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Data assimilation with advanced algorithms based on the Kalman filter and large-
scale numerical models is computationally extremely demanding. This motivates
the parallelization of the assimilation problem. As another issue, the implemen-
tation of a data assimilation system on the basis of existing numerical models
is complicated by the fact that these models are typically not prepared to be
used with data assimilation algorithms. To facilitate the implementation of par-
allel data assimilation systems, the parallel data assimilation framework PDAF
has been developed. PDAF allows to combine an existing numerical model with

data assimilation algorithms, like statistical filters, with minimal changes to the
model code. Furthermore, PDAF supports the efficient use of parallel computers
by creating a parallel data assimilation system. Here the structure and abilities
of PDAF are discussed. In addition, the application of filter algorithms based on
the Kalman filter is discussed. Data assimilation experiments show an excellent
parallel performance of PDAF.

1. Introduction

Advanced data assimilation algorithms for filtering and smoothing applica-

tions with state-of-the-art large-scale geophysical models are of increasing

interest. The applied algorithms are typically based on the Kalman filter9.

Their aim is to estimate the state of a geophysical system (atmosphere,

ocean, . . . ) on the basis of a numerical model and measurements by com-

bining both sources of information. In addition, the algorithms provide an

estimate of the error in the computed state estimate. There is already a

large variety of data assimilation (DA) algorithms based on the Kalman
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filter. Several of them can be classified as Error Subspace Kalman Fil-

ters (ESKF)12, due to their representation of the estimation error in a

low-dimensional sub-space of the true error space. Examples of such algo-

rithms are the Ensemble Kalman Filter (EnKF)6, the SEEK filter15, and

the SEIK filter14. These algorithms show several advantages in comparison

to the variational DA algorithms 3D-Var and 4D-Var16, which are widely

used, e.g., in weather-forecasting applications. The variational algorithms

do not provide a direct error estimate which, in contrast, is inherent to the

ESKF algorithms. In addition, the 3D/4D-Var techniques require the im-

plementation of an adjoint model code5, which can be a very difficult task

for realistic numerical models of the atmosphere and/or ocean. From the

computational point of view, another advantage of the ESKF algorithms

is their high scalability on parallel computers. While the 3D/4D-Var algo-

rithms are of serial nature due to alternating integrations of the numerical

(forward) model and its adjoint, the integration of an ensemble of model

states in the ESKFs renders these algorithms to be highly scalable. Due

to the differences between ESKF algorithms and the variational 3D/4D-

Var methods, the ESKFs have the potential to provide better state esti-

mates combined with error estimates in a smaller amount of time when

they are applied in a highly parallel manner. This can significantly reduce

the required computing time since the computational cost of advanced DA

algorithms is several times higher than the cost of pure forecasts.

The implementation of DA systems on the basis of filter algorithms is

typically complicated by the fact that the numerical models have not been

developed with data assimilation applications in mind. This is partly also

true for the existing DA systems which use variational techniques, since

their code structure does often not allow a simple transformation into a

filtering system. For the utilization of the parallelism in the ensemble inte-

gration the parallelization of the models has to be changed in a way to allow

multiple concurrent model tasks. In addition, the filter algorithm itself has

to be parallelized, to exploit the high scalability of the filter algorithms.

To facilitate the implementation of DA applications, the interface sys-

tems SESAM17 and PALM13 have been developed. These systems base on

a logical separation between the filter and model parts of the DA problems.

An interface structure for the transfer of data between the filter and the

model is defined and the filter part is implemented such that it is indepen-

dent of the model code itself. SESAM uses Unix shell scripts which control

the execution of separated program executables like the numerical model

and the program which computes, e.g., the assimilation of the measurement
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in the analysis phase of the filter algorithm. Data transfers between the

programs are performed using disk files. The structure of SESAM allows

to use the model for DA without changes in the source code. The problem

of data transfers between the model and filter parts of the data assimila-

tion system is shifted to the issue of consistent handling of disk files. Since

SESAM is based on shell scripts, it does not support multiple model tasks.

PALM uses program subroutines which have to be instrumented with

meta information for the PALM system. The DA program is assembled

using the prepared subroutines and a library of driver and algebraic rou-

tines supplied by PALM. The driver supports the concurrent integration of

multiple model tasks. For the implementation of a DA application, PALM

requires to assemble the algorithm from separate subroutines. Hence, also

the model itself has to be implemented as a subroutine, since the main

program is provided by the PALM-driver. In addition, the control of the

filtering program will emanate from the driver routine of PALM.

