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On the validity of the Millionshchikov quasi-normality hypothesis for
open-ocean deep convection
Martin Losch
Alfred-Wegener-Institut für Polar- und Meeresforschung, Bremerhaven, Germany

Data from numerical simulations of free convection in the ocean
with rotation are used to explore the validity of the Millionshchikov
quasi-normality hypothesis. The parameterizations of fourth-order
moments according to a universal model proposed by Gryanik et al.
are found to be far more accurate than their corresponding Gaussian
parameterizations, which are based on the Millionshchikov hypoth-
esis. The universal model is marginally improved by fitting the
model parameters to the data. The present results extend previous
results that discuss shallow convection in the planetary boundary
layer to rotationally controlled deep convection.

1. Introduction

Turbulent vertical mixing in ocean models is generally parame-
terized by bulk mixed-layer models [e.g., Krauss and Turner, 1967]
or first order [e.g., Pacanowski and Philander, 1981; Large et al.,
1994] or second-order [e.g., Mellor and Yamada, 1982] turbulence
closure models. For deep convection, the parameterizations are
usually achieved by even cruder methods, for example the so-called
“convective adjustment” or high vertical diffusivities in the case of
unstable stratification [Haidvogel and Beckmann, 1999]. Recently,
Canuto et al. [2001b] formulated a turbulence closure model for the
ocean that advances the traditional one-point closure models, in
particular the second-order closure model of Mellor and Yamada
[1982], by an improved treatment of pressure correlations. Higher-
order closures make further advances in mixed layer modeling pos-
sible. For example, Canuto et al. [2001b] presented an expression
for third-order moments (TOM), that implicitly makes use of the
Millionshchikov hypothesis to represent fourth-order moments. Ac-
cording to the Millionshchikov hypothesis [Millionshchikov, 1941;
Monin et al., 1971], fourth-order moments in higher-order closure
(HOC) models can be approximated as quasi-normal (Gaussian),
that is, by a combination of second-order moments,

〈ABCD〉 = 〈AB〉〈CD〉 + 〈AC〉〈BD〉 + 〈AD〉〈BC〉, (1)

even if the third-order moments are non-zero. 〈·〉 denotes the time
average.

Recent studies found evidence that the Millionshchikov hypothe-
sis fails for vertical velocity and temperature in the atmospheric tur-
bulent convective boundary layer (CBL) [Andre et al., 1976; Moeng
and Randall, 1984; Canuto et al., 2001a; Gryanik and Hartmann,
2002; Alberghi et al., 2002; Gryanik et al., 2005]. One of the prob-
lems is that a model based on the quasi-normality hypothesis does
not include the effects of coherent structures [Salmon, 1998] typical
of convective regimes. Gryanik and Hartmann [2002] and Gryanik
et al. [2005] explained the failure of the Millionshchikov hypothesis
by the skewed nature of the CBL turbulence with respect to upward-
downward and hot-cold fluctuations. They derived non-Gaussian
parameterizations for the fourth-order moments of temperature and
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vertical velocity that explicitly account for the skewness of the ve-
locity and temperature fluctuations due to semi-organized coherent
structures (plumes) in turbulent convection.

Oceanic deep convection is characterized by plumes on horizon-
tal scales less than 1 km. The convective plumes are affected by
rotation and lateral entrainment [Marshall and Schott, 1999]. The
presence of plumes already indicates a non-normal distribution for
vertical velocity and density. In this note, we investigate the validity
of the quasi-normal approximation of fourth-order moments for an
oceanic convective regime typical for the Greenland or Labrador
Seas, but without lateral mixing. Further, we demonstrate how the
refinement proposed by Gryanik and Hartmann [2002] and Gryanik
et al. [2005] improves the parameterization of fourth-order moments
〈w′4〉, 〈θ′4〉, 〈w′3θ′〉, 〈w′θ′3〉, and 〈w′2θ′2〉of the temperature θ and
vertical velocity w in this convective regime. Because observations
of mixing and convection, particularly of higher-order moments,
in the ocean are sparse or not available, we use a numerical non-
hydrostatic ocean model, the MITgcm, to simulate convection in the
ocean in an LES fashion. The MITgcm [Marshall et al., 1997] has
been used successfully for simulations of deep convection [Jones
and Marshall, 1993, 1997] and internal mixing [Legg and Adcroft,
2003].

2. Numerical Experiments

2.1. Experiment configuration

For computational efficiency we consider only the two-
dimensional case. Full three-dimensional convection will be treated
in a subsequent study. The computational domain represents a hor-
izontal section through the ocean in the x-z-plane. The domain is
doubly periodic, 3 km wide, and 1 km deep; the grid spacing is 10 m
and uniform. Gravity acceleration is g = 9.81m s−2.

