the dynamic equations into barotropic and
baroclinic subproblems. The discretization uses tetrahedrons which rely on
a horizontally refined mesh in regions of steep topography. In the vertical a
z-layer discretization is used. A sloping bottom is represented similarly to the
shaved-cells approach used in finite-volume models. In the configuration used
(Danilov et al., 2005), the mesh extends over the North Atlantic from 7◦N
to 80◦N and from 18◦E into the Caribbean. At the northern and southern
boundaries closed boundaries for the velocities are considered. For tempera-
ture and salinity, relaxation to seasonal Levitus climatology is performed in
buffer zones. The southern zone, in which relaxation is performed, occupies a
5◦ belt. The north-eastern buffer zone extends to 60◦N. The mesh has a vari-
able resolution which ranges from 1/15◦ to 2◦. The strong variability of the
resolution is visible in figure 1 which shows a part of the mesh at the surface.
The high resolution near the coast lines allows for an accurate representation
of the coasts. In total, the mesh contains approximately 16000 surface nodes
and 220000 3D nodes discretized in 23 layers. The state dimension amounts
to 925000. Results of the model integration for 1990-1998 under the realis-
tic NCEP wind forcing and relaxation to the climatological temperature and
salinity at the surface were presented and thoroughly discussed by Danilov
et al. (2005). Here this model trajectory is used as the ocean “true” state for
the twin experiments.

To assess the filter performance of both filter algorithms, twin experiments are
performed starting in December 1992. Synthetic observations of the full sea
surface height are assimilated at the initial time and in monthly intervals for
3 months. The observations are generated by adding uncorrelated Gaussian
noise to the true model trajectory. For this, a standard deviation of 5cm
is assumed for the observations as well as that the errors are uncorrelated.
To initialize the filter algorithms, the initial state estimate has been chosen
from a perpetual 1990 model spin-up run. The error covariance matrix is
chosen to be represented implicitly by the variability of the 9-year “true”
trajectory. This covariance matrix is dominated by a small number of large-
scale modes. Accordingly, it can be very well approximated by a matrix of
significantly lower rank. The dominance of the leading eigen-modes of the
covariance matrix is visible in figure 2 which shows the relative truncation
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error of the total variance of a low-rank approximation of the matrix as a
function of the number of eigen-modes taken into account. This unexplained
variance is given by one minus the sum of eigenvalues up to the number of the
used eigen-modes divided by the total sum of eigenvalues of the covariance
matrix. The first 7 eigen-modes explain already 86 % of the variance while 31
eigen-modes are sufficient to explain 97 %. To obtain consistent initializations
of the EnKF and SEIK algorithms, the state ensembles are generated on the
basis of the chosen initial state estimate and covariance matrix either by the
transformation of independent random numbers (EnKF) or by second-order
exact sampling (SEIK), as described in section 2.

In the experiments discussed below, ensembles with 8 and 32 members have
been used. To stabilize the assimilation process, a forgetting factor of ρ =
0.8 was applied in both filter algorithms. Apart from this, no model error
was simulated. The filter algorithms are implemented in the parallel data
assimilation framework PDAF (Nerger et al., 2005b). The data assimilation
system is configured to perform 8 model integrations in parallel. Each of the
8 model tasks was executed by 4 processors, thus 32 processors were used in
total on an IBM pSeries 690 computer system.

4 Data Assimilation Experiments

To discuss the results of the DA experiments we focus on the behavior of the
filter algorithms on the estimate of the SSH field at the initial time and at the
end of the experiments, i.e. after three one-month integrations with analysis
updates after each month. The discussion focuses on the general comparison
rather than physical details of the filter results.

4.1 First Analysis Phase

The first analysis phase is performed at the initial model time, before com-
puting any model integration. Hence, the update of the state estimate by the
filter algorithms is determined by the initial state estimate and the estimated
covariance matrix. This permits to compare the influence of the different meth-
ods used to initialize the state ensemble. The initial estimate of the sea surface
height (SSH) for the SEIK filter with an ensemble size of 8 members is shown
together with the true initial SSH field in figure 3. In small regions in the
scale of a few Rossby radii, the estimated SSH deviates up to 40 cm from the
true SSH field. The initial estimate of the SSH by the EnKF is very similar to
that of the SEIK filter and hence not shown here. The differences due to the
distinct sampling schemes used to initialize the EnKF and SEIK algorithms
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do not exceed 9 cm.

