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1.1 Abstract 

 

Very few details exist concerning the dispersal traits of Antarctic species and 

dispersal distances in particular are mostly unknown. Especially the general low 

number of mesoplanktonic larvae has caught attention, leading to the formulation of 

Thorson’s rule. From this concept, originally concerning only trophic aspects, 

sometimes a reduced dispersal distance is deduced. Using a generic simulation 

model we show that in a benthic habitat exposed to iceberg scouring even short 

dispersal phases of few hours are sufficient for a pioneer species to persist. This is 

very surprising for a pioneer species that should be able to disperse widely and 

colonise distant disturbed areas that are free of superior competitors. Our model 

revealed that the reason for this is the non-linear dependence of the dispersal 

distance on the disturbance regime and on species longevity. Thus, it is the 

combined effect of life history and disturbance traits which is important here: a 

sufficiently high disturbance frequency due to iceberg scouring and a long individual 

lifetime due to the low temperature decrease minimum dispersal distances required 

for persistence and thus coexistence and present an additional explanation for the 

relative rarity of planktonic larvae. 



1.2 Introduction 

 

The Weddell Sea benthos is relatively diverse (Clarke and Johnston 2003; Gutt et al. 

2004), shaped by disturbance events due to scouring icebergs, which form one 

characteristic of the system (Arntz et al. 1994; Brown et al. 2004; Gutt and 

Piepenburg 2003; Gutt et al. 1996). Recent field work on the succession after iceberg 

scouring revealed unpredictable primary succession stages ending in a local climax-

like community in a site (Ragua-Gil et al. 2004; Teixido et al. 2004). Succession is 

slow, possibly over hundreds of years (Gutt and Starmans 2001). Several life history 

traits determine such a succession of which dispersal is one of the most important 

(Bolker and Pacala 1999). In terrestrial systems dispersal or dispersal shadows can 

be measured by direct observation, tagging, traps and molecular markers. In aquatic 

systems the methods theoretically work in the same way. However, the reduced 

accessibility of these systems (due to visibility, depth and remoteness) make the 

application difficult when a relatively high spatial and temporal resolution is required. 

This is especially the case when tiny mesoplanktonic larvae, as the predominant 

dispersal form among marine species (Muko and Iwasa 2000; Roughgarden et al. 

1988), have to be considered. Generally, larvae may stay in the water column for less 

than one minute or have an extended pelagic phase of up to several months (Largier 

2003; Shanks et al. 2003). Although the dispersal distance seems to be correlated 

with the length of the pelagic phase (Shanks et al. 2003), recent work showed that 

larvae often settle close to their parents, regardless of a long pelagic phase (Fisher 

2005; Jones et al. 2005; Todd 1998). Nevertheless, almost nothing is known about 

the actual dispersal distances of most marine species (Grantham et al. 2003). 

Summarising the current literature on pelagic larvae in Antarctic waters (see Bhaud 

et al. 1999; Stanwell-Smith et al. 1999; Shreeve and Peck 1995; Absher et al. 2003 

and Sewell 2005), larval density in the austral summer is seemingly low. A decline in 

pelagic dispersal stages with indirect development and increase in lecithotrophic 

larvae and direct development with higher latitudes is known as “Thorson’s rule” 

(Mileikovsky 1971). This is often supposed to reduce the potential dispersal distance 

simply by an assumed shorter dispersal time for lecithotrophic larvae and direct 

development. The ecological constraints leading to such shifts are not well 

understood, but recently Thatje et al. (2005) attempted to link these to the glacial 

history of Antarctica. However it is not entirely clear, how disturbance regime and 



environmental conditions may have influenced the life history traits of Antarctic 

species.  

Especially the combined effects of the disturbance regime and lifespan on the 

dispersal traits are uncertain. The interplay of these two factors is of great interest as 

they influence the coexistence of species and communities. In the Antarctic the 

constant low temperatures are considered to slow down life in the majority of species 

(Arntz et al. 1994), but there are also some normal or comparably fast growing forms 

(Barnes 1995; Brey et al. 1998; Kowalke et al. 2001). As longevity fosters the local 

competitive ability of sessile organisms, it can cause the dispersal distance to 

decline. This is the usually assumed trade-off between colonisation and competitive 

ability to ensure the regional coexistence of species (Tilman 1994). But qualitative 

and quantitative knowledge about the functional form of this trade-off and about the 

dependence on the disturbance regime are lacking.  

The main aim of this study is to investigate the combined effects of the dispersion of 

larvae and the longevity of adults on the persistence of a population of pioneers 

under the influence of disturbances. How far must a pioneer species disperse under 

a given disturbance regime to persist in the competition with a superior competitor? 

