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Abstract: Much renewed research interest in Arctic regions stems from the increasing concentration of

atmospheric greenhouse gases and the alleged climatic sensitivity of high latitude areas. Glacier and

permafrost changes are among a number of proxies used for monitoring past and present Arctic climate

change. Here we present observations on frozen in situ soil and vegetation, found below cold-based glacier

Longyearbreen (78813?N), 2 km upstream from the present glacier terminus. Dating of the relict vegetation

indicates that the glacier has increased in length from about 3 km to its present size of about 5 km during

the last c. 1100 years. The meteorological setting of non-surging Longyearbreen suggests this example of

late-Holocene glacier growth represents a widespread phenomenon in Svalbard and in adjoining Arctic

regions. In addition, we use the subglacial permafrozen soil system to evaluate microbial survival capacity

over considerable time periods, and we present evidence for microbes having survived more than 1100 years

in a subglacial, permafrozen state.

Key words: Arctic, Svalbard, glacier variations, climate change, radiocarbon, subglacial vegetation,

palaeosol, microbes, late Holocene.

Introduction

Changes in the Arctic atmosphere�/ice�/ocean system observed

in recent years have sparked intense discussions as to whether

these changes represent episodic events or long-term shifts in

the Arctic environment. Early twenty-first century concerns

about future climate change stem from the increasing concen-

tration of greenhouse gases in the atmosphere, and during the

last 15 years the Arctic has gained a prominent role in the

scientific debate regarding global climatic change (Houghton

et al., 2001). Existing knowledge on Quaternary climate and

Global Climate Models (GCMs) predicts that the effect of any

present and future global climatic change will be amplified in

the polar regions as a result of feedbacks in which variations in

the extent of glaciers, snow, sea ice and permafrost, as well as

atmospheric greenhouse gases, play key roles. These are some

of the reasons for renewed research interest in Arctic regions.

Subcontinental-scale analysis of meteorological data obtained

during the instrumental period apparently lends empirical

support to the alleged high climatic sensitivity of the Arctic

(Giorgi, 2002). Polyakov et al. (2002a,b), however, recently

presented updated observational trends and variations in

Arctic climate and sea-ice cover during the twentieth century,

which do not support the modelled polar amplification of

surface air-temperature changes observed by surface stations at

lower latitudes.

There is reason, therefore, to evaluate climate dynamics and

their respective impacts on high-latitude glaciers. Within the*Author for correspondence (e-mail: Ole.Humlum@geo.uio.no)
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High Arctic, a unique climatic sensitivity applies to the

Archipelago of Svalbard (Figure 1; 77�/808N), located on

the boundary between the Norwegian Sea, the Barents Sea and

the Arctic Ocean. This was recognized early by Ahlmann

(1953) and Lamb (1977). Climatic variations in Svalbard

during the twentieth century have been well documented by

meteorological data since 1911 (Førland et al., 1997). For

example, a marked warming around 1920 changed the mean

annual air temperature (MAAT) at sea level within only 5 years

from about �/9.58C to �/4.08C. This represents the most

pronounced increase in MAAT documented anywhere in the

world during the instrumental period. Later, from 1957 to

1968, MAAT dropped about 48C, followed by a more gradual

increase towards the end of the twentieth century. In the latest

IPCC report (Houghton et al., 2001), attention is drawn

specifically to the extraordinarily high Svalbard climatic

sensitivity.

The climatic sensitivity of the Svalbard region presumably

derives from various forcing mechanisms. First, Svalbard is

located near the confluence of ocean currents and air masses

that have very different temperature characteristics. The north-

ernmost tip of the North Atlantic Drift presently flows along

the west coast of Svalbard, while cold polar water flows south

along the eastern coast. Secondly, the climatic sensitivity is

enhanced by rapid variations in the sea-ice extent, which are

coupled with both atmospheric and oceanic circulations

(Benestad et al., 2002). Finally, Svalbard is located in the

major transport pathway of water vapour into the Arctic Basin

in association with the North Atlantic cyclone track (Dickson

et al., 2000). During the winter season meridional moisture

transport along this pathway exhibits a positive relationship

with the phase of the North Atlantic oscillation (Jones et al.,

2001).

These characteristics make Svalbard a key site for under-

standing aspects of Northern Hemisphere climatic changes;

especially as most predictions of future climate suggest an

amplified climatic response in the Arctic. Against this back-

ground the dynamics of Svalbard glaciers (Hagen et al., 1993,

2003; Liestøl, 1993; Bruland and Hagen, 2002) represent an

important source of Arctic environmental information, past as

well as present. Motivated by the importance of estimating the

impact of climatic change on High Arctic environments, we

present here observations from a fossil soil, with intact plant

cover and microbes, found in a subglacial position beneath the

glacier Longyearbreen, in order to examine the effects of past

climate change on Svalbard.

Figure 1 Map showing the Arctic regions. Insert shows the Svalbard archipelago (63 000 km2) with the study site in central Spitsbergen
indicated
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Longyearbreen

Glaciers presently cover about 60% of Svalbard (Hagen et al.,

1993, 2003; Hagen, 1996). On Spitsbergen, the main island in

the Svalbard archipelago (63 000 km2), glaciation is especially

extensive in areas near the eastern and western coasts, where

many glaciers terminate in the sea. In contrast, glaciers in the

central part of the island are smaller, mainly because of low

precipitation (Humlum, 2002). The Longyearbreen glacier

(Figure 2) is located in the relatively dry region of central

Spitsbergen, near the main settlement of Longyearbyen. At

Longyearbyen airport (45 m a.s.l.) the annual precipitation is

about 180 mm (water equivalent), MAAT is about �/58C and

most of Svalbard is situated within the zone of continuous

permafrost (Humlum et al., 2003).