With the introduction of the Parallel Data Assimilation framework

PDAF we follow a different approach: For the creation of a data assim-

ilation system, filter algorithms are attached to the model with minimal

changes of the model source code itself. The parts of the filter problem

which are model-dependent or refer to the measurements which are assimi-

lated are organized as separate subroutines. These have to be implemented

by the user of the framework. The data assimilation system is controlled

by the user-written routines. Thus, the driver functionality remains in the

model part of the program. Data transfers between the core part of PDAF

and the user-supplied routines are conducted solely via a defined interface.

Accordingly, the user-written routines can be implemented analogously to

the model code, i.e. by sharing Fortran common blocks or modules. This

simplifies the implementation of the user-supplied routines for users know-

ing about the particularities of their model. PDAF provides some of the

most widely used filter algorithms, like the Ensemble Kalman Filter and

the SEEK filter, which are fully implemented and optimized in the core

part of PDAF. In general, also variational DA algorithms can be imple-

mented within PDAF. However, in the current version of PDAF only filter

algorithms are provided.

In the following, ESKF algorithms are reviewed in section 2 to discuss

the structure and issues of these algorithms. Then, the PDAF system for

the application of ESKF algorithms is presented in section 3. In section 4

experiments are discussed which show the parallel performance of PDAF

and the EnKF, SEEK, and SEIK filter algorithms.
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2. Error Subspace Kalman Filters

Error Subspace Kalman Filters are a class of advanced Kalman filter algo-

rithms which are intended for data assimilation with large-scale nonlinear

numerical models. Here, the concepts of ESKF algorithms are reviewed.

A more detailed and mathematical description of three algorithms, the

Ensemble Kalman filter, and the SEEK and SEIK filters together with a

comprehensive review of the Kalman filter has been given by Nerger et al.12.

The Kalman filter (KF)9 is based on the theory of statistical estimation.

Accordingly, the data assimilation problem is formulated as an estimation

problem in terms of an estimate of the system state and a corresponding

covariance matrix which describes the error in the state estimate. Since

the error estimate is based on a covariance matrix, it is implicitly assumed

that the errors are well described by Gaussian distributions. The virtue

of the KF lies in the evolution of both the state estimate and the state

covariance matrix according to the model dynamics. For linear dynamics,

the KF can thus provide the optimal estimate if the system state is the

error are normally distributed. The optimality is defined by the estimation

errors which are of minimum variance and maximum likelihood. For nonlin-

ear dynamics the extended Kalman filter (EKF), see Jazwinski8, which is a

first-order extension of the KF to nonlinear problems, can be applied. How-

ever, the estimate will be sub-optimal, since the assumption of Gaussian

distributions is not conserved by nonlinear dynamics. Another practical

issue represents the huge computational cost of the KF and EKF algo-

rithms. Both require the explicit allocation of the state covariance matrix

in memory. Furthermore, the evolution of the covariance matrix requires a

number of model integrations which is twice as large as the dimension of

the discretized model state. For today’s models of the atmosphere or the

ocean, the state dimension is of order 106 to 108. Thus, both the storage

and the evolution of the covariance matrix are not possible with current

high-performance computers.

To reduce the requirements of memory and computing time of the filter

algorithm, several approximations and variants of the EKF have been devel-

oped over the last two decades in the atmospheric and oceanographic com-

munities. A promising approach is given by the class of ESKF algorithms12.

This class includes the popular ensemble Kalman filters (see Evensen7 for

a review), but also algorithms which use a low-rank approximation of the

covariance matrix, like the SEEK filter15. In addition, the SEIK filter14,

which combines the ensemble and low-rank concepts, belongs to this class.
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The concept of the ESKF algorithms is based on a low-rank approxima-