How do both the lifetime of the organisms and the disturbance rate influence this 

minimum necessary dispersal distance for persistence? Experimental field work to 

answer these questions is nearly impossible to carry out. Computer simulation 

models provide an alternative way. We use a spatially explicit simulation model to 

study these questions and apply the results to the benthic assemblages of the 

Weddell Sea. In particular, we want to find out whether the general trend of dispersal 

distances supports or contradicts Thorson’s rule.  

 

1.3 Methods 

The dispersal distance being sufficient to reach at least the closest suitable habitat 

should be a function of the process that generates such habitats, in other words of 

the disturbance regime. Therefore we first analysed the spacing of disturbed areas in 

dependency on the disturbance regime. In a simulation model we determined the 

mean distance between the borders (DBD) of two nearest neighbouring disturbed 

areas. Assuming circular disturbances allowed us to calculate DBD using the distance 

from centre to centre (DC) and the radius r of the disturbances. Therefore first DC had 

to be calculated in dependency on the disturbance frequency.  



In a second simulation we determined the minimum dispersal distance (dmin) for a 

pioneer species to persist and coexist with a superior competitor. This was done 

again for different disturbance regimes and in respect to the lifespan of the pioneer. 

This enabled us to relate dmin and DBD (respectively the disturbance regime). 

In a third step we then applied our theoretical results to Antarctic pioneer 

assemblages. We estimated a minimum dispersal distances a pioneer species needs 

to persist locally on the continental shelf under current disturbance conditions. For 

this we used knowledge about disturbance regimes and species life history traits of 

benthic assemblages composed of sedentary animals derived from the literature.  

 

1.4 Computer simulations 

 

1.4.1 Habitat spacing  

To compute the distance from border to border (DBD) first the distance from centre to 

centre (DC) of two nearest neighbouring disturbances must be determined. To do this 

a number N [per time step] of circular disturbances of a given radius r were placed 

randomly within a square area (1 unit length) and DC was measured. This was done 

for different N (N = 2, 3, 4, 6, 8, 10, 14, 18, 24, 30, 36, 44, 50, 60, 80, 100) and with 

each 1,000 replicates. DC only depends on the disturbance frequency N and a curve 

fitting allowed us to compute DC for any given N. The mean distance from border to 

border (DBD) depends on DC and the disturbance radius r and can be computed as  

 

DBD (N;r) = DC(N) - 2*r       [1] 

 

Note that both DBD and DC are relative to the box scale. As DC(N) is constant for a 

fixed N, DBD (N;r) is a strait falling line with a slope of –2.  



1.5 Minimum dispersal distance of a pioneer species (dmin) 

 

   
 

 

 

 Figure 1 Model simulation cycle. After the initialisation the simulation is performed for 

5,000 time steps or until a break condition. 

 

 

To determine the minimum dispersal distance for a pioneer species to persist and 

coexist with a superior competitor a grid-based model with periodic boundary 

conditions was used. This means that any object leaving the grid on one side re-

enters the grid on the opposite side. This avoids disadvantages for individuals at the 

borders. The spatial dimension of the grid was 100x100 grid cells. A cell could be 

inhabited by either a pioneer species, defined by its dispersal distance (measured in 

grid cells) and lifespan (in time steps), or the climax assemblage, characterised by its 

competitive superiority (once the climax assemblage has taken over a position it will 

remain there unless the space is opened by disturbance). Figure 1 shows a flowchart 

of the simulation cycle. Within one simulation the grid was initially filled with N 

randomly placed circular patches with the radius r, colonised by the pioneer species. 
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The remaining cells were assigned to the climax. In each of the simulated time steps 

the age of any pioneer individual increased. Once it reached its maximum age it died 

and the grid cell became empty. Subsequently, all empty cells (empty due either to 

the death of the pioneers or to not having been colonised) were overgrown by the 

climax because of its superiority. Then disturbance was simulated by a given number 

N of circular disturbances with the radius r, randomly placed over the entire grid. 

Affected cells were cleared of any inhabitants. This free space was potentially 

colonised by the recruits (of age 0) of any pioneer individual when within its dispersal 

range. For simplicity reason we assumed dispersal to be equal in all directions and 

that the amount of larvae was not limited. Thus any available habitat within a circle 

according to the dispersal distance could be colonised by the pioneer. 