Longyearbreen (3.2 km2) is about 5 km long and flows

from a large cirque at the head of the valley Longyeardalen

(Figure 2). The valley is situated in the bioclimatic zone

classified as the Inner Fjord Zone (Summerhayes and Elton,

1928; Elvebakk, 1985), the so-called Cassiope-tetragona zone

of the mid-Arctic belt (Brattbakk, 1986). This represents a part

of Svalbard with floristically rich vegetation, reflecting favour-

able climatic conditions for plant growth, mainly because of

high summer insolation.

Surging glaciers are frequent on Svalbard (Dowdeswell et al.,

1991; 1995; Hagen et al., 1993; Jiskoot et al., 2000), especially

in the moist coastal regions (Humlum, 2002). There is,

however, no evidence for past surge behaviour of Long-

yearbreen. Owing to the protective debris cover on lower

Longyearbreen, a typical feature of many non-surging glaciers

in central Spitsbergen, this glacier has not retreated following

the twentieth-century warming around 1920. Instead it has

thinned 10�/30 m over a considerable proportion of its length

where a protective layer of supraglacial debris is lacking. It is

presumably frozen to the bed except for small temperate areas

and the maximum surface velocity is low, 1�/3 m/yr (Tonning,

1996; Etzelmüller et al., 2000).

Below the equilibrium line crevasses are narrow and few.

Perennial supraglacial meandering meltwater channels erode

into the glacier surface each summer. When such channels

reach a depth of 8�/12 m, ice deformation slowly closes the

upper part of the channel. Thus, the channels are gradually

transformed into englacial, meandering tunnels. A number

of these meltwater conduits have now reached the glacier bed

20�/50 m below the surface, exposing the glacier�/bed interface

for considerable distances along their course. During the

winter, when water discharge has ceased, these tunnels provide

a unique means of access to the glacier bed. In Svalbard,

glacier deformation is usually low because of low ice tempera-

tures. Therefore, entrances of englacial drainage systems are

not completely closed and can be entered in the wintertime

using alpine techniques (Vatne, 2001).

The exposed glacier bed below Longyearbreen generally

takes the appearance of a normal talus or scree slope, with

no visual indication of glacial erosion. Inspecting the

glacier bed in one of the conduits, about 2 km upstream of

the present glacier terminus, a well-preserved soil layer with

in situ vegetation was found at the glacier�/bed interface

(Figure 3). The vegetation (Figure 4) was undisturbed, even

though 30�/40 m of active glacier ice presently covers the site.

Trimlines above the modern glacier surface indicate that the ice

thickness during the Little Ice Age was 20�/30 m greater. The

lack of evidence for glacial abrasion on boulders and bedrock

exposed at the glacier bed led us to conclude that the glacier

has remained cold-based at this particular place since it

overran the site in the past. This is supported by the visual

observation of mosses and other plants extending 1�/3 cm up in

the basal ice undeformed by glacial movement (Figure 4). The

temperature at the glacier bed was measured at about �/48C
(March�/May 2001, 2002, 2003).

Study samples were taken from the subglacial soil at several

locations 30�/35 m below the present-day glacier surface, at 450

m a.s.l. The present-day glacier terminus is at 250 m a.s.l., 2 km

further downvalley. Macrofossils were investigated in the

laboratory, but only a few plant species were found. This

corresponds well with results from similar investigations of

macrofossils from other terrestrial sediments in Svalbard

(e.g. van der Knaap, 1989). Salix polaris (polar willow) is the

single dominant species, having a high frequency in all our

samples. Smaller parts of Gramineae/Juncaceae and moss taxa

were also identified. The following moss species were identi-

fied: Sanionia uncinata, which typically grows on patterned

ground in glacier forefields distant from any permanent water

sources such as ponds and streams; Tomentypnum nitens, which

is common in association with relatively high vegetation

and moderate winter snow cover; and Distichium spp. and

Figure 2 Longyearbreen in late June 2000, looking south. The
glacier measures about 5 km in total length. The subglacial study
site is below the dot on the glacier surface, about 2 km upstream
from the debris-covered glacier terminus

Figure 3 Basal part of Longyearbreen, about 35 m below the
present-day glacier surface. The bed consists of a talus sheet,
without indication of glacial erosion. An old soil with vegetation is
found along the glacier�/bed interface. Figure 4 shows the interface
close to the left-hand margin of this picture. The lowermost 60�/80
cm white ice presumably represents a large snowdrift overrun by
the glacier, protecting soil and vegetation
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Pogonatum urnigerum that typically live in snow-bed commu-

nities in topographic depressions. Bryum pseudotriquetrum is

common along the margins of relatively large streams in the

Arctic region. In addition Myurella julacea (Figure 5),

Racomitrium ericoides and Syntrichia ruralis were identified,

species that are typical of somewhat drier environments than

the other bryophyte species mentioned here.

All species found in the subglacial soil below Longyearbreen

are known from modern vegetation communities on Svalbard,

where they form a widespread element of the present vegeta-

tion (e.g., Rønning, 1996). The species identified are all

characterized by high adaptability to a range of environmental

and climatic conditions in the Arctic. Future investigations of

microfossils (pollen and spores) may result in lower taxonomic

identification and identification of additional species from

these soil samples.