tion of the state covariance matrix. Mathematically, the ESKFs approx-

imate the error space of the full EKF, which is described by the state

covariance matrix, by a low-dimensional sub-space. The approximated co-

variance matrix is treated in decomposed form. This reduces the memory

requirements. The evolution of the covariance matrix now only requires a

number of model integrations which is equal to the rank of the approxi-

mated covariance matrix. Numbers as small as 7 have been reported for

the rank in oceanographic applications3. Hence, the ESKF algorithms can

strongly reduce the computation time for the DA in comparison to the full

EKF. Furthermore, the ESKF algorithms allow for a better consideration

of model nonlinearities. While the EKF applies a linearized model to evolve

the covariance matrix, the Ensemble Kalman filter and the SEIK filter sam-

ple the covariance matrix together with the state estimate by an ensemble

of model states which is integrated by the nonlinear model. The minimum

size of the ensemble equals the rank plus one. The nonlinear ensemble

integration can provide more realistic estimates of the state estimate and

covariance matrix. In this case, the error sub-space estimated by the filter

will no longer be a sub-space of the full error space estimated by the EKF,

but a better estimate of the true error space of the estimation problem.

For the implementation of algorithms based on the Kalman filter, it is

important to note that these methods are sequential filter algorithms, i.e.

the algorithms can be separated into different phases which are executed

sequentially. Figure 1 exemplifies the flow of a generic ESKF algorithm

which relies on an ensemble representation of the covariance matrix. First,

in the initialization phase, the initial state estimate and the corresponding

covariance matrix are sampled by an ensemble of model states. Then, in the

forecast phase, each ensemble state is evolved with the nonlinear numerical

model. At times when measurements are available, the analysis step is

performed: The analysis equations of the KF are applied to update the

ensemble mean or all ensemble states together with the error estimate on

the basis of the measurements and the evolved ensemble. Some algorithms,

like the SEIK filter, apply finally a re-initialization step. Here the evolved

ensemble of model states is transformed to represent the updated error

estimate given by the decomposed covariance matrix. Subsequently, the

algorithm steps back to perform the next forecast phase.

All phases of the filter algorithms can be parallelized. For the Ensemble

Kalman filter this has been discussed in detail10. The parallelization of the

SEEK and SEIK algorithms has also been studied and compared to that of
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covariance matrix is given by the ensemble statistics.

exactly represents the updated error statistics. 

Initialization:

Forecast:

Analysis:
to the ensemble mean or all ensemble states. The state

Apply the analysis equations of the Kalman filter

Sample initial state estimate and the corresponding

Evolve each state of the ensemble
with the nonlinear numerical model.

Transform the state ensemble, such that it Re−Initialization:

assimilation
completed?

true

false

covariance matrix by an ensemble of model states.

Generic ESKF algorithm

Figure 1. Generic flow diagram for error subspace Kalman filter algorithms using an
ensemble of states.

the Ensemble Kalman filter11. There are basically two strategies which rely

on the distribution of the matrix holding the ensemble states in its columns.

First, it is possible to distribute the matrix column-wise over several pro-

cesses. Thus, each process will hold a sub-ensemble of full model states.

This strategy is independent from the model itself, as in the filter algorithm

always full states are considered. The second strategy is to distribute the

matrix row-wise. In this case, each processor will hold a full-ensemble of

partial model states. This distribution can correspond to a decomposition

of the model domain. It is thus the obvious parallelization strategy when

the numerical model itself is parallelized using domain-decomposition. Ac-

cording to the distribution of the ensemble matrix, all other operations of

the filter algorithm, in particular those in the analysis and re-initialization

phases, are parallelized. The achievable parallel performance of the two

parallelization strategies will be discussed in section 4.

3. The Parallel Data Assimilation Framework PDAF

The parallelization of ESKF algorithms alleviates the computational cost

of storing and integrating an ensemble of model states and of the analysis
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and re-initialization phases. However, the parallel implementation of an

ESKF algorithm within an existing numerical model is a non-trivial task.

The complex physical models are usually not prepared for the application of

filter algorithms. Furthermore, while the core routines of filter algorithms

can be parallelized independently from the model, the concurrent compu-

tation of multiple model integrations requires changes in the parallelization

of the model itself.

To simplify the implementation of parallel DA systems, the Parallel

Data Assimilation Framework PDAF has been developed. PDAF contains

fully implemented and optimized ESKF algorithms and defines an applica-

tion program interface (API) which permits to combine the filter algorithms

with a numerical model. Only minimal changes in the model source code

are required for the implementation. The core routines of PDAF are com-

pletely independent from the model and require no modifications during the

implementation of a DA system. The API permits to switch easily between

different filter algorithms or sets of measurements. Parts of the data assim-

ilation program which are specific to the model or refer to measurements

are held in separate subroutines. These have to be implemented by the

user of the framework such that they can be called by the filter routines via

the API. PDAF is implemented in Fortran95 using the MPI standard for

parallelization. In general, and next to the distinction of mode-decomposed

and domain-decomposed filter algorithms, two parallel configurations are

possible for PDAF. First, the filter analysis and re-initialization phases can

be executed by processes which also contribute to the model integrations.