These steps were repeated either until the pioneer or the climax assemblage had 

gone extinct or 5,000 steps had been executed and both pioneer and climax still 

coexisted. Simulations typically reached an equilibrium within fewer than 100 time 

steps. The minimum dispersal distance for the persistence of the pioneer was 

determined by simulations with dispersal distances ranging from 1 (local) to 50 cells 

(quasi global dispersal) in two cell steps. These procedures were repeated with 100 

replicates each. These calculations were repeated for varying disturbance regimes 

(function of radius and frequency) and lifespans (1, 2, 4, 8, 16, 32, 64) of the pioneer. 

 



1.6 Results 

1.6.1 Habitat spacing 

   
 

 

 

 Figure 2, Distance DC from centre to centre of the nearest disturbance for different 

disturbance counts per time step. The distance decreases hyperbolically with 

increasing N. 

 

 

Figure 2 shows the mean and standard deviation for the empirical determined values 

of DC for different N. Dc(N) has the form of a hyperbola. Curve fitting resulted in the 

following formula: 

 

 Dc(N) = (0.681 * N –0.557)  [r²>0.99, N=disturbance frequency]  [2] 
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1.6.2 Minimum dispersal distance 

   
 

 

 

 Figure 3, Influence of the disturbance regime on the dispersal distance dmin for a 

fixed lifespan. Different symbols and shades represent different disturbance 

frequencies (N=1, 2, 5 and 10), filled symbols are model results whereas open 

symbols show the according DBD. Also regressions are shown where the 

straight lines show the distance DBD for a regime and the curves the 

corresponding minimal necessary dispersal distance dmin. (DBD calculated 

according to formula [1] and [2] for lifetime=1). 

 

 

The closed symbols in Figure 2 show the minimum dispersal distance (dmin) of the 

pioneer needed for the coexistence with a superior climax as a function of the 

disturbance radius (x-axis) and for different disturbance frequencies (different 

symbols). The open symbols represent the according distance DBD derived from 

formula 1 and 2. Figure 2 shows only the data for lifetime=1 but other lifetimes result 

in similar pictures although with shorter distances (see below) and the general 



features are the same. For better readability the symbols are connected by fitted lines 

(see appendix for detailed values). 

dmin is always higher than the according DBD (Figure 2). The curves of dmin are u-

shaped and opened upwards. For small disturbance radii dmin first progresses nearly 

parallel with DBD and decreases with increasing disturbance radius. With further 

decreasing DBD the deviation between DBD and dmin increases. When DBD approaches 

zero (disturbed areas start to overlap), dmin raises until a value around dmin~0.35. 

Above these value no coexistence occurred in the model because both the pioneer 

and the climax went extinct. For regression, coefficients and goodness of fit for all 

parameter sets see Table 1 in the appendix. 

 

1.6.3 Dependency of the minimum dispersal distance on longevity  

 

Figure 4 shows the influence of lifetime (lt) and disturbance on the minimal dispersal 

distance (dmin) allowing the pioneer to coexist with the climax. Exemplarily Figure 4a 

represents a low disturbance frequency (N=1), whereas Figure 4b shows a high 

disturbance frequency (N=10). Analysis of the results showed that the dependency of 

dmin on lifetime can be described by: 

 

dmin (lt) = dmin 1 * lt
-b  [dmin 1=dmin for lifetime 1; lt=lifetime] [3] 

 

Note that, although the functional form is generally valid, dmin1 depends on the 

particular disturbance regime as shown above. The exponent b determines the form 

of the curve. For light to moderate disturbance regimes, formula 3 is in a good 

agreement with the simulation results (r²>0.95, see Table 2 appendix) and for these 

cases b is in a range between 0.5 and 0.7. The narrow range means that dmin is 

approximately halved when lifetime is prolonged by three to four times. The 

predictability (r² values) was better with longer lifetimes than with very short ones as 

well as for small disturbance diameters. For details see Table 2 in the appendix. 

 



   
 

 

 

 Figure 4, Influence of lifetime on dispersal distance dmin under different 

disturbance regimes (frequency and radius): a) low disturbance frequency, b) 

high disturbance frequency. Generally the dispersal distance decreases with 

increasing lifetime. Under a severe regime this might not hold, only long 

dispersal will allow survival (e.g. 4b, r=0.16). Also shown are the according 

regressions dmin=dmin1*lt
-b; see Table 2 for details. 
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1.7 Application of the results to the benthic assemblages of the Weddell Sea 

The Antarctic shelf is subject to disturbance events by grounding icebergs (Gutt et al. 