Longyearbreen presumably overran the now-subglacial soil

and vegetation during a winter advance without erosive melt-

water activity at the glacier terminus. Assuming unchanged

prevailing wind conditions, a thick snowdrift probably formed

downvalley of the advancing glacier front, just as is the case

today along the terminus of Longyearbreen during winter.

Such a snow layer may have protected the vegetation to some

degree during the glacier advance. We speculate that this layer

of snow is represented by a white layer of bubbly ice along the

glacier�/bed interface (Figure 3). Oxygen isotope analysis of ice

sampled from this layer yielded d18O values from �/11.88 to

�/12.02, which is only slightly higher than modern winter

snowpack values (Humlum, unpublished). Modern daily

winter air temperatures at the terminus of Longyearbreen

typically range from �/15 to �/308C.

Radiocarbon dating

Methods
Frozen samples of soil and vegetation were brought to the

nearby laboratory at UNIS (The University Centre in Sval-

bard) in polyethylene bags. The first radiocarbon dating (14C;

AAR-6532, Table 1) of the vegetation exposed at the glacier

base yielded a calibrated age of 1700�/1410 cal. yr BP. This

result, and the unique preservation of the individual plants

(Figure 4), encouraged us to investigate probable age variations

of the different bryophyte species (mosses) when dated

separately. The mosses were not subject to contamination after

the glacier advance because the vegetation was perfectly

preserved below, and partly in, glacier ice. This is an optimal

situation for testing if radiocarbon dates of different species are

mutually consistent. Mosses were selected with a pipette under

magnifying glasses and binocular microscope in the clean room

of the Ångströmlaboratory (University of Uppsala). Risk of

contamination for small and wet macrofossil samples increases

with long-term storage, as a result of uptake of modern carbon

through micro-organisms (Wohlfarth et al., 1998). The macro-

fossils were therefore cleaned under binocular microscope from

fungal mycelia, chemically pre-cleaned, and then identified and

photographed for documentation (Figure 5).

All moss species were given acid-alkali-acid pre-treatment

consisting of 1% HCl (8�/10 h just below boiling point) and

0.5% NaOH (1 h at 608C). The insoluble fraction was washed,

acidified to pH 3 and converted to graphite using a Fe-catalyst

reaction. This was to ensure removal of humic/fulvic acids.

Two sediment samples (Lyr-1 and Lyr-6) were given acid-

alkali-acid pre-treatment consisting of 1% HCl and 1% NaOH

(in both cases for 8�/10 h just below the boiling point). The

soluble part was precipitated by adding concentrated HCl and

centrifuging at 3000 rpm. The precipitate consisted mainly of

Figure 4 Close-up of in situ vegetation at the glacier�/bed interface below Longyearbreen. The section shown measures about 10 cm across

Figure 5 Microscope view of Myurella julacea sampled from the
old vegetation layer at the glacier�/bed interface below Long-
yearbreen

Ole Humlum et al.: Late-Holocene glacier growth in Svalbard 399



humic acids and is labelled as SOL (soluble fraction). Before

accelerator measurement the dried material (pH 4) was

combusted to CO2 and converted to graphite. The radiocarbon

analyses were determined with the Uppsala EN-tandem

accelerator (Possnert, 1990). A small fraction of approximately

0.05 mg carbon of the CO2 gas was used for measurement of

the natural mass fractionation, d13C, in a conventional mass

spectrometer (VG OPTIMA).

A total of ten bryophyte subsamples and one SOL sub-

sample were analysed from the subglacial samples. Usually, the

bryophyte subsamples consisted of about 5�/15 individual

mosses in order to obtain sufficient material for graphitization.

The radiocarbon ages reported in this paper are in radiocarbon

years before present, expressed as yr BP. Calibrated years are

given as cal. yr BP and were calculated using the OxCal v.3.8

software based on the INTCAL calibration data set.

Results and discussion
The ten calibrated ages of the bryophytes cover a time window

from 1930 to 1130 cal. yr BP (95.4% probability) (Table 1). The

ages of the different mosses cover a time window of about 800

years (Figure 6). The results of the calibrated ages show an

explicitly continuous decrease in age with no hiatus.

Two additional samples of the bryophyte species Sanionia

uncinata and Tomentypnum nitens were dated to examine the

occurrence of species-specific ages. We assume that if species

had a biased age, this would be observed by two different

results, with one species type forming a cluster. In addition,

these ages would differ from the age ranges of the other species.

This is, however, not the case, since both moss species tested do

not show a species-specific clustering, but distribute over the

entire time window dated. In addition, the d13C values of the

moss samples show apparent scattering and point to higher

dependency on other parameters than to the species itself

(Figure 7). Usually the d13C values are dependent on the type

of plant, because of species-specific fractionation processes.

The two Tomentypnum mosses show comparable stable isotope

compositions, whereas the Sanionia mosses indicate varying

d13C values. Different fractionation processes cannot explain

the slightly different ages of Tomentypnum, whereas the

Sanionia mosses indicate more complex fractionation process.

The most probable explanation is long-term decomposition

processes and longevity of the investigated mosses. In earlier

studies it has been shown that decomposition processes led to

depleted d13C values (Benner et al., 1987). In addition, the

apparently long time window of about 800 cal. yr BP suggests

that the studied mosses decomposed over a long period of time.

Using the three oldest-dated samples the probability is 95.4%

for an initiation of vegetation growth at 1908 cal. yr BP.

