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The complexity of the state-of-the-art Ocean General Circulation Models (OGCMs) has increased and the 
quality of the model systems has improved considerably over the last decades. The improvement is caused by 
a variety of factors ranging from improved representation of key physical and dynamical processes, parallel 
development of at least three classes of OGCM systems, accurate and cost-effective numerical schemes, an 
unprecedented increase in computational resources, and the availability of synoptic, multi-decadal 
atmospheric forcing fields. The implications of these improvements are that the current generation of OGCMs 
can, for the first time, complement available ocean observations and be used to guide forthcoming ocean 
observation strategies. OGCMs are also extensively used as laboratories for assessing cause-relationships for 
observed changes in the marine climate system, and to assess how the ocean system may change in response 
to, for instance, anomalous air-sea fluxes of heat, fresh water and momentum. The Nordic Seas are a 
particularly challenging region for OGCMs. The challenge is caused by characteristic length scales of only a 
few to about ten km, a variety of complex and interrelated ocean processes, and extreme air-sea fluxes. In the 
paper, an overview of the status of the prognostic modelling of the Nordic Seas marine climate system is 
given. To exemplify the status, output from two widely different, state-of-the-art OGCM systems are used. 
The paper also addresses processes that are still inadequately described in the current generation of OGCMs, 
providing guidelines for the future development of model systems particularly tailored for the Nordic Seas 
region. 
 

 

1. INTRODUCTION 
cal modelling of the climate of the Nordic 

d the adjacent waters is an important metho
and predict the influence of the region on the 
c Meridional Overturning Circulation (A
ling of fresh water, and the ocean productivity. 
ld has made considerable progress in recen
 larger number of contributing modelling group

oduction of higher spatial resolution, and 
ed representation of important processe
ngly realistic atmospheric forcing data have 
ployed although their reliability in the Nordic 

s still to be assessed. The combination of 
c forcing and the existence of high-quality in situ 
tions and continuous time series at key locatio
ceanic circulation have lead to validated 
any problems remain, caused by the complexit
opography, the small and short spatial and 
al scales of the main processes in the region, an
erent coupling between the Nordic Seas and the 
tlantic and Arctic Oceans. As in all high latitude 

 baroclinic adjustment processes mediated by 
nic Rossby waves are very slow. This has 
uences for the ocean circulation response to 
heric variability on time scales from season
nual. The response is more barotropic and more 
by topography than in mid-latitude oceans. 
erical ocean-sea ice models address a broad 
f scientific questions regarding the development 
irculation and water mass distribution in the 
 Seas. They aid the interpretation of observations 
by their nature sparse in space and time [

al., this issue]. Usually, results of hindcast 
tions are used for this purpose where a realistic 
story of atmospheric forcing data is prescribed. 
proach can, in principle, be used to assess the 
eristics of decadal variability modes compared t
enhouse gas forced trends. Available 
heric forcing fields cover the period since 19
alnay et al., 1996], meaning that the hindcast 
h is currently somewhat restricted to decadal-
udies.  
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bined with observational data, models can 
 a detailed state description of the system and its 
al development. The state description is valuable 
f but can also be utilized to initialise coupled 
ea ice-atmosphere models. This approach is of 

portance fo
limate predictions [e.g., Collins et al., 2005].

r important branch of modelling is numerical 
entation that acts as a substitute for the physical 
ents that are usually not feasible (nor desirable)

e climate system. Idealized experiments and
o calculations belong to this category.  
edicated review exists on the sea ice-ocean 
ing of the Nordic Seas. However, a description of
ale sea ice-ocean models and sea ice-ocean 
 studies in general is covered by Häkkinen
 whereas Hopkins [1991], Stevens [1991] and 
 et al. [1995] introduced and reviewed releva

ing of the Nordic Seas until the mid 1990’s. 
levant model review is by Mellor and Häkkinen

dressing the development of coupled ice-
odels with particular focus on the Arctic Ocean. 

mit and focus the scope of the paper, this review
ily based on the output from two state-of-the-art
s, both of which are driven by realistic, daily 
heric forcing fields for the period 1948-2002. 
jectives are to explicitly illustrate similarities and
ces between the two models, to address the 
of realism in the simulated fields based o
ison with observations, and by that to 

strate strengths and weaknesses of the present 
ion of OGCMs applied t

pect the paper is more than a review as it 
s the first multi-model comparison for the Nordic

wo model systems used differ substantially by
ction: The Alfred-Wegner Institute North 
c/Arctic Ocean-Sea-Ice-Model (NAOSIM)
f fixed depth as the vertical co-ordinate and is as

representative of the classical family of OGCM
s the Nansen Center model, which is a derivative

iami Isopycnic Coordinate Ocean Model 
M), uses surfaces of constant density as the 
l co-ordinate. Also the applied model domain, th
 procedure, the horizontal and vertical grid 

ion, the details of the atmosphere forcing, 
er dynamics, and several of the mod

terisations differ, implying that the present
should not be interpreted as the output from a 
 model intercomparison project.  

review starts with a brief overview of the 
e model systems and gives some exampl

e various model systems have been used to stu
rine climate system of the Nordic Seas. In Sect

parison between MICOM and NAOSIM a

ed. For this comparison, the mean state and the
lity of the volume fluxes into and out of the 
 Seas, the horizontal circulation pattern, the 
l sea surface salinity (SSS) and temperature 
ields, and the thickness of the upper mixed layer
sea ice extent are considered. Comparisons are 
de to observed values of several of these

ies. The review continues with a discussion of th
lar challenges for the ocean

as (Section 4), and is ended by discussion and 
ion sections. 