1996). Based on the analysis of underwater video transects, Gutt and Starmans 

(2001) determined the disturbance regime for different locations in Antarctica. One 

region (‘large iceberg bank’) has an area of 300 km² of which approximately 37.3 % 

had been disturbed at last once in the last 15 years. An other region (‘level plateau’) 

contained less recently disturbed areas (7.3% see Gutt and Starmans 2001 for 

details). Assuming a typical iceberg scour mark to be 500 m long and 120 m wide 

(see data in Hohmann 2002) this is equivalent to a total of 1,865 grounding events in 

this period or on average 124 events per year! Applying the same approach to the 

‘level plateau’ region leads to only 24 events per year. These frequencies result in a 

mean distance between the centres of disturbed areas of about 782 m for the large 

bank and 1,972 m for the plateau (based on a box width of √300 km²~17 km and 

Dc(124) = 0.046 and Dc(24) = 0.116 respectively; see Eq. 2).  

We want to apply our theoretical results to the benthic assemblages of the Antarctic. 

How far must a pioneer species disperse under the disturbance regime of the ‘large 

iceberg bank’ or the ‘level plateau’ to persist regionally? Teixido et al. (2004) 

analysed the biological succession after iceberg scouring and compiled a list of key 

species for different recolonisation stages. Among the very first sedentary pioneer 

organism are various polychaetes, bryozoans, gorgonians, sponges and some 

ascidians. For most species no detailed data on life-history traits exist. Comparatively 

well known is the solitary ascidia Molgula pendunculata Herdmann (1881). We have 

chosen this species, respectively its life-history traits, as characteristic for a pioneer 

of the Antarctic shelf. M. pendunculata show an fast growth and may reach an age of 

3-12 years (Kowalke et al. 2001; Kühne 1997). It is a simultaneous hermaphrodite 

(Sahade et al. 1998) and is assumed to reproduce viviparously with short dispersal 

(Kühne 1997; Sahade et al. 1998; Svane and Young 1989). 

An estimated average age of 6 years for M. pendunculata leads to a minimum 

dispersal less than dmin(124)= 266 m for the large iceberg bank and dmin(24)= 670 m 

for the plateau. Assuming an average current velocity of 0.05 ms-1 (see values for the 

shelf regions reported in Fahrbach et al. 1992), a dispersal phase of 90 min for the 

iceberg bank, respectively 225 min for the plateau, would be sufficient to cover these 

distances. 



The later successional stages are dominated by long-living species with budding or 

brooding behaviour (Teixido et al. 2004, Teixido in press). Such a species with an 

assumed age of 200 years needs a minimum dispersal of less than dmin(124)= 31 m 

on the bank and dmin(24)= 79 m on the plateau if dependend on recruitment in 

recently disturbed areas. These distances can easily be covered by budding or 

brooding species (Grantham et al. 2003) with a dispersal phase of a few minutes to 

less than half an hour. 

 

1.8 Discussion 

1.8.1 The Simulation Model  

Using a simulation model we studied first the mean spacing of disturbed areas in a 

landscape as a function of a disturbance regime (frequency and size/radius). In a 

second step we showed that the minimum dispersal distance dmin needed for the 

persistence and the coexistence of a pioneer species with a superior climax 

assemblage, is strongly related to the mean spacing of disturbed areas and thus to 

the disturbance regime.  

At low disturbance rates the dispersal distance dmin needed for persistence is slightly 

higher than the mean distance between the borders of nearest disturbed areas DBD 

(Figure 3). The parallel progression of dmin and DBD for small disturbance radii is 

conspicuous. With increasing size (or frequency) of the disturbances, dmin falls quasi 

parallel to DBD as the disturbed areas become closer to each other and dispersal from 

disturbance to disturbance is possible with a smaller dispersal distance. dmin reaches 

its minimum when DBD approaches zero, in other words, when the disturbances are 

so frequent that the disturbed areas start to overlap statistically. A further increasing 

disturbance regime, however, stops the decrease in dmin and leads to an increase 

again. This is due to the resulting landscape dynamics and the high mortality risk that 

demand higher dispersal distances for persistence of any species (Johst et al. 2002). 

At a certain disturbance intensity, the whole area is completely disturbed each time 

step and neither species can persist.  

The resulting u-shaped form of dmin brings together theoretical knowledge of species 

interactions and species persistence in dynamic landscapes. With weak 

disturbances, competition among species demands a high dispersal potential or other 



trade-offs for pioneers to be able to coexist with a superior species (Durrett and Levin 

1998; Snyder and Chesson 2003).  

Besides the disturbance regime, the second determinant of dmin is the species 

lifetime. As expected, with increasing lifetime dmin decreases (Figure 4). However, 

two things are important. First, the trade-off is nonlinear and has a hyperbolic form. 

This hyperbolic relationship means that a species can survive with halved dispersal 

distance if it has a lifespan that is three to four times longer. Furthermore, the 

greatest relative differences in dispersal distance exist between short-lived species. 