Second, processes which are separate from the processes computing the

model integrations could perform the filter analysis and re-initialization

phases. We will focus here on the first parallel configuration. However, the

interface structure of PDAF is essentially equal for both configuration. The

difference is mainly that for the first configuration, direct subroutine calls

to the filter routines are possible while in the second configuration MPI

communications will be necessary to connect the model integrations with

the filter routines.

3.1. General Considerations

The development of PDAF, is based on the following considerations:

• The numerical model is independent from the routines of the filter

algorithms. The model source code should be changed as little as

possible when combining the filters with the model.
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Measurements
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re−initialization
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Figure 2. Logical parts of the data assimilation problem as considered in PDAF.

• The filter source code is independent from the model. It solely

operates on model state vectors, not on the physical fields of the

model.

• The information on measurements are independent from the filter

and depend only on the information about the grid of the model.

The model does not need information about the observations. To

compute the filter analysis step the filter routines require informa-

tion on the measurements. This is, e.g., the vector of measurements

or the measurement operator, i.e. the operation which computes the

observations which would be measured from the model state. Since

this operation requires information on the spatial structure and the

physical meaning of the elements of the state vector, it depends on

the definition of the state vector and on the model grid. However,

the filter algorithms only require the operation of the measurement

operator on some state vector, which can be implemented as a sub-

routine.

• The framework can be logically partitioned into three parts as is

sketched in figure 2. The transfer of information between the model

and the filter as well as between the filter and the observations is

performed via the API.

• PDAF has to allow for the execution of multiple concurrent model

evolutions, each of these can be parallelized. Both, the paralleliza-

tion of the model and the number of parallel model tasks have to

be specified by the user.

• Like the model, the filter routines can be executed in parallel.

• The filter routines can either be executed by (some of) the processes

used for the model integrations or by a set of processes which is

disjoint from the set of model processes. The exact specification of

processes has to be configured by the user.

To combine a filter algorithm with a numerical model in order to obtain

a data assimilation program, we consider the ’typical’ structure of a model
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which computes the time evolution of several physical fields. The ’typical’

structure is depicted in figure 3a. In the initialization phase of the pro-

gram, the grid for the computations is generated and the physical fields are

initialized. Subsequently, the model fields are integrated for nsteps time

steps. The integration takes into account boundary conditions as well as

external forcing fields, like wind fields over the ocean. Having completed

the evolution some post-processing operations can be performed.

The following discussion of PDAF focuses on the configuration in which

the filter routines are executed by some of the model processes. For this

case, the structure of the DA program with attached filter is shown in fig-

ure 3b. To initialize the filter framework, a routine pdaf filter init is added

to the initialization part of the program. Here the arrays required for the

filter, like the ensemble matrix, are allocated. Subsequently, the state es-

timate and approximated covariance matrix are initialized and the state

ensemble is generated in a user-supplied routine called by pdaf filter init.

The major logical change when combining a filter algorithm with the model

source code is that a sequence of independent evolutions has to be com-

puted. This can be achieved by enclosing the time stepping loop by an

unconditioned outer loop which is controlled by the filter algorithm. Before

the time stepping loop of the model is entered, the subroutine pdaf get state

is called. This routine provides a model state from the state ensemble to-

gether with the number of time steps (nsteps) to be computed. To en-

able the consistent application of time dependent forcing in the model, the

pdaf get state also provides the current model time. In addition, a flag

doexit is initialized which is used as an exit-condition for the uncondi-

tioned outer loop. For the forecast, the user has to assure that the model

integrations are really independent. Any re-used fields must be newly ini-

tialized, for example. After the time stepping loop a call to the subroutine

pdaf put state is inserted into the model source code. In this routine, the

evolved model fields are stored back as a column of the ensemble state

matrix of the filter. If the ensemble forecast has not yet finished, no fur-

ther operations are performed in the routine pdaf put state. If, however, all

model states of the current forecast phase are evolved, pdaf put state exe-

cutes the analysis and re-initialization phases of the chosen filter algorithm.