However, the site might have been covered with vegetation

several hundred years or even several thousand years before

this. It is well-known that mosses are organisms with very slow

growth rates (Furness and Grime, 1982). The growth rate

becomes very slow in Arctic environments because of low

temperatures and a low rate of decomposition (Molau, 1997;

Sand-Jensen et al., 1999). The mosses that were radiocarbon-

dated in this study consist of ramets (physiologically indepen-

dent individuals produced asexually by clonal growth) �/ the

moss species grows at one end and decays and dies at the other.

Therefore, the age of one moss species varies greatly because it

consists of different ramets. A consequence of this is that

clonal plants such as bryophytes might be much older than

non-clonal plants, by approximately one order of magnitude

(I.S. Jónsdóttir, personal communication, 2003). Clonal plants

growing on Taymyr Peninsula in an Arctic environment have

been estimated to have ages in excess of 3000 years (Jónsdóttir

et al., 2000). Taking these facts into consideration it cannot be

ruled out that the mosses in the glacier forefield of Long-

yearbreen grew over hundreds or even thousands of years

before being covered by the glacier. It is also necessary to take

into account the radiocarbon date of the SOL fraction from

the palaeosoil, with an age of 4830�/4420 cal. yr BP; suggesting

that the study site might have been ice-free since at least 4830

cal. yr BP. However, it is also well-known that clay minerals

bind carbon, which can result in older humic acid ages than

given by macrofossil ages of the same samples (McGechin

et al., 2001; Scharpenseel and Becker-Heidmann, 1992). There-

fore, humic acid ages present serious problems resulting from

various unknown sources. We believe that this potential

Table 1 Calibrated ages of bryophytes

Lab. No. Material dated 14C yr BP9/1s d13C � cal. 14C yr BP, 1s cal. 14C yr BP, 2s

Ua-16520 SOL Lyr-6 40909/70 �/26.2 4810�/4440 4830�/4420

Ua-16380 Tomentypnum nitens 18759/50 �/25.5 1880�/1730 1930�/1630

Ua-16396 Tomentypnum nitens 16259/40 �/25.7 1570�/1410 1690�/1410

Ua-16377 Sanionia uncinata 17709/45 �/24.7 1770�/1600 1820�/1560

Ua-16379 Sanionia uncinata 15159/40 �/26.0 1510�/1330 1520�/1310

AAR-6532 Moss spp. 16709/45 �/23.4 1690�/1520 1700�/1410

Ua-16375 Myurella julacea 17509/70 �/25.1 1740�/1550 1830�/1520

Ua-16382 Syntrichia ruralis 15759/40 (�/25.0) 1515�/1415 1550�/1350

Ua-16378 Distichium cap./inc. 15409/40 �/22.9 1520�/1350 1530�/1330

Ua-16652 Racomitrium ericoides 13559/65 �/25.2 1330�/1180 1410�/1130

Ua-16653 Bryum pseudotriquetrum 13509/45 �/25.7 1310�/1180 1340�/1170

Ua-16651 Pogonatum urnigerum 13109/45 �/25.5 1290�/1180 1310�/1140

Figure 6 Radiocarbon dating results of the mosses from Long-
yearbreen glacier plotted on the x-axis of calibrated radiocarbon
years. The histograms represent the probability distribution of
the calibrated age. The calibration and the plot were done with the
OxCal v 3.8 software (Bronk Ramsey, 2000) based on the
radiocarbon calibration curve of Stuiver et al. (1998)
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contamination problem exists in this particular region and we

are therefore presently not able to conclude that the study site

was continuously ice free for the whole period between 4830

and 1104 cal. yr BP. Taking other evidence for Arctic climate

development into account (see below), however, this appears

very likely.

The period of vegetation growth ended at 1104 cal. yr BP

(with a probability of 95.4%), taking into account the three

youngest-dated samples (Figure 8). This is a minimum age for

the advance of the Longyearbreen glacier over the study site,

killing but not destroying the vegetation. Since then the glacier

has advanced an additional 2 km downvalley, thereby lowering

the altitude of the glacier terminus from about 450 m a.s.l. to

250 m a.s.l. At the time of the advance across the study site the

glacier length was about 3 km. The present-day length is about

5 km.

A climatic perspective on glacier
growth

The subglacial sampling site is about 2 km upstream from

the present terminus of Longyearbreen. Since the advance at

c. 1104 cal. yr BP, the glacier probably did not retreat again

across the study site. Glacier retreat is a summer phenomenon,

and meltwater activity along the glacier front would probably

have destroyed the old vegetation and soil layer if it had been

exposed by retreat.

Longyearbreen is a typical central Spitsbergen glacier with

respect to topographic setting, aspect and size. There is no

morphological or structural evidence suggesting past surge

behaviour. In addition, based on our findings of subglacial in

situ vegetation, a surge can be excluded for the last 1104 cal. yr

BP; otherwise the mosses would have been destroyed. Most

likely, the growth of Longyearbreen therefore represents a

normal dynamic response to changes in air temperature,

precipitation and changes in prevailing wind and the amount

of drifting snow. Wind and snow drift are very important for

modern glacier mass balance in the arid central part of

Spitsbergen (Humlum, 2002). The late Holocene growth of

Longyearbreen probably represents the local expression of a

more widespread trend for many Svalbard glaciers. In order to

test this hypothesis and to place our findings into a larger

spatio-temporal perspective, a brief review of palaeoclimate in

Svalbard and adjoining Arctic regions is given.