In order to assess the reliability of the results, different approxi-
mations of subgrid processes were used: harmonic dissipation with
and without variable viscosity or biharmonic dissipation of mo-
mentum; harmonic or biharmonic diffusion for tracers. In all cases,
many different choices of viscosity and diffusivity parameters were
used. While the different choices certainly lead to different realiza-
tions of the flow field, the statistical properties of the solution are so
robust that the presented results do not depend on the particular form
of subgrid dissipation. Therefore we show only one example, in
which horizontal viscosity is parameterized following Leith [1968]
with a maximum viscosity parameter of Amax

h = 10−1 m2 s−1. In
the vertical the viscosity parameter is Av = 10−3 m2 s−1. For
scalar tracers we choose a third-order direct space-time advection
scheme [Hundsdorfer et al., 1995]. This advection scheme is sta-
ble without explicit diffusion, so that the horizontal and vertical
diffusivities can be set to zero.

More generally, the fixed grid size and the lack of a sophisticated
subgrid model imposes a further limitation: the numerical simula-
tion data may not be accurate near the surface and the bottom of the
boundary layer because eddies in those regions are too small to be
resolved.

In all experiments, constant surface heat flux Q out of the ocean is
applied over the time of the integration. Surface heat losses of 200,
400, and 800Wm−2 are chosen to represent typical buoyancy loss
values in the Greenland and Labrador Seas [Marshall and Schott,
1999]. The Coriolis parameter ranges from f = 1.4× 10−4 s−1 in
most experiments to f = 0.7 × 10−4 s−1. The ocean is governed
by a linear equation of state

ρ = ρ0 [1 − α(θ − θ0)] ,
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Figure 1. Fourth-order moments plotted against their respective parameterization according to the Gaussian model (Millionshchikov hy-
pothesis, top row), the universal model of Gryanik and Hartmann [2002] (middle row), and with the best-fit parameters ai and di (bottom
row) (Inset: zoom to a range of 0.1 to 0.2). All values are scaled by the corresponding powers of w∗ = (Q/f)1/2 and θ∗ = (Qf)1/2

and then normalized by the maximum value for plotting. Color indicates the scaled z-coordinate. The different symbols denote data
from different experiments: EXP1 (◦): Q = 200Wm−2, f = 1.4 × 10−4 s−1; EXP2 (+): Q = 400Wm−2, f = 1.4 × 10−4 s−1;
EXP3 (×): Q = 800Wm−2, f = 1.4 × 10−4 s−1; EXP4 (�): Q = 200Wm−2, f = 1.3 × 10−4 s−1; EXP5 (2): Q = 200Wm−2 ,
f = 0.7 × 10−4 s−1.

where α = 2 × 10−4 K−1 is the coefficient of thermal expan-
sion of water, and ρ0 = 1035kg m3 and θ0 = 1 ◦C are constant
reference density and temperature, respectively. The simulations
presented here do not contain any haline effects. The initial tem-
perature field of 0.1 ◦C is perturbed with random noise of small
amplitude (0.01 ◦C) to start the convection. Then the model is run
for 96 hours. The system reaches a statistically stationary regime
after approximately 24 hours. Vertical velocities reach the order of
10 cm/s so that the time for a water parcel to travel from the sur-
face to the bottom is on the order of a few hours. The moments of
temperature and vertical velocity scale with the surface heat flux as
θ∗ = (Qf)1/2 and w∗ = (Q/f)1/2, respectively, as predicted for
rotationally controlled open-ocean free convection [Golitsyn, 1980;
Fernando et al., 1991; Jones and Marshall, 1993]. The following
analyses are based on 48 hour averages starting at 48 hours.

2.2. Testing the Millionshchikov hypothesis

The top row of Fig. 1 shows the fourth-order moments 〈w′4〉,
〈θ′4〉, 〈w′3θ′〉, 〈w′θ′3〉, and 〈w′2θ′2〉 of model simulations with
surface heat losses of 200, 400, and 800Wm2, and Coriolis pa-
rameters of 1.4, 1.3, and 0.7 × 10−4 s−1 plotted against their re-
spective Gaussian parameterizations (Eq. 1). Note that the Gaussian
parameterization is good for 〈w′4〉, but generally underestimates the
remaining four moments.

2.3. Comparison to fourth-order moments expressions by
Gryanik and Hartmann [2002] Gryanik et al. [2005]

Gryanik and Hartmann [2002] and Gryanik et al. [2005] assume
that the skewness is a measure of deviation from Gaussian statistics
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Figure 2. Skewness of vertical velocity Sw and temperature Sθ

as a function of depth.

and suggest a generalization of the Millionshchikov hypothesis:
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(6)

with the skewnesses Sw = 〈w′3〉/〈w′2〉3/2 and Sθ =
〈θ′3〉/〈θ′2〉3/2. The parameters ai and di are found by postulating
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that in the limit of zero skewness formulae (2)–(6) should reduce to
the Gaussian form (Eq. 1) and that in the limit of large skewness the
turbulent regime is close to the top-hat regime [Gryanik and Hart-
mann, 2002]. Gryanik et al. [2005] determine them to be ai = 3
and di = 1/3 for i = 3, . . . , 6 and a7 = d7 = 1. With these pa-
rameters, Gryanik et al. [2005] call (2)–(6) their universal model. In
the middle row of Fig. 1, the same fourth-order moments are plotted
as in the top row, this time against their new parameterizations of
the universal model that includes the effects of skewness.