With this structure of PDAF, the logic to perform the ensemble integration

is contained in the routines pdaf get state and pdaf put state. Furthermore,

the full filter algorithms are hidden within these routines. The user is

required to ensure independent model integrations. In addition, some rou-

tines have to be supplied by the user which provide operations related to
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Time stepper
include BC

include forcing

b)

Initialize Model
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initialize fields

Do i=1,nsteps

Initialize Model
generate mesh generate mesh

Stop

Post−processing
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initialize fields

true

include forcing

Time stepper
include BC

Stop

false

Filter−Update

Post−processing

Do

PDAF_Get_State

Do i=1,nsteps

PDAF_Put_State

PDAF_Filter_Init

PDAF_Init_Comm

doexit==1?

Figure 3. Flow diagrams: a) Sketch of the typical structure of a model performing time
evolution of some physical fields. b) Structure of the data assimilation configuration of
the model with attached filter. Added subroutine calls and control structures are shaded
in gray.

the model fields or the measurements, as will be discussed below.

For the parallelization of the DA system, the routine pdaf init comm is

added to the program. Details of this routine are discussed in section 3.3.
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3.2. Interface Structure

The three subroutines pdaf filter init, pdaf get state, and pdaf put state pro-

vide a defined interface to the filter algorithms. In addition, the user-

supplied routines like the observation-related subroutines are called using

the API defined by PDAF. This structure allows to keep the core part of

PDAF independent from the model, such that PDAF can be compiled in-

dependently from the model code. Thus, the API allows to use PDAF with

models implemented in Fortran as well as in C. The user-supplied routines

should be programmed similarly to the model code. This simplifies the in-

clusion of model-related variables, like information on the grid or the model

fields.

For the case that the filter routines are executed by processes which

compute also model integrations, the filter algorithms are split into parts

which are contained in the three routines pdaf filter init, pdaf get state, and

pdaf put state. However, all variables which are required to specify the filter

are contained in the interface to pdaf filter init. Here also the parallelization

information, like communicators, is handed over to PDAF. The three rou-

tines also require the specification of the names of user-supplied routines in

the API. This allows the user to choose arbitrary names for these routines,

since the internal calls are independent from the real subroutine names.

Furthermore, it allows to switch easily, e.g., between different observational

data sets. The specifications for each particular set of measurements can

be contained in separate routines.

Next to the user-supplied routines required for the analysis phase of a

filter algorithm, a pre/poststep routine has to be supplied. This routine

is called at the begin of the DA problem, before each analysis phase, and

after the re-initialization phase. This routine allows the user to conduct a

further examination of the estimates of state and covariance matrix. Also

corrections to the model state can be performed, which might be necessary

after the statistical update of states by the filter algorithm1.

The filter algorithms operate on abstract one-dimensional state vectors

which are contained in the array of ensemble states. The transfer of state

information between this ensemble matrix and the model fields is performed

by other user-supplied routines. These are defined in the calls to the rou-

tines pdaf get state and pdaf put state. Before the integration of a state

an operation distribute state is required. This initializes the model fields

from a state vector and performs other re-initializations of the model, if

required. After the integration, the state vector is update from the evolved
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Figure 4. Two-level parallelism of PDAF: The model and filter parts of the program
are parallelized. In addition, several model tasks can be executed concurrently.

model fields by an operation collect state. Dependent on the parallelization

of the model and on the choice whether a mode- or a domain-decomposed

filter algorithm is used, some MPI communication can be necessary in these

operations. A similar operation like collect state is also required in the user-

supplied routine which is called by pdaf filter init to initialize the ensemble

matrix.

3.3. Parallelization Aspects

PDAF supports a 2-level parallelism, which is depicted in figure 4. Each

model task and the filter routines themselves can be executed by multiple

processes. In addition, multiple model tasks can be executed concurrently.

The communication within the filter routines and the control of multiple

model tasks is conducted within PDAF. Thus, only a possible communica-

tion for the initialization of the model fields before a model integration has

to be added as described above. If the filter routines are executed by some

of the processes which perform the model integrations, the four routines of

PDAF which are called from the model code are always called by all pro-

cesses. The decision which processes execute, e.g., the filter analysis phase

is drawn within these routines.