Following the early twentieth-century warming mentioned

above, most glaciers in Svalbard have experienced a net volume

loss (Hagen and Liestøl, 1990; Liestøl 1993; Hagen et al., 1993;

Bruland and Hagen, 2002), adjusting to this new meteorolo-

gical situation. Compared with this well-documented modern

behaviour of Svalbard and other Arctic glaciers (see, e.g.,

Holmlund and Hagen, 1996), comparatively little was known

Figure 7 Stable carbon isotope composition (d13C �) of the moss species plotted on the x-axis of calibrated radiocarbon years. The age
range is given with 2s standard deviations that correspond to a probability of 95.4%. See text for discussion of longevity of moss species,
which might explain the long time window of radiocarbon dates better than species-specific fractionation processes

Figure 8 Probability plot (68.2% and 95.4%) of the maximum age
of glacier Longyearbreen covering the study site. The calculation
of the probability of being after all of the three youngest samples is
given by:

r(t)�
Y

i

Z t?�t

t?���

pi(t?)dt?

This is the distribution (normalized to a maximum of 1) returned
by OxCal 3.8. From this a distribution r?(t) can be calculated which
gives a probability distribution for the last of the group of events:

r?(t)�dr(t)=dt
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pre-twentieth century about Holocene glacier and climate

dynamics in the High Arctic. Terrestrial micro- and macro-

fossils have generally provided rather coarse data from the

Svalbard region, and information about climatic change has

proved difficult to interpret from observations on vegetation

changes during the last 2000 cal. yr BP (e.g., Hyvärinen, 1970;

1972; Birks, 1991; Wohlfarth et al., 1995). From northwest

Spitsbergen van der Knaap (1985) demonstrated a change

towards lower temperatures during the eighteenth century.

From around 200 cal. yr BP a somewhat warmer climate

prevailed, before conditions subsequently turned colder again.

There is, however, some concern that these results were based

partly on data contaminated by human activity (Elvebakk,

1990).

Based on marine data, Salvigsen et al. (1992) and Salvigsen

(2002) demonstrated warmer conditions in the Svalbard region

during the early and mid Holocene, compared with the present-

day climate. At that time, most Svalbard glaciers probably were

smaller than at present or even absent. Based on lacustrine

evidence from western Spitsbergen and a marine core in

Billefjorden, Svendsen and Mangerud (1997) also demon-

strated a warm early-Holocene climate, followed by a period

of renewed glacier growth from 3000 to 2500 cal. yr BP. Furrer

(1992, 1994) and Furrer et al. (1991) dated fossil organic

horizons found beneath end moraines to ages between 1550

and 730 cal. yr BP (1010)9/80 yr BP; 13159/100 yr BP; 14659/

55 yr BP). These organic horizons were interpreted as

maximum ages for glacier advances. They also dated organic

horizons between 920 and 500 cal. yr BP (7109/60; 8109/65 yr

BP) 640 and 290 cal. yr BP (3709/75; 4859/50 yr BP). The fact

that these authors used unspecified organic material makes it

difficult to estimate the validation of these dates. Contamina-

tion problems of bulk sediment samples for radiocarbon dating

are well-known and humic acids could account for reasonably

younger ages, whereas old carbonates or coal could account

for overestimated ages of the above-mentioned samples (Geyh

et al., 1971; Hormes et al., 2004). Additional evidence for

late-Holocene glacier growth on Svalbard was presented by

Snyder et al. (2000). All the above findings are based on field

evidence from moist coastal west Spitsbergen.

Marine evidence from the Nordic seas near Svalbard

documents that the first half of the Holocene was the warmest

period during the last 16 750�/15 000 cal. yr BP (Koç et al.,

1993), followed by cooling during the late Holocene (Koç and

Jansen 1994). In the Barents Sea area just south of Svalbard,

the early Holocene warming trend deduced from d18O records

(Duplessy et al., 2001) was followed by rapid cooling during

the late Holocene (Ivanova et al., 2002). The cooling was

interrupted by at least two periods of warming at 2200 and

1600 cal. yr BP (Sarnthein et al., 2003). Jennings et al. (2002),

working on the East Greenland Shelf, found evidence for the

onset of late-Holocene cooling from c. 5500 cal. yr BP,

associated with southward expansion of the Arctic sea ice

and increased influence of polar water. Taking into account all

marine records around Svalbard it has to be kept in mind that

the marine reservoir effect and possible variations during the

Holocene of coastal ocean streams is very little studied and

usually a standard correction of 400 years is used for 14C

dating (Birkenmajer and Olsson, 1998; Feyling-Hanssen and

Olsson, 1959�/1960).

In Fennoscandia, south of Svalbard, oxygen isotopes of

lacustrine carbonates of Lake Tibetanus in Lapland suggest a

cooling trend after 3000 cal. yr BP, but interrupted by a period

of increased mean July temperatures and decreased annual

precipitation, peaking around 1000 cal. yr BP (Hammarlund

et al., 2002). Studies of pollen assemblages from northern

Finland indicate a marked late-Holocene summer (July)

temperature decline, and suggest the last 2000 years to be the

coolest since the early Holocene (Seppä and Birks, 2001). From

diatoms, chironomids, pollen and near-infrared spectroscopy

at an alpine lake in northern Sweden, Rosén et al. (2001)

documented a late-Holocene lowering of the tree-limit and

gradual lowering of the mean July temperature during the last

7000 cal. yr BP. In southern Norway Blikra and Selvik (1998),

mapping snow avalanche deposits, demonstrated that the

Holocene was characterized by highly fluctuating winter

climatic conditions throughout, but that a development

towards deteriorating climate has prevailed for the last 5400

cal. yr BP. In western Norway, Nesje (1992) found that valley

and cirque glaciers in the Jostedalsbre region reached their

greatest Neoglacial extent during the mid-eighteenth century.