For the first analysis phase with ensembles of 8 members, figure 4 compares
the behavior of the SEIK (left hand side) and EnKF (right hand side) algo-
rithms with respect to the SSH. In the upper panels the improvement of the
estimate by the analysis update is shown. It is given by the difference of the
absolute values of the true estimation error for the SSH from the estimated
state before and after the analysis. Thus, an improvement of the estimate is
indicated by positive values while negative values represent a deterioration of
the estimate. In the middle and lower panels of figure 4, the true and estimated
variance fields for the SSH are shown, respectively. In the first analysis phase,
the SEIK algorithm improves the estimate of the sea surface height already
with a state ensemble of size 8. The estimate of the SSH field is improved
in wide regions as is visible from the upper-left panel of figure 4. The largest
improvement is obtained near 40oW and 52oN. The estimate in the Norwegian
and Greenland Seas is improved, too. At several locations, the state estimate
is worse after the analysis compared to the initial estimate. This is due to the
averaging character of the global filter analysis performed here. Dependent on
the overall weights, the estimates do not need to be improved at every single
grid point. For the EnKF, the maximal amplitude of the improvements of the
state estimate is bigger. However, also the amplitude in the regions in which
the state estimate deteriorates is bigger for the EnKF compared to the SEIK
filter. Overall, the improvement-field appears to be noisier for the EnKF than
for the SEIK filter.

The overall root mean square (RMS) error after the analysis is bigger for the
EnKF than for the SEIK filter, despite the larger improvements by the EnKF.
This is caused by the fact that the errors in the initial state estimate are bigger
for the EnKF than for the SEIK filter. This is visible in the true variance fields
shown in the middle panels of Fig. 4. As mentioned in section 2, the EnKF can
also be initialized by second-order exact sampling as the SEIK filter. In this
case, both filters provide the same state estimate after the analysis update.
However, also for the distinct sampling schemes, the true variance fields exhibit
a very similar spatial structure for both filters. For both algorithms, the highest
deviations from the true SSH are of local scale of a few Rossby radii. They are
located in the regions with the largest nonlinearities, i.e., in the Gulf Stream
region and in the Gulf of Mexico. The estimated variance fields, which are
displayed in the lower panels, are also very similar for both filter algorithms.
While these fields show maximum values which are of the same order as the
true variance fields, the estimated and true variance fields do not correspond in
all regions. This inconsistency between the estimated and true variances is also
typical for practical situations with real observations. It results in suboptimal
analysis updates since a part of the true error space lies in the null-space of the
low-dimensional error subspace estimated by a filter algorithm. An example
of this effect can be seen for the SEIK filter in the Gulf of Mexico. Here the
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filter algorithm estimates minimal errors. Thus, the existing deviation of the
state estimate from the true state, which is caused by eddies in this region,
cannot be reduced in the filter analysis phase.

If the ensemble size is increased to 32 members, the filtering performance
improves. The behavior of the EnKF and SEIK filters for N=32 is shown in
figure 5 analogous to the case of N=8. The improvement of the SSH field by
the analysis update of the filters, shown in the upper panels, is now much
more similar than for N=8. This corresponds to the increased similarity of
the state estimates, visible from the true variance fields (middle panels) as
well as the estimated variances (lower panels). As in the case of N=8, the
state estimate of the SEIK filter is slightly better than for the EnKF. The
RMS estimation error for the SSH after the analysis update is reduced to
about 85% for the EnKF and 82% for the SEIK filter compared to a free
evolution of the initial state estimate. Comparing the results from the two
different ensemble sizes, shown in figures 4 and 5, it is visible that the character
of the changes in dependence on the ensemble size is different for the two
filters. For the SEIK filter the amplitude of the corrections has increased.
In addition, the larger ensemble size results in additional improvements on
the local scale. While for N=8 no significant corrections are obtained in the
Gulf Stream region and in the Gulf of Mexico, the largest improvements are
found in these regions for N=32. For N=32 this is also the case for the EnKF.
However, for the EnKF it is visible that the increase of the ensemble size
results in a reduction of the noisiness of the improvement. Even for N=8 the
SSH estimate is corrected in the Gulf Stream and the Gulf of Mexico, but for
the larger ensemble the areas in which the estimation error is increased by the
analysis are reduced. This distinct behavior of the two filters in dependence
on the ensemble size is due to the different sampling schemes used in the
EnKF and SEIK algorithms. For the SEIK filter the behavior is caused by the
exact sampling of a low-rank approximated covariance matrix. As described in
section 2, the approximation is done by a truncated eigenvalue-decomposition
of the prescribed covariance matrix. Thus only the leading eigen-modes are
represented by a small ensemble. The leading eigen-modes, which have a rather
coarse structure, represent the major part of the model variance. The higher
modes add more details to the covariance structure, while their influence on
the total variance estimate is small. Thus, a small ensemble in the SEIK filter
represents the coarse modes of high variance while an increasing ensemble size
provides a successive representation of the variability of finer scales. In contrast
to this, the sampling scheme of the EnKF takes into account all modes for
any ensemble size. The modes are, however, weighted by the variance they
represent. Thus a small ensemble will represent the coarse structures while
showing significant sampling errors on all spatial scales. For larger ensembles,
the sampling errors are reduced which also improves the representation of fine-
scale structures. The reduction of the sampling errors results in diminishing
noise in the estimates of the state and covariance matrix.
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4.2 Fourth Analysis phase