GNOSTIC OCEAN MODELLING 

erical ocean model systems can in general be 
d into three main categories; diagnostic, 
stic and data-assimilation systems. In diagnostic 
ing, the state of the ocean is directly derived from
tions [e.g. Engedahl et al., 1988]. In prognostic 

ing, which is the topic of this review, the 
on of the model system is governed by time and
ependent continuity and momentum equations, 
equation of state (see below), and prescribed 
heric forcing fields. Data assimilation systems 
lt in response to the fact that both observations
gnostic model systems are imperfect: The 

state remains close to the observed state thro
n
3a,b]. For climate research, data-assimila

s are of fundamental importance to seasonal to 
l climate prediction assessments as the initial 
 of key importance for the evolution of the 
 system [e.g., Collins et al., 2005]. 
nostic model systems are fully governed by the 
e equations [e.g., Müller and Willebrand, 1989]

sed of coupled time and space dependent 
tum and continuity equations and an equation 
he primitive equations are regarded as good 
mations provided that vertical motion is much 
 than horizontal motion, and that the fluid layer 
s small compared to the radius of the sphere. 
e prognostic model is started from an initial 

 will compute, time-step by time-step and grid-
y grid-point, a complete set of internally 
ent dynamic and thermodynamic fields. The air-
ndary conditions are prescribed fields of wind
eat and fresh water fluxes. These fields represe

ospheric forcing of the ocean-sea ice system
mmon atmospheric forcing products are monthly
imatological fields, and daily varying fields 
le from, for instance, the NCAR/NCEP 

ww.cdc.noaa.gov/cdc/reanalysis/) and EC
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3.1 Sim

 

w.ecmwf.int/research/era/) reanalyses 
s. By its nature, a prognostic model is the 
nly used model system to study the dynamics o
esent and future atmosphere and ocean climate 

nostic 3-dimensional ocean modelling extends 
 the pioneering works of Bryan [1969] and Cox
This model system, now known as the Modular

Model (MOM), was extended to the polar reg
tner [1976a,b]. The model system has 
ously developed through improvements of the 
e physical parameterisations, and the numeri

est state of MOM is documented in Griffies et a
The MOM system and derivations thereof is 

t comparison the most frequently and widely use
 system of today. NAOSIM is, as an exam
ive of the MOM system.  
Bryan-Cox (or MOM) model system is also 
 as a level or geopotential co-ordinate
tical discretisation is based on layers at fixed 
 There are two alternative formulations for the 
l discretisation in OGCMs: One approach is to le
tical co-ordinate follow topography, and this 
 is known as terrain-following (or sigma) co-
e OGCM. The Princeton Ocean Model (POM) 
ed by Blumberg and Mellor [1987] was the firs

e models. A derivative of this system h
 the North Atlantic, the Nordic Seas and the 

by, in particular, Sirpa Häkkinen [Häkkinen and 
, 1992; Häkkinen, 1995, 1999, 2002; Mauritzen 
kkinen, 1999].  
rd approach is to treat surfaces of constant 
al density, or isopycnals, as the vertical co-
e. Such a model system is known as an isopycni
nate OGCM. The motivation behind the 
of vertical discretisation is that the ocea
rt and mixing are mainly directed along surfaces 
tant density. The OPYC model developed by
ber [1993] played a pioneering role in the use of 
al models for high latitude oceans. For instan
 and Oberhuber [1995] used an Atlantic-Arc

tion with a grid focussed in the Nordic Seas 
olland et al. [1996] and Karcher and Obe

applied OPYC to study the mixed layer 
tion and the exchanges of different water masse
n the Arctic and the subarctic seas, respec
 however, MICOM [Bleck et al., 1992] is the only
 used isopycnic co-ordinate model system. The 

 model used in this review is a derivative of 
.  

geopotential, the terrain-following and the 
ic co-ordinate OGCMs have all inherent 
ges and weaknesses. As a consequence of this, 
co-ordinate OGCMs have been developed. T
ell-known hybrid OGCM is the HYbrid C

e Ocean Model (HYCOM; Bleck [2002]) in 
he open stratified ocean is treated with isopycn

tes, the shallow coastal regions are treate
following co-ordinates, and the upper mixed 
 treated with geopotential co-ordinates. In the 
 infinite numerical resources – and hence infinite 
olution – the basic features of the various OGC
ts will converge into one consistent model sys
er, 1995]. 
 thorough review of prognostic ocean modelling
ral, see Griffies et al. [2000]. Of high relevance 
 the results of several model intercomparison 

s. One such project for the North Atlantic that 
s geopotential, terrain-following and isopycnic 
nate OGCMs is documented by DYNAMO Gro
 Böning et al. [2001]; New et al. [2001];
and et al. [2001]. Another is the Arctic Ocean 
Intercomparison Project (AOMIP) with results
ed in Proshutinsky et al. [2001], Steiner et al. 
and Uotila et al. [2005]. More information about 
 is available at 
sh.cims.nyu.edu/project_aomip/overview.html. 

EL-MODEL
ISONS 

section is split into two parts: The first part 
es similarities and differences between the 

 and NAOSIM systems. Such a comparison 
s it points towards robust model responses (in 

se that the models respond similarly to the 
 forcing, indicating that the model physics is 
tely represented) and model uncertainties 
ting where the model systems need to improve). 
ond part contains a comparison betwe
ed and observed fields as this is the only way to 
he degree of realism of the models. Both mode
and observation-model analyses become quick
ve [e.g., Karcher et al., 2003; Steiner et a
átún et al., this issue], so this review has b
 to display and briefly discuss some of the ke

ale features of the Nordic Seas.  
ields to be addressed are: The annual mean 
ion at 150 m depth, the annual mean barotropi
ically integrated) circulation, the long-term m
poral variability of the volume transport, the 
l cycle of SST and SSS, and the mean, 
m, and maximum thickness of the mixed layer 
 ice concentration, both for March and 
ber. Short descriptions of the two model systems 
n in the appendix. 

ulated circulation in the Nordic Seas region 

Page 4 of 27  



Drange, Gerdes, Gao, Karcher, Kauker, and Bentsen (2005): Ocean General Circulation Modelling of the Nordic Seas,  
in The Nordic Seas: An Integrated Perspective (Drange, Dokken, Furevik, Gerdes and Berger, Eds.),  

AGU Monograph 158, American Geophysical Union, Washington DC, pp. 199-220.  
Official version available from AGU. 

 
The 

climate  of the Nordic Seas are the volume, heat 
and salt fluxes into and out of the region. The pole-ward 

d nutrients into the region and 
further in  the Arctic Ocean [e.g., Hansen and 
Østerhus,
Skjelva
flowing
Greenl
key im
dynam
[e.g., D t 
al., 200

Figu
the 199
[Jakob
circula 2. 
The mo
drifters
Seas ta
Faroes, inflow 
compo
Strait (
Water cro  
the No
Norwa
Norwe
Atlanti
into the
branch
circula e 
drifter 

How am Strait 
region dif s between the models, with NAOSIM 

current system with northward flowing water on the 
Spitzberg
Greenl
northw
strait in
the coa One 
branch
Denma
eastwa  
(EIC). 
Irming
directio
Seas in
topogra  
structu
reason 
linked t ooth topography in the models.The 
internal c odels 
but wit

details.  
of the G
NAOSI
central 
located that 
it is too
MICOM
NAOSI  
current 

It is a that 
NAOSI
than M
doubled s. 40 
km), bu
charact on 
and the n 
3.5). 