For the parallelization of the DA system, a change to the model source

code concerning the configuration of MPI communicators is required. For

MPI-parallelized models there is typically a single model task which op-

erates often in the global MPI communicator MPI COMM WORLD. To
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allow for multiple concurrent model tasks, the global communicator has to

be replaced by a communicator of disjoint process sets in which each of the

model tasks operates. Thus, a communicator COMM MODEL has to be

defined. In the model source code, the reference to MPI COMM WORLD

has to be replaced by COMM MODEL. Besides the communicator for

the model tasks, a communicator COMM FILTER has to be defined for

the processes which execute the filter routines. Finally, a communicator

COMM COUPLE is required, which defines processes used for data trans-

fers between the filter and model parts of the DA system. These commu-

nicators are defined in the routine pdaf init comm which is inserted into

the original model code as depicted in figure 3b. Since the process config-

urations will depend on the parallelization of the model, PDAF can only

provide a template for pdaf init comm. This template will be utilizable in

general, but without providing the optimal parallel performance. Thus,

for optimal performance, the routine should be adapted to the particular

problem, e.g. to support particular process topologies.

The communication is determined by the three MPI communicators

COMM MODEL, COMM FILTER, and COMM COUPLE. Figure 5 ex-

emplifies a possible configuration of the communicators for a mode-

decomposed filter. In the example the program is executed by a total

of 8 processes. These are distributed into four parallel model tasks each

executed by two processes in the context of COMM MODEL. The filter rou-

tines are executed by two processes. These are the processes of rank 0 and 4

in the context of MPI COMM WORLD. In the context of COMM MODEL

the filter processes have rank 0. Each filter process is coupled to two model

tasks. Thus, there are two disjoint process sets in COMM COUPLE each

consisting of two processes. With this configuration, the filter initialization

in pdaf filter init divides the ensemble matrix into two matrices of sub-

ensembles which are stored on the two filter processes. To utilize of all four

model tasks, each filter process will again distribute its sub-ensemble at the

begin of each forecast phase to the two model tasks which are coupled to it

by COMM COUPLE. After the forecast phase, the ensemble members are

gathered again on the two filter processes. A simpler parallelization variant

would be to execute the filter routines by a single process of each model

task. This variant would also involve a smaller amount of communication.

If a domain-decomposition is used for the parallelization of the model

and the filter parts of the program, a different configuration of the processes

is used. Considered is again the situation that the filter and the model

use the same domain-decomposition. Figure 6 shows a possible process
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−→ logical process number (= rank in MPI COMM WORLD)

[0 1 2 3 4 5 6 7] MPI COMM WORLD

[0 1] [0 1] [0 1] [0 1] COMM MODEL

[0 1] [0 1] COMM COUPLE

[0 1] COMM FILTER

Figure 5: Example communicator configuration for the case that the filter

is executed by some of the model processes and the filter routines use a

mode-decomposition o the ensemble matrix.

−→ logical process number (= rank in MPI COMM WORLD)

[0 1 2 3 4 5] MPI COMM WORLD

[0 1 2] [0 1 2] COMM MODEL

[0 1]

[0 1]







COMM COUPLE

[0 1]

[0 1 2] COMM FILTER

Figure 6: Example communicator configuration for the case of domain-

decomposed states. The filter is executed by some of the model processes.

configuration. Here the program is executed by six processes in total. These

are distributed over two model tasks each consisting of three processes. The

filter routines are executed by all processes of one of the model tasks. This

allows for the direct initialization of the model fields in this task. The

second model task is connected to the filter via COMM COUPLE. With

domain-decomposition, the initialization of the sub-states is performed in

the user-supplied initialization routine called by pdaf filter init. The filter

operates on the whole ensemble of local sub-states. To use multiple model

tasks the ensemble is distributed into sub-ensembles. These are sent to

the model tasks via COMM COUPLE. The simplest process configuration

with domain-decomposition would be to use a single model task only. If the

filter and the model use the same domain-decomposition, this configuration

would avoid any communication between the filter and the model.

3.4. Filter algorithms

In the current version PDAF contains implementations of the Ensemble

Kalman Filter (EnKF)6, the SEIK filter14, and the SEEK filter15. Also

some variants of the filters are available, e.g. a fixed-basis SEEK filter. This
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formulation keeps the error directions, described by the singular vectors of

the state covariance matrix, constant while changing the weight for these

directions during the analysis phase of the filter algorithm. The fixed-basis

SEEK filter allows for a much faster assimilation process, since only a single

model integration is required. However, this variant is expected to provide

inferior state and error estimates, see e.g. Brasseur et al.2.