The fourth analysis phase takes place at the end of the third cycle of alternat-
ing one-month forecasts and analysis updates. Figure 6 shows the estimated
variance for the SEIK filter with N=32 at this time. The forecasting of the
ensemble, which represents this variance field, leads to a strong change of the
spatial structure compared to the initial estimate. The ensemble spread is
damped near 40oW and 52oN resulting in diminishing variance estimates in
the course of the forecast. On the other hand, the nonlinear ensemble forecast
leads to a larger ensemble spread in small regions with strong nonlinearity. Ac-
cordingly, the major variance estimates are focused to small regions where the
ensemble spread has increased strongly after each single month of integration.
The error estimate considers the model state to be quite accurate in all places
except the North Sea as well as the Gulf Stream region and small areas in
the Gulf of Mexico where the variance estimate is large. These high-variance
regions dominate the analysis update and correspond to the regions in which
the filter analysis step changes - and in most cases improves - the estimated
sea surface height.

To compare the behavior of the EnKF and SEIK filters at the 4th analysis
update, we focus on the region with the highest estimated variances which is
the same region as shown in figure 1. Figure 7 compares the behavior of the
EnKF and SEIK filter for N=32 at the 4th analysis update. The behavior for
the case N=8 is similar and hence not shown here. In general, the improve-
ment of the state estimate at the 4th analysis update is very similar for both
filter algorithms. The magnitude of the corrections is of the same order as for
the first analysis phase. The correspondence between the estimated and true
variance is better for the fourth analysis than for the first one. Thus, the non-
linear evolution of the ensemble states provides a rather realistic estimate of
the spatial structure of the true errors. However, the estimated variances are
much smaller than the true ones. This is caused by the rather small ensemble
size as well as the inconsistency between the estimated and true variances at
the first analysis update. The inconsistency leads to an underestimation of
the variances directly after the first analysis phase. The forgetting factor ap-
plied in the experiments, which amplifies the estimated variances, reduces the
underestimation only to a small degree. Compared to a free evolution of the
initial state estimate, the RMS estimation errors of the SSH after the fourth
analysis phase are 15% smaller for the EnKF and 16.4% smaller for the SEIK
filter. The experiments show that both filters are able to improve the estimate
of the sea surface height on a fine spatial scale already for an ensemble of 32
members.
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4.3 Computing Times

Overall, the experiments resulted in state estimates of similar quality for the
EnKF and the SEIK filters. However, the results of the SEIK filter still appear
to be slightly better, but not to that extent which was found by Nerger et al.
(2005a) for a shallow water model. A major difference between the EnKF
and SEIK algorithms remains in the computing time required to evaluate
the analysis step. Table 1 shows the computing times of a single ensemble
integration of one month length and the times required for one filter update
phase with the EnKF and SEIK filters. The SEIK filter took only about 2
seconds for a single analysis update with ensemble size 8. In contrast, the
EnKF algorithm lasted on average 1640 seconds. This time should be related
to the computing time of about 7000 seconds for the ensemble integration over
one month, i.e., the analysis phase of the EnKF for N=8 took almost one fourth
of the time required for the model integration between two successive analysis
phase in the case of eight concurrent model integrations. For the ensemble of
size 32, the time for the filter update of the EnKF is reduced to about 8% of
the integration time, since the number of concurrent model integrations is not
increased. For the SEIK filter, the time for the analysis and re-initialization
phase is negligible to the integration time.