Figu
integra
flow at 
indicating  
the top
[this iss
surface 
topogra wn 
for a lo
by Leg  
Oberhu
 
3.2 Sim
Nordic

 
More

the vol
northw
Denma , 
betwee
Barents
additio  the 
English

Ther
the vol
Nordic  
by a fac
1996; H
Østerhu
observa
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present
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We a
current
heat and salt fluxes is far from solved. Lateral 

most fundamental bulk properties of the marine 
 system

flow of Atlantic Water transports significant amounts of 
heat, salt, carbon an

to
 2000; Blindheim and Østerhus, this issue; 

n et al., this issue], whereas the southward 
 cold and fresh Polar waters off the coast of 

and, and the dense GSR overflow waters, are of 
portance for the hydrographic, and likely the 
ic, state of the North Atlantic climate system 
ickson et al., 2002; Curry et al., 2003; Hansen e
4]. 

re 1 shows the observed surface circulation from 
0s based on analyses of drifter trajectories 

sen et al., 2003] and the mean simulated 
tion at 150 m depth for the period 1948-200
del systems show, in accordance with the 
, that the inflow of Atlantic Water to the Nordic 
kes place just east of Iceland, southeast of the 
 and along the Scotish slope, with a minor 
nent located on the eastern side of the Denmark 
the Irminger Current). Furthermore, the Atlantic 

ssing the Iceland-Scotland Ridge flows into
rth Sea and continues close to the coast of 
y or in an outer branch following the outer 
gian continental slope. At about 70ºN, the 
c Water splits into two branches, one meandering 
 Barents Sea close to Northern Norway, another 

 heading towards the Fram Strait. The simulated 
tion fields show a general agreement with th
field for all of these features. 
ever, the circulation pattern in the Fr

fer
closest to the drifter data. NAOSIM produces a two-

en side and southward flowing water on the 
and side of the strait, whereas almost all the 
ard flowing water apparently recirculates in the 
 MICOM. Further south, the Polar Water follows 
st of Greenland towards the Denmark Strait. 
 of the Polar Water continues through the 
rk Strait, whereas the other branch flows 
rd north of Iceland as the East Icelandic Current
The EIC is also fed by the northward flowing 
er Current.Both models simulate the two-
nal flow in the Denmark Strait. In the Nordic 
terior, both models fail to simulate the 
phically steered, north-westward directed, flow

re seen in the central basin in the drifter data. The 
for this failure is not known, but it could be 
o a too sm

irculation is rather similar between the m
h NAOSIM showing sharper gradients and more 

 A profound difference, however, is the location
reenland Gyre which is more to the west in 
M. It will be shown in Section 3.5 that the 
Greenland Sea gyre is too intensive and is 
 slightly too far to the west in NAOSIM, and 
 diffusive and is located too far to the east in 
. The latter difference also implies that 

M produces a more prominent eastward-directed
north of Jan Mayen.  
pparent from this and the following figure 
M produces stronger gradients and more details 
ICOM. This is likely caused by the essentially 
 horizontal resolution in NAOSIM (28 km v
t can also be attributed to the quite different 
eristics of the winter-time mixing in the regi
somewhat different extent of sea ice (see Sectio

re 2 shows the barotropic (or vertically 
ted) flow field. Many of the features from the 
150 m are present in the barotopic field, 

 the weak stratification and the importance of
ography (see Fig. 1 in Blindheim and Østerhus 
ue]) in guiding the circulation, including the 
flow, in the region. The controlling role of 
phy on the surface circulation has been kno
ng time, but was first demonstrated in OGCMs 
utke [1991], and later confirmed by Aukrust and
ber [1995].  

ulated and observed volume fluxes in the 
 Seas region 

 quantitative results are obtained by examining 
ume transports into and out of the region, i.e., the 
ard, southward and net flow through the 
rk Strait, across the Iceland-Faroe Ridge
n the Faroe Islands and Scotland, through the 
 Opening and through the Fram Strait. In 

n, there is a small component of flow through
 Channel. 
e are numerous observation-based estimates of 
ume, heat and fresh water transports through the 
 Seas. Unfortunately, some of the estimates vary
tor two to three [e.g., Simonsen and Haugan 
ansen and Østerhus 2000; Blindhein and 
s, this issue]. Accurate current meter 
tions are only available from around 1994 
us et al., 2005]. We therefore split the discussi
o parts; the full integration period 1948 to 
, essentially without reliable observational 
nes, and the period from 1994 with direct curre
bservations.  
re aware, however, that even with accurate 
 meter observations, the derivation of volume, 
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ften hamper a reliable estimate of these flu
s recently been discussed by Schauer et al
for flux estimates from observations in the Fram 
hey estimate the error as being of the ord

volume fluxes through the strait. The fact that the 
are variable in time and that usually there is 
c cover of all straits with observations also 
tes the closure of missing information from one 
ith observations from the others. 

 Mean volume transports 1948-2002 

simulated net volume transports into and out of 
dic Seas for the period 1948-2002 are provid
3. It follows that the total amount of water 
 northward across GSR is 9.3 Sv in NAOSIM 
 Sv in MICOM, whereas the corresponding 
into the Arctic Ocean are 5.9 Sv and 7.9 Sv, 
ively. For the net southward flow, the numbers 
 Sv (NAOSIM) and 8.6 Sv (MICOM) across 
nd 5.8 Sv (NAOSIM) and 7.3 Sv (

th
Channel is small and is about 0.1 Sv in the two mod

The above volume
 fl
e differences between the two model system

re several reasons for these differences. First of 
 version of MICOM used in this review is global 
nt, meaning that any residual flow of water 
 the Nordic Seas region, averaged for a month or

 is balanced by volume transports through the 
 Strait and the Canadian Archipelago. In 