Elven (1978) found plant remains previously covered by the

Omsbreen glacier in southern central Norway, much as is

presently the situation at Longyearbreen. He concluded that

Omsbreen most likely was established around 550 cal. yr BP,

reached its maximum size (14 km2) during the eighteenth

century, and underwent significant retreat during the twentieth

century. Heikkila and Seppä (2003) presented a temperature

reconstruction based on high-resolution pollen stratigraphy

from southern boreal Finland. Their results show that

Holocene air temperatures reached their highest values

8�/4.5 ka BP, and have gradually decreased by c. 1.58C since,

but indicate 0.58C higher temperatures between 1200 and

1100 cal. yr BP.

In northeast Greenland, only 400 km west of Svalbard, field

evidence suggests ice-free fjords during the early and mid-

Holocene, followed by extensive periods with ice-covered fjords

from 5700 cal. yr BP (Hjort, 1997). Kelly (1980), summarizing

available glaciological evidence, concluded that the western

margin of the Greenland Ice Sheet retreated to a position 60�/

120 km behind the present margin during the early Holocene.

A late-Holocene period of growth was initiated 3000�/3500 cal.

yr BP, followed by major advances around 2000 cal. yr BP. This

development is also reflected by ice core analysis from the

Greenland ice sheet (Dansgaard et al., 1971; 1973). In

addition, the establishment and growth of Hans Tausen Ice

Cap (now 4208 km2) in Pearyland, northernmost Greenland,

from 3900 cal. yr BP (Hammer et al., 2001), lend support to

this overall late-Holocene climatic development in the Green-

land�/Svalbard sector of the Arctic. Reconstructed surface

temperatures from the Greenlandic Ice Sheet (Dahl-Jensen

et al., 1998) directly testify to c. 38C net cooling since 4000 cal.

yr BP. Kaplan et al. (2002) reported Neoglacial cooling from

southeast Greenland from 3000 cal. yr BP, and Fredskild

(1973) reports botanical evidence of a sharp change in climate

towards colder and drier conditions around 1550 cal. yr BP in

west Greenland.

On Nordvestø in the Carey Øer group between Greenland

and Ellesmere Island, an extensive deposit of peat developed

between approximately 6300 and 4400 cal. yr BP at a site where

this type of moss no longer grows (Brassard and Blake, 1978).

From Ellesmere Island, Arctic Canada, Blake (1989) reported

the observation of a lake basin that has been frozen to the

bottom since about 5800 cal. yr BP, while the lake probably

was completely open during the preceding warmer early

Holocene. In the Canadian Arctic Archipelago, observations

indicate that there was an increased frequency of driftwood

between 6500 and 4500 cal. yr BP (Blake, 1972; Steward and

England, 1983), suggesting diminished Arctic sea ice cover or,

alternatively, that the sea ice on which the wood was carried at

that time had more mobility, as was suggested from observa-

tions in the Svalbard region by Häggblom (1982, 1987).

402 The Holocene 15 (2005)



Thus, the significant net growth of Longyearbreen since

1104 cal. yr BP apparently is consistent with a widespread late-

Holocene climatic development towards cooler conditions in

the Arctic. This may explain why the Little Ice Age (LIA)

glacier advance in Svalbard usually represents the Holocene

maximum glacier extension and that little evidence for older

Holocene ice-marginal morphology is found. From a glaciolo-

gical point of view, the climatic sensitivity of glaciers in the

central arid regions of Spitsbergen would normally be con-

sidered small compared with that of glaciers located in more

maritime regions with corresponding higher mass turnover,

basal sliding and higher ice-flow velocities. Therefore,

we consider that the ~ 66% increase in length from 3 km to now

5 km, of Longyearbreen during the last c. 1100 years is quite

remarkable, testifying to a climatic development towards

conditions more favourable for glaciers at the gateway to the

Arctic Ocean.

Cold-adapted microbes

In addition to the above analysis, the presence of the fossil soil

with in situ plants below Longyearbreen provided us with a

rare opportunity for evaluating microbial survival capacity of

an entire community in a subglacial, permafrozen state within

the time frame given by the 14C-datings of the vegetation.

Temperature is considered one of the most important factors

regulating micro-organisms, controlling their physio-chemical

reactions (Herbert, 1986). Microbes, which are thought to be

the earliest life-forms on this planet, occur in all types of

environments including air, water and soil and have adjusted to

cold environments, taking up large surface areas of the planet.

Indeed, more than 70% of the planet is covered by oceans, of

which about two-thirds (by volume) has a temperature of 28C
or less. Because of their ability to adjust to low temperatures,

microbes can be regarded as being among the planet’s most

successful colonizers (Russel, 1990).

Forster (1887) was the first to isolate cold-adapted microbes

in dead fish preserved by low temperatures. Since then, such

microbes have been found in many types of cold environment

and extensive reviews have been presented by Morita (1975),

Herbert (1986), Gounot (1986), Russel (1990), Friedmann

(1994) and Gilichinsky and Wagner (1995). Among other

environments, viable microbes were found in permafrost as

early as the early twentieth century by Russian scientists

investigating Siberian mammoth localities (Omelyansky,

1911) and in buried soils in the Far East (Isachenko, 1912).