The clear separation between the model, measurement, and filter parts

of PDAF facilitates the development and implementation of additional filter

algorithms within PDAF. The filter implementation is independent from

a further development of the model. Each implemented filter algorithm

can be called from the model code via the uniform API. If a new filter

algorithm requires new measurement-related routines, their names can be

added to the call to pdaf put state to maintain the flexibility of user-defined

subroutine names. To avoid that the API of pdaf put state becomes too

long, separate routines for the filters have been implemented. These filter-

specific routines only require the specification of the routines used in the

particular algorithm.

4. Parallel Performance of PDAF and ESKF Algorithms

To exemplify the parallel performance of PDAF, the framework was tested

in the finite element ocean model FEOM4. To allow for a large number of

experiments, a small model configuration of a rectangular box of 31 by 31

grid points with 11 layers was used. In this model configuration synthetic

observations of the full sea surface height field are assimilated each 2.5

days for a period of 40 days. Using the horizontal velocity components, the

temperature field, and the sea surface height as state variables, the state

vector has a size of 32674. In each analysis phase, a measurement vector of

size 961 is assimilated. The experiments have been performed on a Sun Fire

6800 with 24 processors. Details on these experiments and a comparison of

the filtering performances of different filter algorithms have been given by

Nerger et al.11.

Figure 7 shows the speedup of the total computing time as the func-

tion of the number of parallel model tasks. Results for the EnKF, SEEK,

and SEIK filters are shown for an ensemble of 36 members. Each model

task is executed by a single process. Thus, no MPI communication within

the operations distribute state and collect state is required. The speedup

is equal for all three filters and slightly sub-optimal with a parallel effi-

ciency of about 85% for 18 model tasks. This sub-optimality is due to the
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Figure 7. Speedup as a function of the number of parallel model tasks for the framework
with a filter process on each model task. For 18 parallel model tasks a parallel efficiency
of 85% is obtained.

iterative solver applied in the inverse time stepping of FEOM. Since the

number of iterations can vary in each time step for different model tasks,

a small de-synchronization occurs causing the speedup to be sub-optimal.

The computing time for the filter analysis and re-initialization phases are

negligible in these experiments. For the EnKF, which is the most costly

algorithm in the experiments, the filter analysis requires less than 0.1% of

the total computing time in the serial experiment.

There are practical situations in which the computing time for the filter

analysis and re-initialization phases can become significant, e.g., if measure-

ments are assimilated very frequently. In this case, the parallel efficiency

of these parts of the algorithms will determine the speedup of the DA

program. Figure 8 shows the computing time and speedup of the EnKF,

SEEK, and SEIK algorithms for PDAF with mode-decomposition (upper

panels) and domain-decomposition (lower panels) for ensembles with 60

members. For each filter algorithm and number of processes 20 experi-

ments are performed. The figure shows mean values and error bars of one

standard deviation. The SEEK and SEIK algorithms are much faster than

the EnKF algorithm. This difference will diminish for increasing ensemble

sizes, showing the difference of the algorithmic formulation of the EnKF

compared to the SEEK and SEIK filters.

The speedup of the EnKF stagnates at a value of about 1.2 for both the

mode-decomposition and domain-decomposition variants. For increasing
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Figure 8. Execution time and speedup for the filter update phases (analysis and re-
initialization) as a function of the number of processes. The assimilations have been
performed with an ensemble size of 60. The upper panels show the results for the mode-
decomposed variant of PDAF while the lower panels are for the domain-decomposition
variant. Displayed are mean values and standard deviations over 20 experiments for
each combination of filter algorithm and number of processes. The mode-decomposed
algorithms require a large amount of communication which leads to a small speedup. For
domain-decomposition an ideal speedup is obtained with the SEEK and SEIK filters.

ensemble sizes, the speedup will grow (not shown), but will remain far from

optimal. This small speedup is particular to the EnKF algorithm and the

possibilities of its parallelization. The operations in the EnKF algorithm

are global over the ensemble and over the observation space. Due to this,

a large amount of communication is required with mode-decomposition as

well as domain-decomposition. In addition, several parts of the algorithm

show a small parallel efficiency which could only be avoided by rearranging

larger arrays over all processes which would itself require costly communi-

cations. A possibility to increase the speedup of the EnKF algorithm would
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be to introduce a localization to the analysis phase, see e.g. Keppenne and

Rienecker10. This would effectively amount to a reduction of the dimension

of the measurement vector and hence to a smaller amount of MPI commu-

nication. However, a localization would involve an approximation of the

analysis phase.