The skewnesses Sw and Sθ for vertical velocity and tempera-
ture in Fig. 2 immediately reveal that the distribution of vertical
velocity and temperature is essentially non-Gaussian in all exper-
iments. Consequently, the Gaussian parameterization underesti-
mates the fourth-order moments, in particular those which contain
high powers of θ′. The improvements of the universal model over the
Gaussian parameterization are particularly obvious where the skew-
ness is large (Fig. 2), that is for z/H > −0.3. The moment 〈w′4〉
appears to be an exception. The Gaussian model represents this
moment quite well. Contrary to all other moments it slightly over-
estimates 〈w′4〉 at mid-depth, but because Sw is small at mid-depth
(Fig. 2), the universal model only slightly bends the curve further
away from the diagonal. However, near the top of the computational
domain where Sw is large, the Gaussian model does underestimate
〈w′4〉 (see inset figures in Fig. 1, which zoom to the range of 0.1
to 0.2). Here, the universal model improves the fit for near surface
values (red markers), for which the skewness is large, but it only
slightly changes the values near the bottom (blue markers) where
the skewness is small.

The explained variance

σ2

f = 1 −
〈(yi − f(xi))

2〉

〈(yi − 〈y〉)2〉

of the quasi-Gaussian parameterizations and Gryanik et al.’s uni-
versal model is compared in Fig. 3 for the different experiments.
The explained variances for the quasi-Gaussian model range from
0.231 to 0.990. Including the effect of skewness by Gryanik and
Hartmann [2002] and Gryanik et al. [2005] increases the explained
variance to values ranging from 0.521 to 0.996. Only for 〈w′4〉, for
which the Gaussian model is already good, can the universal model
not explain more variance.

Finding the parameters ai and di via a least-squares best-fit to
all data (labeled “best fit” in Fig. 3) increases the explained variance
of the generalized parameterization over the universal model even
further (Fig. 3 and bottom row of Fig. 1). However, in particular
for 〈w′4〉, 〈w′θ′3〉, and 〈θ′4〉 the universal model of Gryanik et al.
[2005] is already nearly optimal. In most of the cases the global fit
parameters are close to the values of the universal model (Fig. 1),
except for 〈w′θ′3〉.

As long as temperature and vertical velocity scale with θ∗ and w∗,
changing the surface heat flux and the Coriolis parameter over the
ranges of 200 to 800Wm−2 and 0.7 to 1.4×10−4 s−1 does not alter
the fit of the fourth-order moments to the universal model signifi-
cantly. However, there appears to be a trend towards less explained
variance with decreasing Coriolis parameter (not shown), which
may serve as an indication that for weaker rotation the turnover
times for water parcels become too short to be affected by rotation.

3. Conclusion

The model simulations presented in this note provide counter-
examples for the Millionshchikov hypothesis. In all simulations the
moments follow the general scaling laws for open-ocean convection
with rotation. In this respect, the simulations and results of this note
complement those of Gryanik and Hartmann [2002] and Gryanik
et al. [2005] who consider shallow convection that is not rotationally
controlled. Many more simulations with different numerical advec-
tion schemes, different values for implicit and explicit diffusivity
for temperature, viscosity and hyper-viscosity are not shown here,
but they all lead to the same conclusion that fourth-order moments

0
0.2
0.4
0.6
0.8

1
EXP1: Q=200 W/m2, f=1.4×10−4s−1

σ f2

0
0.2
0.4
0.6
0.8

1
EXP2: Q=400 W/m2, f=1.4×10−4s−1

σ f2

0
0.2
0.4
0.6
0.8

1
EXP3: Q=800 W/m2, f=1.4×10−4s−1

σ f2

0
0.2
0.4
0.6
0.8

1
EXP4: Q=200 W/m2, f=1.3×10−4s−1

σ f2

0
0.2
0.4
0.6
0.8

1
EXP5: Q=200 W/m2, f=(1/2)*1.4×10−4s−1

σ f2

<θ’4> <w’θ’3> <w’2θ’2> <w’3θ’> <w’4>

Gaussian model
universal model
best−fit model

Figure 3. Explained variance of parameterizations for five ex-
periments with different surface heat flux and Coriolis parameter.
Except for 〈w′4〉, the universal model can explain more variance
than the Gaussian model. In many cases, the universal model
is nearly as good as the best-fit model for which the parameters
have been found by a fit to data.

should not be modeled based on the quasi-normality assumption.
Instead, a model such as the universal model of Gryanik and Hart-
mann [2002] and Gryanik et al. [2005] that explicitly takes skewness
into account appears to be more suited for fourth-order moments.

In the future, further parameterizations proposed by Gryanik
et al. [2005] that include horizontal motion and salinity will be
studied in a three-dimensional experiment.
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