The strong difference in the computation time between the two filter algo-
rithms is due to the fact that the SEIK filter explicitly takes into account the
low-dimensional error sub-space which is spanned by the state ensemble. Since
the correction of the state estimate can only lie within the error sub-space, it is
most economical to account explicitly for it by limiting the expected number
of degrees of freedom to the dimension of the error-subspace which is ensem-
ble size minus one. The EnKF algorithm, in its original form as used here, is
formulated for a number of degrees of freedom given by the dimension of the
assimilated observation vector. Due to the large difference between the ensem-

Table 1
Average computing time of different parts of the assimilation program in seconds
for ensembles of size N=8 and N=32. The experiments are performed using 32
processors of an IBM pSeries 690 computer. 8 model tasks are executed concurrently.
The integration time is to compute the full ensemble forecast of one month. For
the SEIK filter, the filter update time includes the time for the analysis and re-
initialization phases. Shown is the average time for a single update phase.

Filter N Integration (s) Filter update (s)

SEIK 8 7000 2

EnKF 8 7000 1640

SEIK 32 28000 5

EnKF 32 28000 2360
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ble size of 8 or 32 members to about 16000 observations, the EnKF algorithm
can be expected to take much more time than the SEIK filter. Despite this
formulation of the EnKF, the correction to the state estimate can lie only
in the error sub-space represented by the state ensemble also for the EnKF.
Based on this fact, Evensen (2004), developed a new variant of the ensemble
Kalman filter, which hasn’t been published at the time our experiments have
been performed. The new formulation explicitly accounts for the error sub-
space by projecting the observation error covariance matrix onto this space.
Accordingly, the computing time can be expected to be significantly reduced.
To achieve this smaller computing time in the EnKF, it is necessary to ap-
proximate the observation error covariance matrix by a low-rank ensemble.
To which extent this approximation might influence the filter estimates is yet
unknown.

5 Conclusion

The EnKF and SEIK filter algorithms have been applied to an eddy-permitting
configuration of the finite element ocean model FEOM for the North Atlantic.
Under identical conditions, the data assimilation results are found to be very
similar for both filter algorithms for a moderate ensemble size of 32 members.
The filtering performance is slightly better for the SEIK filter than for the
EnKF algorithm. In addition, the EnKF requires significantly more computing
time to evaluate the analysis update than the SEIK filter. This difference is
caused by the distinct algorithmic formulations of the filters. Since the SEIK
filter directly accounts for the low-dimensional space spanned by the state
ensemble, it is superior from the theoretical point of view.

The data assimilation process leads to an improvement of the estimate of the
sea surface height field. Due to the inconsistency of the initial estimate of
the error covariance matrix with the true estimation errors, which will also be
the typical situation in realistic applications, the variances are underestimated
by the filter algorithms already after the first analysis phase. The forgetting
factor applied in the experiments can only partially compensate for this effect.
In addition, there remains a null-space of errors which are not recognized by
the filter algorithms. For these reasons, a more realistic representation of model
errors, which further reduces the underestimation of the variances and leads to
error estimates also in the null-space of the covariance matrix, can be expected
to enhance the filter performance.

The experiments also show that the error in the estimate of the sea surface
height can be increased by the analysis update at some locations. This is due
to the globally averaging character of the analysis equations of the EnKF and
SEIK algorithms. Here, algorithmic developments beyond the global analysis
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and the tuning of model errors are required to obtain better filter estimated.
One possibility is the localization of the analysis. If the analysis update of the
state estimate at some location is computed using only observations within
some influence radius around this location, the analysis equations would be no
longer global, see e.g. (Houtekamer and Mitchell, 2001). This approximation
increases the number of degrees of freedom for the analysis update, see e.g.
(Evensen, 2003), and will provide a smaller estimation error during the analysis
step.