, there is a net northward flow of 0.6 Sv throu
rdic Seas (F

by a pole-ward flow of 1.0 Sv through th
 Strait and a net southward flow of 1.6 Sv throu
adian Archipelago. There is near zero 
rough the Nordic Seas in NAOSIM, with a 
onding near zero net flow through the Canadian 
elago due to the closed Bering Strait. Therefore, 
 transport differences of about 0.5 Sv can be 
d between the two model systems, at least for
f the transport routes. 
ndly, even OGCMs that are forced – and by that 
 a degree constrained – by prescribed 
heric momentum, heat and fresh water fluxes, as 
ase for MICOM and NAOSIM, have 
of internal varia

 from the essentially unknown ocean init
ifferences in the initial ocean state, partic
raphic differences in the weakly stratified region
ordic Seas and in the North Atlantic sub-po

d the flux of fresh water through the Fram St

e potential to moderate the ocean circulation in 
ion on time scales from years to decades [e.g., 
 al., 2003; Bentsen et al., 2004].  
ated model simulations with identical model 
s but with different ocean initial states indicate
 major volume fluxes in the Nordic Seas ma
ith a few tenths of Sv to about 0.5 Sv. This is 

ted in Fig. 4, showing the net volume transpo
y MICOM for an integration continuing from t
tate at the end of the MICOM realisatio
. 1-3. Significant differences may be noticed, e.
ram Strait where 

e 
e southward flow from 5.3 to 4.4 Sv. The 

llustrating the effect different ocean initial 
ay have on the simulated ocean climate, and will
sed further. 
m up: The combined effect of regional versus 

model domain, and internal variability of any 
 system based on the essentially un-known ocean 
tate, may produce volume transport differences 
t 0.5 Sv (this figure is based on the presented 
ison between the NAOSIM, MICOM and 

* realisations, and may be larger if more model 
s or realisations are included in the analyses). 
uently, volume transport differences exceeding, 
v, cannot be simpl

 domain (i.e., global versus regional domains) 
n-known ocean initial state. In this case model 
ces can only be attributed to the intrinsic 

ies of the models like horizontal and vertical 
resolution, formulation and parameterisation o
d and un-resolved ocean processes, and the 
cal implementation of the governing equations.  

parison between observed and simulated mean 
 transports 

simulated volume transports in Fig. 3 can be 
ed with available observation-based transport 
es. As already mentioned, reliable velocity 
ements are only available from 1994 onwards. A 
ation of available literature values, together wit
ed values for the same time period as for the 
tions, is presented in Table 2. For the period 
r 1994 to August 2000, the observation-based 
e of the northward flow of Atlantic Water in the
rk Strait is 0.75 Sv in Østerhus et al. [2005]. The 
ive MICOM value is 0.8 Sv, whereas that of 
M is highe

 both MICOM and NAOSIM are close to the 
d transports, but with the MICOM transpo

the Iceland-Faroe Ridge and the NAOSIM 
rt across the Faroe-Scotland opening 0.8 Sv too
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The given 
in the r  
produc
Denma
betwee
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In ge
anomal
system
larger a

The the 
simulat alistic can only be 
assessed based on comparison with continuous and high-

e may note, however, that the estimates for the 
c Water inflow across the Iceland-Faroe ridge 
om 3.3 Sv [Hansen and Østerhus, 2000] to 3.8 
erhus et al., 2005] depending on the method and 
e interval.   
iking difference between the two models is 
t in the southward transports through Denmar
ith 7.5 Sv for NAOSIM and 4.0 Sv for MICOM. 
partly balanced by the southward flow across th
-Scotland ridges of 2.2 Sv for NAOSIM in 
 to 5.0 Sv for MICOM. Observational

 for the mostly deep southward flows across 
and-Scotland ridges are 2.2-2.9 Sv with large 
inties [Hansen and Østerhus, 2000]. For 
rk Strait an observationally based estimate of 3 
eep overflow to the south is rather well accepted
eim and Østerhus, this issue], while the shallo
 with the EGC is very uncertain. Hansen and 

us [2000] calculated the combined outflow at the 
 through Denmark Strait and the Canadian 
elago to be 3 Sv, based on the residual from 
es for all other flows in and out of the Nordic 

he Barents Sea Opening, most recent estimates 
ed on current meter observations from the m
section between Bear Island and Norway from 
 2001. Ingvaldsen et al. [2004] calculated from
bservations 1.5 Sv for the inflowing Atlantic 

ing up with 0.5-1 Sv for the Norwegian 
l Current to a total of 2-2.5 Sv. This compar
 inflow of 2.7 Sv for NAOSIM and 4.2 Sv for 

 in the 1995-2000 period. For the Fram Strait
timates are uncertain because of the very strong
lation in the strait. 
n evaluating the differences of model and 
tionally based estimates we have to consider
of the water masses which pass the Nordic Sea 

gs are subject to intense recirculation at the 
gs which complicates the interpretation of th
rts at fixed sections: this hold especially for the 
trait, Denmark Strait and the Faroer-Scotland 
so the fact that different observational estimates 
ed on different definitions for the passing water 
 may lead to confusion. Here we use vertically 
ted total water column transports for the models 
t perfoming a detailed comparison along the 
 water mass definitions. A discussion
cations can be found in e.g. Nilsen et al. [2003

between the observed and simulated volume transports 
are obtained, particul

ports (Table 2) are consistent with the 
tion-based values. 

del-model comparison of the interannua
lity of the volume transports 

major variability modes of the Nordic Seas 
 climate system can be explored by examining the 
lity of the amount and properties of water flowing 
d out of the region. Irrespective of the actual 
r mismatch between the simulated mean 

rts through the different sections shown in Fig. 3, 
uld expect that the simulated flow anomal
show similarities over the integration period. Th
ondence should be particularly clear for 
ies that are directly and to a large degree driven 
pplied atmospheric forcing fields, or for 
es that are properly resolved by the models. O
ely, it is likely that simulated quantities that 
high degree of co-variance over time are force
ect way, by the applied atmospheric fields, and 
 governing ocean dynamics is appropriate. 
re 5 shows the simulated northward and 
ard volume transport anomalies for both model 

or the five open ocean sections in Fig. 3. In the 
aption, the linear correlation of the transport 
ies between MICOM and NAOSIM are given. I
 from Fig. 5 that the variability in the northward
ross the Denmark Strait is weak (standard 
n of 0.16 Sv and 0.13 Sv for MICOM and 
M, respectively), and that there are no 

tion between the two simulated time series. The 
n is opposite for the northward flow anomalies 
n Iceland and Scotland and across the Barents 
g. Here the mean standard deviations of th
 are 0.37 Sv (Iceland-Faroe), 0.45 Sv (Iceland-
d) and 0.33 Sv (Barents opening), and the given
tions are significant. It is interesting, and a 
 result, that two widely different model system

e so consistent flow anomalies through these 
ctions for such a long time period. It sho

hat the correlation between the two model 
s breaks down for the Fram Strait, which may not 
urprising given the differe

ion (cfr. Figs. 1-2). 
southward volume transport anomalies are 
ight panels of Fig. 5. The two model systems
e quite consistent transport anomalies in the 
rk Strait, across the Iceland-Faroe Ridge, 
n the Faroes and Scotland and through the 
 Opening, but not for the Fram Strait. 
neral, the magnitude of the volume transport 
ies is comparable between the two model 
s, although MICOM tends to produce slightly 
nomalies than NAOSIM. 