In Canada, James and Sutherland (1942) found viable aerobic

and anaerobic microbes in permafrost, at depths of 2�/3 m at

Churchill, Manitoba. Becker and Volkmann (1961) isolated

different viable microbes from permafrost cores taken 6�/18 m

below the terrain surface near Fairbanks, Alaska, having an

age of 20 ka BP and 70 ka BP, respectively. In the Antarctic,

Cameron and Morelli (1974) in the Dry Valley region found

viable microflora from permafrost deposits up to 1 million

years of age, which have led to suggestions for addressing

exobiological problems (e.g., Mars) by using terrestrial perma-

frost analogues. Later, Zvyagintsev et al. (1985), Gilichinsky

et al. (1990; 1992) and Khlebnikova et al. (1990) demonstrated

that large numbers of viable microbes (up to 100 million/g of

soil) probably have been preserved in a viable state for several

millions of years. Upon thawing, these microbes resumed their

physiological activities; a remarkable feat considering the low

temperature (�/128C) and the probable great age. Apparently,

microbes in permafrost regions tend to accumulate at the

bottom of the active layer, as the highest number of microbes is

found in the lower part of summer thawing layer in modern

tundra soils (Gilichinsky, 1995). Also at the bottom of the

previous (7000�/9000 cal. yr BP) thicker early Holocene active

layer there is a horizon with an increased number of viable

microbes in what since has been permafrost (Gilichinsky,

1995).

A fundamental problem in cryobiology is to determine

under which environmental conditions microbes can survive

long-term freezing (in an inactive state) and how metabolically

active microbes may have been during freezing and, in

particular, after thawing. This motivated us to investigate if

the permafrozen subglacial soil below Longyearbreen con-

tained viable microbes and, if so, how metabolically active (in

terms of CO2 production) such microbes would be following a

major change in environmental conditions (thawing).

Analysis of the subglacial soil
Carbon dioxide (CO2) production and its release from soil has

long been used as a measure of microbial activity and has been

shown to be sensitive to changes in environmental factors such

as temperature and moisture (Kirschbaum, 1995; Fang and

Moncrieff, 2001). Arctic soils hold large active organic carbon

(C) reserves in the active layer as well as inactive reserves in

permafrost layers (Post et al., 1982). The release of CO2 from

such soils may therefore exert a potentially positive feedback

on atmospheric CO2 concentrations (e.g., Oechel et al., 1993).

This may be enhanced if buried soils become exposed as a

result of increased active-layer thickness, thermocast processes

or by the retreat of cold-based glaciers. In the laboratory we

therefore investigated how incubated soil samples collected

from the fossil soil beneath Longyearbreen responded to

thawing, with a focus on the microbial production of CO2 at

temperatures between 0 and 78C. In addition, the results were

compared with similar observations from a nearby subaerial

reference soil.

Frozen samples (c. 500 cm3) were collected at two sites in

early May 2002. One site was the study site below Long-

yearbreen as described above, where soil samples were collected

after removing the fresh exposed soil that might have been in

contact with meltwater the previous summer. Thus, samples

used for analysis have been exposed only briefly to the

atmosphere as part of the sampling process and have pre-

sumably been maintained in a permafrozen state since at least

1104 cal. yr BP. The latter assumption is based on the fact that

no evidence of past warm-based conditions at the glacier sole

was observed. The control site has been subject to freezing and

thawing on an annual basis, as has the now-subglacial soil

before the glacier advance. Sampling at the control site was

also undertaken in early May 2002, at a time when the soil was

still frozen following the winter 2001�/2002.

At both study sites (Longyearbreen and Bjørndalen)

samples were collected within the upper 3 cm of the soil profile

(A-horizon material only) as frozen fragments. Sampling was

carried out using sterilized equipment and samples were kept

frozen (below �/48C) and stored in darkness until analysed in

the laboratory. Soil pH was measured in distilled water at a

soil-solution ratio of 1:1. Total organic carbon (TOC) contents

were measured using a Total Organic Carbon Analyser

(Dohrmann DC-190) after removal of carbonates by a weak

acid (HCl). Finally, soil samples were analysed for volume,

weight, porosity and solid bulk density.

Basal soil respiration (BSR) measurements were measured in

subsamples that had been stored in polyethylene bags at

temperatures below �/48C. Prior to measurement, soil samples

were split carefully to remove roots and stones and gently

mixed. Weighed soil samples (five replicates, each equivalent to
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2�/3 g dry soil) were transferred to 12 ml Venoject tubes and

left for pre-incubation for at least 48 h at stable temperatures

equal to the experimental temperatures. Prior to measurement,

tubes with soil samples were out-gassed with CO2-free syn-

thetic air. BSR measurements in depth-specific soil samples

were subsequently taken by monitoring the linear (R2�/0.95)

increase of headspace CO2 concentrations at 78C over two to

three days by gas chromatography using a Mikrolab ML

GC82-12 equipped with a Porapack Q-column kept at 308C
and a TCD detector operated at 2008C (flow rate of 25 ml

He/min). The temperature dependence of BSR was investigated

by incubating Venoject tubes with soil (three replicates

equivalent to 2�/3 g dry soil) at 0, 4 and 79/0.38C. Because

of the high water content in soil samples collected below

Longyearbreen, additional BSR measurements (measured at

78C only) were made on samples from Bjørndalen after

increasing the water content to the same level as observed for

samples taken from the site below Longyearbreen. Sterilized

samples were included after killing the microbes by chloroform

addition to the soil sample (Elberling et al., 2000). After 2 h the

chloroform was removed by vacuum evaporation followed by

BSR measurement. Substrate-induced respiration rates (SIR)

were made after gently mixing soil material with a powder

mixture containing glucose (1.2 mg glucose-C/g soil) and talc

(Anderson and Dosch, 1978). Control incubations with empty

Venoject tubes showed that CO2 diffusion into the tubes could

be neglected.