For a better general ability of the filters to provide improved state estimates,
an adaptive modification of the error subspace would be useful. An approach
to this was discussed by Brasseur et al. (1999) where the remaining residual
between the state estimate and the observations was inverted and subsequently
used as a new direction of the error subspace. In principle, this adaptivity can
account for the null-space of the estimate error which is not represented by the
initial state ensemble. However, the inversion of the state-observation residual
is not well defined.
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Danilov, S., Kivman, G. and Schröter, J. 2004. A finite-element ocean model:
Principles and evaluation. Ocean Mod., 6, 125-150
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Nerger, L., Hiller, W., and Schröter, J. 2005b. PDAF - The Parallel Data
Assimilation Framework: Experiences with Kalman filtering. In Proceedings
of the 11. ECMWF Workshop on Use of High Performance Computing in
Meteorology, Reading, UK, October 25-29, submitted.

Pham, D. T., Verron, J., and Roubaud, M. C. 1998a. A singular evolutive
extended Kalman filter for data assimilation in oceanography. J. Mar. Syst.
16, 323–340.

Pham, D. T., Verron, J., and Gourdeau, L. 1998b. Singular evolutive Kalman
filters for data assimilation in oceanography. C. R. Acad. Sci., Ser. II
326(4), 255–260.

Pham, D. T. 2001. Stochastic Methods for Sequential Data Assimilation in
Strongly Nonlinear Systems. Mon. Wea. Rev. 129, 1194-1207.

13



List of Figures

1 Part of the surface mesh of FEOM. Visible is the unstructured
character of the mesh in combination with the strongly varying
resolution. 15

2 Relative truncation error of the total variance of a low-rank
apprximation of the of the state covariance matrix. The first 7
eigen-modes already explain 86 % of the variance. 97 % of the
variance are explained by the first 31 eigenvalues. 16

3 Initial estimate of sea surface height (SSH) for the SEIK filter
with ensemble size N = 8 (left) and true initial SSH field
(right). 17

4 Comparison of the behavior of the SEIK filter (left) and the
EnKF (right) at the first analysis time for an ensemble size
8. Shown is the improvement or error reduction (top), the
true variance field (center), and the estimate variance field
(bottom). 18

5 Comparison of the behavior of the SEIK filter (left) and the
EnKF (right) at the first analysis time for an ensemble size
32. Shown is the improvement or error reduction (top), the
true variance field (center), and the estimate variance field
(bottom). 19

6 SEIK-estimated variance of the sea surface height before the
fourth analysis update with N=32. 20

7 Comparison of the behavior of the SEIK filter (left) and the
EnKF (right) at the fourth analysis time for an ensemble
size 32 in the region with the largest variances. Shown is the
improvement or error reduction (top), the true variance field
(center), and the estimate variance field (bottom). 21

14



−100 −95 −90 −85 −80 −75 −70 −65 −60 −55

10

15

20

25

30

35

40
Surface Mesh

Longitude

La
tit

ut
e

Fig. 1. Part of the surface mesh of FEOM. Visible is the unstructured character of
the mesh in combination with the strongly varying resolution.
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Fig. 2. Relative truncation error of the total variance of a low-rank approximation
of the of the state covariance matrix. The first 7 eigen-modes already explain 86 %
of the variance. 97 % of the variance are explained by the first 31 eigenvalues.

16



Fig. 3. Initial estimate of sea surface height (SSH) for the SEIK filter with ensemble
size N = 8 (left) and true initial SSH field (right).
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Fig. 4. Comparison of the behavior of the SEIK filter (left) and the EnKF (right)
at the first analysis time for an ensemble size 8. Shown is the improvement or error
reduction (top), the true variance field (center), and the estimated variance field
(bottom).
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Fig. 5. Comparison of the behavior of the SEIK filter (left) and the EnKF (right) at
the first analysis time for an ensemble size 32. Shown is the improvement or error
reduction (top), the true variance field (center), and the estimated variance field
(bottom).
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Fig. 6. SEIK-estimated variance of the sea surface height before the fourth analysis
update with N=32.
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Fig. 7. Comparison of the behavior of the SEIK filter (left) and the EnKF (right)
at the fourth analysis time for an ensemble size 32 in the region with the largest
estimated variances. Shown is the improvement or error reduction (top), the true
variance field (center), and the estimated variance field (bottom).
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