extent to which the temporal evolution of 
ed anomalies in Fig. 5 is re
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stratific
thickne he 
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is there n 
of the t
of deep  is quite similar with rather 
deep mixing south of GSR, along the path of the 

rrent meter observations (cfr. the discussion in 
2). Here, as an example, observed and simula
rts are compared for the northward flow in the 
hetland Channel for the period October 1998

ber 2002 (Fig. 6). Consistent with Table 2, b
 and NAOSIM are, on average, close to the 

d northward volume flux. The monthly mean 
lity is, however, larger in the observation-based 
ries. By subtracting the mean values of the time 
nd by normalising the resulting anomalies, a 
atch is obtained. This finding illustrates the 

al for combining observations and prognostic 
systems to better understand the variability 

arine climate system in the region, and that 
le model systems have the potential to be used
 in time and space, available observations (see 
tún et al. [this issue])

ulated thermodynamic surface properties  

e following, a model-model comparison 
es the thermodynamic properties of the Nordic 
e start with SSS or equivalently the upper oce

ater content.  A

atmospheric forcing than SST. Therefo
considered as a tracer for the transport and 

 t
er panels in Fig. 7 displays the March distributio

ICOM and NAOSIM. Due to the differences in 
on, NAOSIM describes more details and accepts 
gradients than MICOM. This is especially pronounce
GC that is visible as a fresh and cold boundary layer a
 to the southern tip of Greenland in NAOSIM wh
 produces a front between the polar waters of the EGC

subpolar Atlantic water aligned with the Greenland-
Ridge. The northward flowing Atlantic Water is 
off the coast of Norway. NAOSIM is fresher than 
 in the central and eastern part of the Nordic Seas

March SST is quite similar between the two 
 in the east (lower panels in Fig. 7), but with 
urface temperatures in MICOM in the cent
he Nordic Seas, and with a very cold region
ral Greenland Sea in NAOSIM. 
rved and simulated vertical distributions o
ature in July 1999 along 75 ºN, and thus crossin
ral Greenland Sea basin, are provided in Fig. 8.

servations clearly show the warm poleward 
tlantic Water towards east, extending below 

eastward of 9ºE. At the surface, waters exceeding 
e found in the upper 50 m eastward of about 3ºE.
entral Greenland Basin near the prime me
atures below 0 ºC is found below about 50 m. In
t, the return Atlantic Water flows along the 

nd continental slope, whereas cold Polar Water
tes the main water mass on the Greenland shelf.

 the poleward flowing Atlantic Water and th
tlantic Water are clearly seen in the simulations

leward flowing Atlantic Water is, however, too
 in both models, and then particularly in 

. The mixed layer temperature in MICOM is 
 the observed temperature, whereas NAOSIM 
o warm layer at the surface. Towards west, 
M produces too strong and prominent retur

c Water. Both models capture the cold Polar 
n the Greenland shelf. It is encouraging, despite 
tioned differences, that both model systems are 

produce realistic sub-surface temperature 
tions after a total integration time of about 100 
pin-up plus the reanalysis integration, see 
ix). 
re 9 displays the simulated mean and extreme se

ntrations for the period 1948-2002. The 
onding observed sea ice edge position is given 
period 1978-2002. The  Is Odden – the se
e extending into the Greenland Sea in the up
el of Fig. 9 – is very pronounced in NAOSIM
nted in the mean sea ice concentration over th

tion period. Sea ice formation and tran
are important processes for deep convecti

M [Gerdes et al., this volume]. The NAOSIM 
um sea ice extent seems to even exceed the 
d sea ice extent in the extremely cold ye
lindheim an

ind, however, that the ice extent extrema of 
re derived from time series at individual grid 
hroughout the integration period 1948-2002,
 map does not correspond to a state the mod
ually occupied during the integration. For 
e, high sea ice cover in the Barents Sea and in t
nd Sea virtually never occur simultaneously. A 
 comparison of observed sea ice variability wi
ulated by NAOSIM is given in Kauker et a

  
combination of winter SSS and SST governs the 
ss of the upper well-mixed layer in the ocean

 and NAOSIM treat the mixed layer differently, 
 explicit mixed-layer model in MICOM base
par [1988] bulk representation, whereas 
M does not employ an explicit mixed layer 
terisation. A deep winter mixed layer is a
ective mixing as a result of unstable 
ation. For the diagnostic, the mixed layer 
ss in NAOSIM is based on the depth where t
 is 0.02 kg m-3 higher than the surface density. I
fore difficult to perform a one-to-one compariso
wo mixed layer fields. Nevertheless, the structure 
 mixing in March
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Atlantic Water in the eastern parts of the Nordic Sea
n t
n in the Nordic Seas and the Labrador Sea as 

ed in NAOSIM is the topic of Gerdes et al. [this
]. 
e are substantial differences between the two 
systems when interannual variability of 
tive winter mixing is considered, see Fig
minimum mixing conditions, NAOSIM pro
allow convection that is restricted to the NwA
ICOM shows shallow convection over large 

f the Nordic Sea
n in the Irminger Basin and south of Icelan

own).  NAOSIM convective mixing depth  
y exceeds the mixing depth in MICOM at 
um mixing in the Greenland Sea (lower panels i
). In fact, NAOSIM mixes to the sea floor in the 
and Sea at maximum mixing, whereas MICOM 
es less deep but a much more extended and 
 mixing along the eastern and northern rims of

rdic Seas. A likely reason for this difference 
by the very weak stratification in NAOSIM 
ed to MICOM (Fig. 8). Dedicated model 
ents incorporating passive tracers like 

lorofluorocarbons [Schlosser et al., 1991; Bönisch
al., 1997] or sulphur hexafluoride [Watson et al. 199
Olsson et al., 2005; Eldevik et al., this isse] are probabl
required to properly address the mean state and the 
variability of the simulated mixed layer. 