Results of soil analysis
Findings of similar plant remains in all soil samples suggest

that both soil study sites have been covered by similar

vegetation, mainly mosses. The soil organic carbon content

was 3.29/1.5% and 2.79/1.9% by weight for Bjørndalen (B-site)

and Longyearbreen (L-site), respectively. Soil pH values were

5�/6 for all samples. The water content was 32�/33% by weight

at the L-site and 20�/25% at the B-site.

Measurements revealed that ongoing microbial soil respira-

tion (BSR) was measurable at both sites (Figure 9). CO2

production rates (per weight dry soil) from soil collected at the

L-site were more than ten times the rates observed from

sterilized samples and about 10% of rates observed at the

present-day B-site. This result strongly suggests that microbial

life has survived since the soil was covered by the advancing

Longyearbreen no later than 1104 cal. yr BP, and that such soil

microbes can again be active after few days at above-freezing

temperatures. Respiration rates observed at 0, 4 and 78C reveal

that the temperature sensitivity of CO2 production can be

fitted by a exponential function (R2�/0.9, pB/0.005), indicat-

ing a doubling of the rates for every 108C increase (Q10�/2.1).

This is consistent with other studies (see review by Fang and

Moncrieff, 2001). No significant differences in terms of

temperature sensitivity were noted for the two Svalbard sites.

The lower rates observed for the subglacial L-site compared

with the modern B-site can be related partly to higher water

contents at the L-site (near-full saturation), as indicated by a

44% reduction in rates at the B-site after addition of water

(Figure 9). High water content reduces the availability of

oxygen and thereby results in reduced soil CO2 respiration

(Fang and Moncrieff, 2001). Taking into account the higher

content of organic C in samples from the B-site relative to the

L-site further reduces the differences in CO2 production in

terms of CO2 production per unit soil-C. The CO2 production

increased in all samples after glucose addition. In samples from

the modern B-site the production increased by a factor of 1.90

while samples from the subglacial L-site increased by a factor

of 1.31, indicating the presence of a living biomass (microbes)

at both sites, although reduced at the L-site compared with the

B-site. Results also reveal that C-substrate at both sites at least

partly limits the observed CO2 rates.

We conclude that, taking site-specific conditions such as

water content into account, the average microbial respiration

rate as observed in the 1104 cal. yr BP soil samples (L-site) is

roughly equivalent to 20% of rates observed at the present-day

B-site. Thus, microbes are not only able to survive for centuries

below a cold-based glacier, but they also retain a remarkable

capacity to decompose organic matter compared with present-

day subaerial microbial communities.

Although the temperature sensitivity of microbial respira-

tion below 08C is uncertain, in particular the lower limit for

activity, more recent studies from Arctic soils in Greenland

suggest that Q10 values observed above 08C to some extent can

be extended to below-zero conditions, depending on the

availability of free water (Elberling and Brandt, 2003). Apply-

ing the temperature sensitivity observed in this study (Q10�/

2.1) and assuming a rate of consumption of 0.04 mgC/g per h

(at 78C) the microbial respiration since the glacier advance can

be calculated if ground temperatures experienced during the

period are estimated. Presently the temperature at the glacier

bed is about �/48C, and we assume that temperatures may

have been somewhat lower during LIA cold periods, even

though variations in glacier thickness and dynamics also

represent important controls on the subglacial temperature

regime. The lack of glacial abrasion at the glacier bed, however,

suggests that the glacier has remained non-sliding and cold-

based at the study site.

A simple mass balance calculation assuming a low average

temperature of about �/88C since the site was covered by the

advancing glacier, suggests a carbon loss equal to 0.19 g C/g

soil, using 1100 years as an approximate time period. This is

more than the expected original carbon content in the soil

before the glacier advance (0.03�/0.05 g/g soil). This discre-

pancy suggests that the microbes recovered from below Long-

yearbreen may have been periodically subject to temperatures

below the limit for activity, at least for part of the period, but

that they still were able to survive until now. Unfortunately,

given the present limited state of knowledge on microbial

respiration at sub-zero temperatures, our data do not allow us

to differentiate between uncertainties related to the actual

temperature regime experienced at the subglacial study site and

uncertainties resulting from microbial activity at temperatures

below 08C.

Figure 9 CO2 release from buried soil exposed under Long-
yearbreen (L) and a nearby reference site Bjørndalen (B) as well as
after glucose addition (�/g), water addition (�/w) and after
sterilization. All rates are measured at 78C. One standard deviation
(n�/5) is shown as a vertical line
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Conclusions

. In High Arctic Svalbard, a subglacial exposure of undis-

turbed palaeosoil and vegetation has been found below

cold-based glacier Longyearbreen. Dating demonstrates

that the study site was covered by the advancing glacier

no later than c. 1104 cal. yr BP. Before that, the site was ice-

free for at least 800 years and possibly much longer.

. Cross-checking the radiocarbon dating of different moss

species sampled at the glacier�/bed interface showed that no

species-specific ages occur and therefore, different fractio-

nation processes can be excluded. The radiocarbon ages

range over a long time window of about 800 years and point

to the slow growth, clonal character and decreased decom-

position of the mosses.

. Measurements revealed that microbial life has survived in a

metabolically active state in the permafrozen, subglacial soil

since c. 1104 cal. yr BP.

. Soil microbes are not only able to survive for centuries

below a glacier in permafrozen state but they are also able

to maintain a remarkable capacity to decompose organic

matter compared with present-day microbial communities,

following only few days at above-freezing temperatures.
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