The speedup of the SEEK and SEIK filters depends strongly on the cho-

sen parallelization strategy. For mode-decomposition only a small speedup

is obtained. It will increase slightly for larger ensemble sizes. The small

speedup is mainly due to a large amount of communication required in the

mode-decomposed algorithms. For increasing ensemble size, the time for

communications decreases relative to the time of computations. The dif-

ference in the speedups of the SEEK and SEIK algorithms is caused by

algorithmic differences which lead to smaller communication requirements

in the SEEK filter compared to the SEIK filter. For domain-decomposition

the SEEK and SEIK filters show an ideal speedup. In this case only a very

small amount of data is communicated. This is due to the fact, that both

the SEEK and SEIK algorithms are global over the ensemble, i.e. over the

error space, but not global over the model space. Thus, it is optimal to

distribute data as full ensembles of sub-states as is done in the domain-

decomposition variant of the filter algorithms. For larger ensemble sizes,

the parallel efficiency will decrease slightly. This effect is caused by some

non-parallelized operations whose complexity scales with the cube of the

ensemble size. However, the influence of these operations will be negligi-

ble in practical situations with a much larger state dimension than in the

experiments performed here.

5. Summary

The parallel data assimilation framework PDAF has been introduced for

data assimilation with advanced data assimilation algorithms based on the

Kalman filter. To motivate the organization of the framework, the concept

and structure of error subspace Kalman filters has been reviewed. These

algorithms represent a wide range of filter algorithms with promising prop-

erties for their application to large-scale nonlinear numerical models. The

filters show a sequential structure consisting of alternating forecast and

analysis phases. In addition, some algorithms perform a re-initialization

phase. The filter algorithms allow for a clear separation between the core

part of a filter, the model used to integrate different model states, and the

measurements to be assimilated during the analysis phase. In addition, the
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algorithms share a natural parallelism in the forecast phase caused by the

independent integration of an ensemble of model states.

These properties motivate the development of a data assimilation frame-

work which facilitates the implementation of a data assimilation system on

the basis of numerical models which are not designed for data assimilation.

PDAF defines an application program interface used to call the framework

routines from within the model code. In addition, an interface is defined

for several user-supplied routines which, e.g., include operations dependent

on the measurements. These routines are called by the core routines of

PDAF. The framework contains a number of filter algorithms which are

fully parallelized and optimized. In the current version of PDAF these are

the popular Ensemble Kalman Filter, the SEEK filter, and the SEIK filter.

Two parallelization variants are supported which rely on different distri-

butions of the matrix of ensemble states. The variants are the column-

wise mode-decomposition and the row-wise domain-decomposition. The

domain-decomposition variant is the obvious strategy if the model itself is

parallelized using a domain-decomposition of the model grid. The frame-

work permits a further development and implementation of DA algorithms

independently from the development of the numerical models. Switching

between the filter algorithms is possible by the specification of a single

variable. In general, also alternative methods like the variational 4D-Var

(adjoint) techniques are possible within the framework, though this has not

yet been implemented.

Numerical experiments with an idealized configuration of the finite el-

ement ocean model FEOM have been performed to examine the parallel

efficiency of the full framework as well as the analysis and re-initialization

parts of the filter algorithms. An excellent speedup is obtained for the

full framework. With regard to the analysis and re-initialization phases of

the filters, strong differences between the Ensemble Kalman filter and the

SEEK and SEIK filters have been found. The EnKF shows only a small

speedup for both decomposition variants. The SEEK and SEIK filters show

a small speedup for mode-decomposition but exhibit an ideal speedup for

the variant using domain-decomposition with small ensemble sizes.

It is planned to make PDAF publicly available in the future to facilitate

the implementation of data assimilation systems. Furthermore, a simplified

sharing of filter algorithms will be possible on this unified implementation

basis. Currently the framework undergoes a beta-testing phase with a lim-

ited number of users and models.
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