TICULAR CHALLENGES FOR THE 
LLING OF THE NORDIC SEAS 

del specific challenges 

e previous section, particular focus was put on 
hanges of the Nordic Seas with the adjacent 
asins. We regard proper representation of these

ges as the foremost challenge for modelling th
 Seas as a key region of the global ocean 
tion. This is particularly the case since proce
he Nordic Seas influence the exchange rates a

perties of the waters exported to the Atla
oceans.  

h the exchanges and the interior processes, 
resolution of the ocean eddies, or the baroclinic 
 Radius, of O(10 km) is important. As a rule 
 an OGCM will properly describe ocean 
ics on a horizontal scale of about 5 times the g
. Proper model representation of the deforma

would therefore require an ocean grid spacing of 
. Such a fine grid mesh for the Nordic Seas and 
f the neighbouring oceans is currently on the lim
t is computationally feasible, and certainly 
 the computational resources available for mos

odelling groups. Models with insufficient 
on – like virtually all of the current ocean 
ents of coupled climate models – typically 
esent the properties of the deep overflows that 
e dense constituents of NADW. This can resu
ubpolar Nor

rn hemisphere dense water in the models. I
n demonstrated [Döscher and Redler, 1997] th
 result in a false sensitivity of the models to 
ions in atmospheric forcing and anomalous fresh 
flux to the North Atlantic. The deep convection
abrador Sea is much more susceptible to 
ies than the more robust formation of 
diate waters north of GSR occurring over long 
es and through several processes. Furthermore,
entially important process of energy transfer 
e-scale potential energy reservoir to the kine
of the large circulation is not captured by the
 parameterizations. 
nced grid resolution can be obtained by nesting 
nal, high-resolution models into larger, coarser 
on models. One variant of this approach are 
l models that receive boundary conditions from 
logy [e.g., Gerdes et al., this issue] or larger 
odels [e.g., Hátún et al., this issue] without 
 back into these 'parent' models. Regional 
s have the advantage that the spatial grid mesh 
fine, possibly resolving the first baroclinic radiu
rmation. The disadvantage with regional model 
s is that water mass fluxes and their propert
mperature, salinity and tracer concentrations) 
 general, to be prescribed at the lateral 

s. Technical problems can lead to boundary
s propagating into the model domain. For more 
tion about open boundary conditions and nesting 

el systems with different resolution, see 
sen and Engedahl [1987]; Ginis et al. [1998]; 
[1998]; Palma and Matano [2000]; Perkins e
 Heggelund and Berntsen [2002]. 
verflow of dense water masses across the GS
iated with excessive mixing in many ocean 
 [Gerdes, 1993; Roberts and Wood, 1997]. On 
er hand, it has been a problem for isopycnal 
 to include sufficient entrainment of ambient 
ring the overflow [Roberts et al., 1996]. New 
terisations [Hallberg, 2000; Shi et al., 2001] hav
veloped and implemented to reduce this 
. However, according to Gerdes [1993], 

al vorticity constraints make mixing or frictional 
ation of the flow inevitable in models that don't 
 the baroclinic Rossby Radius and when the 
wing water masses experience large changes in
ickness.  
m boundary layer parameterisations in OGC

iewed by K
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 devised, among others, by Beckmann and 
r [1997] and Killworth and Edwards [1999]. 
chemes provide a pathway for dense waters 

he topographic slopes and avoid excessive 
ment. The schemes have been employed in many 
cale ocean models where they, to some degree, 
e overflows and sloping convection from hi
 shelf seas. A new approach is due to Köste
5] who introduce a parameterization based on 

lic control theory to describe the strength of t
rk Strait Overflow in a large-scale Atlantic 
 
overflows and other exchanges across the 
ries of the Nordic Seas are strongly link
ity. A weaker overflow will thus be associated

weaker inflow of Atlantic waters. Weaker inflow
ntic waters will lead to reduced heat release from
an to the atmosphere in the Nordic Seas, in turn 
g the properties of the return Atlantic Water tha
portant contribution to the overflows. The hea

 can also affect Arctic sea ice volume [Goose et 
4], although this is an effect not in
ea ice models forced by prescribed atmosphe

More directly, the Atlantic inflow affects the h
to the Atlantic layer of the Arctic [Karcher et al., 
erdes et al., 2003] and the position of the sea ice 

 the Barents and Greenland seas [Kauker et al., 

Arctic contributaries and the return Atlantic Wa
well as the branching of the EGC into the J

nd the East Icel
influenced by details of the topo

C
cean depth underlying each horizontal grid ce

plies that bathymetric features like ridges and 
s are smoothed. The degree of smoothing i

re governed by the horizontal length-scale
etric features compared to the actual grid 
. In addition, some OGCMs require a smoot
etry to avoid numerical instabilities. This has 
larly been the case for terrain-following OGCMs
othed (or artificially reduced) height of ridges is 
 not adjusted in OGCMs, whereas deep chann

st in climate modelling, commonly adjust
l widening or deepening of the channels 
ch et al., 2003; Beismann and Barnier, 2004]. 
 proper resolution of these features is one of the 
quirements for Nordic Seas circulation m
er, horizontal and vertical grid spacing hav
, less obvious effects. The energy transfer 
n baroclinic and barotropic modes seems to be 
nsitive to resolution as the much larger energy o
pic flows in a higher resolution version of 
IM indicates [K. Fieg, pers. comm.]. Clearly, the 

ntation of the Joint Effect of Baroclinicity and 
JEBAR) [Sarkisyan and Ivanov, 1971; Mertz a

, 1992] in a region of strong water mass 
ries and characterized by deep and narrow 
ls, steep slopes and complex ridges is a particul
ge for ocean modelling.  
central Greenland Sea is one of few locat
pen ocean convective mixing takes place 
all and Schott, 1999]. The process is believed
ce the ventilation of dense, sub-surface water 
 on climate time scales. Except for the large-scal
ard vertical advection proposed by Budeus et al.
 most vertical mixing processes take place on 
hich are not and can not in the foreseeable 
e explicitly resolved by OGCMs. Several 
trisation schemes have therefore been proposed
de vertical sub-grid scale processes 
iewicz and Romea, 1997; Canuto et al., 2004]. 
ore work is, however, needed to properly 

rate a physically consistent description of small-
ertical mixing processes in climate-type OGCM
 to open ocean convection is also the treatment
aters generated during freezing of sea ice. Fin
odelling has been carried out to describe the 

 of brine waters released from sea ice [Kämpf 
ckhaus, 1999], but the incorporation of this effect
Ms is typically ignored or incorporated in a 

simplified way. 
ly, the Atlantic inflow into the Arctic is linked to
flow of much fresher waters near the surface, 
 the EGC. The fresh water carried by the EGC 
ect the interior of the Nordic Seas and espe
vection in the central Greenland Sea. Most of the 
ater, however, is carried through Denmark Str
 subpolar Atlantic. Proper representatio
duction of the northward flowing saline Atlantic 
nder the fresh polar water in the Fram Strait

 the dynamics of the fresh water along the coast 
nland (and, similarly, along the coast of 
), and the frontal mixing between the fresh w

 more saline open ocean surface waters are 
ges for OGCMs. 

ervation-based evaluation of OGCMs 

only way to proceed from plain comparison of 
results and by that identifying model weaknes

iencies are to actively include observations in
lyses. Figure 6, showing a one-to-one comparison
n observed and simulated northward transport 
 the Faroe-Scotland Channel, provides an 
e of direct observation-based evaluation o
s. Unfortunately, available observations of the 
 climate system are, in general, scattered in
ce. It is therefore difficult, and in many cases 
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lorofluorocarbons (CFC-11 and CFC-12) and 
rbon (14C) has turned out to be useful and cost-
e in assessing the integrated (or net) effect of 

tion of the basin-scale and World Ocean surface 
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ave been useful t

 mixing and age properties of, for instance, the 
c Water in the Nordic Seas region [Nies et al
archer et al., 2004; Gao et al., 2004, 2005]. O

 time and smaller spatial scales, dedicated tra
ents have been found to be of great use for 

ng small-scale mixing and transport of explicitly 
water masses. A unique example here is the 
ate release of sulphur hexafluoride in the c
and Sea in 1996 [Watson et al. 1999], and the 
uent observation of the spreading of the tracer 
and out of the Nordic Seas [Olsson et al., 2005
 et al., this issue]. 

CLUSION 

erical modelling of the ocean-sea ice system of 
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ENDIX 

 Miami Isopycnic Co-ordinate Ocean Mode
M) 

NERSC model used in this study is based on a 
 of version 2.7 and 2.8 of MICOM [Bleck et al., 
ully coupled to a sea-ice module consisting of
ler [1979] rheology in the implementation of
 [1996], and the thermodynamics of Drange

The model system is identical to that used in 
 t
tlantic Water in the Nordic Seas, and

ation of the model used by Furevik et al. [2
et al. [2003] and Bentsen et al. [2004] addressing
erved and simulated salinity in the Nordic S
iability of the volume transports across GSR
r-annual to decadal-scale variability of the 
c MOC, respectively. The main modifications to 
evik et al. [2002], Nilsen et al. [2003] and 
 et al. [2004] studies are reduced strength o
terised isopycnal and diapycnal mixing rates, 
ased on the CFC model evaluation study by Gao 
003]. The applied model grid configuration is 

al to that in Furevik et al. [2002], Nilsen et al. 
and Gao et al. [2005], but has doubled horizont
ion compared to that in Bentsen et al. [2004]. 
ifically, the horizontal grid resolution is about 40 
he Northern North Atlantic and the Nordic S
 and the diffusive velocities (diffusiviti
size of the grid cell) for layer interface diffusion
tum dissipation, and tracer (temperature and
on are 0.015 m s-1, 0.01 m s-1 and 0.0025 m s

ively. The diapycnal mixing coefficient Kd (m2 s
rameterized as Kd = 5·10-8 / N, where N (s-1) s the

äisälä frequency. Consequently, the value of 
ispersion and diapycnal mixing are factor
ctively, below those used in Furevik et al. 
Nilsen et al. [2003] and Bentsen et al. [2004]. 

applied forcing is identical to all of the above-
ned studies

 1948 to present provided by the 
/NCEP re-analyses project [Kalnay et al., 1996]. 
ults presented here are based on integration cycle 
r two and three with NCAR/NCEP forcing, w

o is initialised with the full ocean state at the 
cycle one (the spin-up cycle), and cycle three i
d with the full ocean state at the end of cycle 
 km version of the model system is available, but 
from this model version is not used in this 

 See Hátún et al. [this issue] for an example of 
m version of MICOM. 

 North Atlantic/Arctic Ocean-Sea-Ice-Model 
IM) 

 maintains a hierarchy of coupled sea ice-ocean 
 called NAOSIM (North Atlantic/Arctic Ocean-
 Model). Models from the NAOSIM hierarchy 
cribed in some detail in Karcher et al. [2003] and
e and Gerdes [2003]. Results for this paper we
om an experiment with a quarter degree version 
odel that is described in Gerdes et al. [this 

The model was forced with daily mean 2-meter 
perature, dew point temperature, cloudiness, 

the first 50 years of sp

ical daily variability [OMIP-climatology, 
2001] is used. After the spin-up, the forcing 
s of daily mean atmospheric data from the NC
ysis for the period 1948-2001 [Kalnay et al., 
Fresh water influx from rivers is not explicitly
d. To account for river run-off and diffuse run
 the land, as well as to include the effect of flow

 Arctic through the Bering Strait, a restoring flux 
 adjustment time scale of 180 days is ad
ace freshwater flux [Gerdes et al., this issue]. 
toring flux is calculated in reference to annual 
limatological surface salinity data, constructed 
y to the initial data. The effect of the restoring 
 the surface salinity for this and other Arctic 
models is documented in Steele et al. [2001]. 
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Table 1. Simulated northward, southward, and net northward (northward-southward) volume (Sv), heat flow (TW) and 
fresh water flux (0.01 Sv) through the Denmark Strait (DS), across the Iceland-Faroe Ridge (IFR), between the Faroes 
and Shetland (FS), across the Barents Opening (BO) and through the Fram Strait (FS) in MICOM and NAOSIM. The 
heat flows lated online (i.e
given relat o S=34.8. Nega
the h 4.8) are dire
err .2 Sv. σV  is sta
 

FS 
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tive heat and fresh water fluxes means that 

cted opposite to the flow. Due to round-off eat and fresh water transports (relative to T=0 ºC and S=3
ors, the volume transport budgets balance within 0.1 to 0 ndard deviation. 

Section DS IF BO FS 
 

Northward volume transports (Sv) 
 FV σV FV σV FV σV FV σV FV σV 
NAOSIM 2.0 .13 3.5 .33 
MICOM 1.1 .16 4.5

3.8 .45 2.
.42 3.6 .46 4.1

e transports (
σ σV FV σV F

7 .34 3.2 .49 
.33 3.8 .63 

Sv) 
V σV FV σV 

 
Southward volum

 F FV V V 
NAOSIM 7.4 .49 1.2
MICOM 3.7 .48 2.4

 

.21 0.9 .07 0.

.32 2.5 .26 2.

d) volume tra
FV σV F

7 .13 5.1 .60 
0 .37 5.3 .62 

Net (northward – southwar
 FV σV FV σV 

nsports (Sv) 
V σV FV σV 

NAOSIM -5.4 .46 2.3 .36 
MICOM 

2.9 .48 2.
1.2 .69 2.1

 transports (TW
FH σH F

0 .40 -1.9 .33 
-2.7 .49 2.0 .37 

 
Northward heat

 FH σH FH σH 

.32 -1.5 .36 

) 
H σH FH σH 

NAOSIM 26 3.5 101 10
MICOM 26 3.4 106 16.1

.8 137 16.1 49
136 15.6 86

 
transports (TW

H FH σH F

8.7 28 6.7 
8.6 25 2.8 

)Southward heat 
 FH σH FH σ

 
H σH FH σH 

NAOSIM 22 7.2 29 5.3 
MICOM 7 1.2 37 6.5 

14 1.5 5 
24 5.5 21

 
ard) heat trans

H FH σH F

1.5 -5 2.7 
4.3 24 5.2 

ports (TW) 
H F

Net (northward – southw
 F F σH σH H σH H σH 
NAOSIM 4 6.1 72 11.6
MICOM 19 3.8 69 12.1

Northward salt
 F σ F

123 16.5 44
112 19.4 65

 
 transports (0.01
σS FS σS F

8.5 33 6.6 
6.8 1 4.2 

 Sv) 
S σS FS σS S S S 

NAOSIM -0.6 0.3 3.6
MICOM -0.4 0.3 3.4 0.

0.4 5.1 0.6 1.2
8 4.8 0.7 0.

ansports (0.01
σS FS σS F

0.3 -0.2 0.4 
2 0.5 2.0 1.6 

 Sv) 
S σS FS σS 

 
Southward salt tr

 FS σS FS 
NAOSIM -9.2 1.8 1.1 0.2 
MICOM -4.4 1.0 0.9 0.5

0.8 0.1 -0.1
 1.6 0.3 -0
 

ard) salt transp
F σ FS σS FS σS F

0.2 -6.7 1.6 
.2 0.3 -8.1 2.6 

Net (northward – southw
 

orts (0.01 Sv) 
S σS FS σS S S 

NAOSIM 8.6 1.6 2.5
MICOM 4.0 0.8 2.5 0.5 

0.4 4.4 0.6 1.
3.2 0.8 0.

3 0.2 6.5 1.5 
4 0.4 10.2 3.0 

 

Page 16 of 27  



Drange, Gerdes, Gao, Karcher, Kauker, and Bentsen (2005): Ocean General Circulation Modelling of the Nordic Seas,  
in The Nordic Seas: An Integrated Perspective (Drange, Dokken, Furevik, Gerdes and Berger, Eds.),  

AGU Monograph 158, American Geophysical Union, Washington DC, pp. 199-220.  
Official version available from AGU. 

 
 
Table 2. Observed [Østerhus et al., 2005] and simulated properties of the Atlantic inflow to the Nordic Seas. Heat 
flow is relative to 0 oC.  
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Figure 1. Upper panel: Observation-based n during the 1990s [Jacobsen et al., 2003]. 
Lower panels: Simulated velo ty at 150 m ag v e time period 1948-200 anel) and MICOM. 
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es (Sv) for the period 1948-2002 (upper panels) and for 1995-19
ght. Throughout the manuscript, the transports from MICOM are calculated on

 
Figure 3. Simulated mean northward and southward volume flux 99 
(lower panels). NAOSIM to left and MICOM to ri line, 

e. time step by time step, whereas weekly output of velocity, tem e and salinity are used to diagnose the transports from i. peratur
NAOSIM. 
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Figure 4. As Fig. 3, but for a realisation with MICOM, labelled MICOM*, starting in 1948 from the ocean state at the end of 2002 of 
the version of the model shown in Figs. 1-3. 
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Figure 5. Simulated annual mean volume transport anomalies (Sv) for NAOSIM (thin lines) and MICOM. Left (right) column shows 
anomalies in net northward (southward) transports. The panels represent, from top, the Denmark Strait (r = 0.05/0.46), the Iceland-
Faroe Ridge (r = 0.51/0.45), the Faroe-Scotland section (r = 0.59/0.63), the Barents Opening (r = 0.28/0.35), and the Fram Strait (r = 
-0.05/0.04). The numbers in the parentheses give the (linear) correlation coefficient between the two model time series for the 
northward and southward volume fluxes, respectively, with the bold numbers identifying 95% or higher significance. The sections 
are indicated in Fig. 3. 
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Figure 6. Observed and simulated northward volume transport through the Faroe-Shetland Channel. Upper panel: Observed transport 
(Sv) based on current meters [Østerhus et al., 2005] in dashed line, simulated NAOSIM (MICOM) transport (Sv) in thin (thick) solid 
line. Mid panel: Corresponding normalised volume flux anomalies, where normalization is done with respect to the standard 
deviation of the respective time series. Lower panel: The number of days with observations per month. The correlation between the 
observed time series and MICOM is 0.43 (significant at 99% confidence level). The corresponding figure for NAOSIM is 0.26 at 
90% confidence level (serial correlations are included in the analysis). 
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Figure 7. Simulated salinity (psu) (upper panels) and temperature (ºC) (lower panels) in March averaged over the uppermost 150 m 
of the water column for 1948-2002. NAOSIM at left and MICOM at right. 
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Figure 8. Observed (upper panel) and simulated temperature along 75 ºN in the Nordic Seas (NAOSIM to left, and MICOM to 
right). The observations are from cruise ARK XV/1 with RV Polarstern from 23 June-19 July 1999 [G. Budeus, pers. comm.]. The 
simulated fields are July monthly means. The same contouring is used for all panels. 
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aximum) concentration is given in the lower left (right) 

panels. Observations and NAOSIM are shown with thin lines and shaded contour levels of 10%, 40% and 70%, whereas MICOM is 
shown with thick solid lines with similar contour levels. 

Figure 9. Mean sea ice concentration in March for 1978-2002 from observations (upper left panel) [Johannessen et al., 1999] and for
1948-2002 from the simulations (upper right panel). Simulated minimum (m
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Figure 10. Simulated mean (upper panels) and maximum (lower panels) mixed layer depth (m) in March for the period 1948-2002. 
NAOSIM to left and MICOM to right. 
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