The older species become, the smaller the differences in required dispersal distances 

can be and, consequently, the less important the potential for far dispersal becomes 

(Figure 4a). Secondly, the dependence of dispersal distance on the lifetime is strong 

when the disturbance regime is light to moderate (Figure 4a) but breaks down when 

the regime is too severe (Figure 4b). Under a strong disturbance regime dmin is 

generally low and may not decrease with lifetime – instead it is constant or even 

increases (Figure 4b, e.g. r=0.16). 

The absolute competitive superiority of the climax assemblage, especially its ability to 

acquire all the space not colonised by the pioneer, regardless of how far it is from any 

climax cell is a very rigorous assumptions. If the competitive strength of the climax 

species is weaker, a smaller dispersal distance than our predicted dmin would allow 

persistence. Furthermore, iceberg scours are rectangular rather than circular. 

However a circle has the smallest diameter to area relationship of all geometric 

figures. Disturbances of the same area but of a different shape would be closer 

together, thus requiring less dispersal.  

For the ‘large iceberg bank’ region with frequent scouring the order of magnitude 

calculated for the spacing of the disturbed areas correlates well with a map of scour 

marks of this region in Hohmann (2002). For the ‘level plateau’ region with infrequent 

scouring unfortunately no data are available, but we believe our approach is able to 

present the properties correctly. Therefore, our results serve as a worst-case 

scenario i.e. our dmin is an upper limit for the ecologically necessary dispersal 

distance. Dispersal distances higher than dmin are not primarily designed to ensure 

regional survival with minimised dispersal cost but to conform to other ecological 

needs.  

 



1.8.2 Relevance for the Antarctic communities 

Applying the model results to the benthic assemblages of the Weddell Sea lead to 

the conclusions that a dispersal phase of 1.5-4 hours is enough for a pioneer species 

like M. pendunculata to persist regionally due to the high disturbance regime and 

current speed. As stated above, these distances are an estimate for the upper limit 

distances needed for regional persistence. The actual dispersal distances could be 

smaller when some pioneer individuals are scattered within the climax and could 

serve as a stepping stone for the colonisation of distant habits. With high tidal current 

speeds up to 0.7 ms-1 (Fahrbach et al. 1992) dispersal distances up to as much as 5-

10 km are possible. This might even be sufficient to explain a circumpolar distribution 

after the last glacial period (compare values for distance in Gutt 2000). 

The pelagic larvae observed in the Antarctic waters (see introduction) belong mainly 

to potential pioneer phyla listed by Teixido et al. (2004). Recently Bowden (2005) 

published data on settlement experiments at Ryder Bay, (Antarctic Peninsula) and 

reviewed the currently available literature on similar experiments in Antarctic waters. 

However this data contains only information about the arrival of species and were 

conducted in shallow areas. Dispersal distances are still unknown for most species, 

especially for those from the continental shelf. Genetic markers may provide insights 

in the dispersal processes in the future but to day only theoretical approaches exists. 

It is commonly assumed that true pioneer species should depend on a long-range 

dispersal. However, due to the disturbance regime and their comparably long lifetime, 

the Antarctic species seem to be able to cope with rather short dispersal distances 

when compared with species from temperate or tropical regions. Our model does not 

explain why broadcasters like Sterechinus neumayeri have a pelagic phase of up to 

120 days (Bosch et al. 1987). Even some of the key species of the later successional 

stages are assumed to be mid- to long-range dispersers (see Teixido et al. 2004). 

One reason might be simply slower development and thus longer pelagic phases in 

cold waters (Bosch et al. 1987). The capacity for long-range dispersal however pays 

off when the habitat is fragmented and strongly dynamic or strong competition 

occurs. Coral reefs provide a good example, as many long-living corals disperse 

through true mesoplanktonic larvae (Connell et al. 2004) and suitable shallow, 

temperate habitats are patchily distributed and limited in terms of space (Muko et al. 

2001) when compared to the more or less homogeneous Antarctic shelf.  



However, in the last glacial periods the Antarctic shelf was nearly completely covered 

with ice and suitable habitats were rare. One assumption is that species moved to the 

upper parts of the continental slope (for further literature see Gutt 2000). Recently 

Thatje et al. (2005) supposed that survival was even not possible on the slopes (due 

to sediment and turbidity flows) and species had to migrate down into the deep sea. 

However, some areas under the ice may have provided some sheltered refuges or 

isolated island habitats. It must be expected that such a spatial separation fostered 

allopatric speciation in Antarctica during glacial periods. In such fragmented but at 

least temporally constant environments short dispersal is advantageous (Bolker and 

Pacala 1999) as it allows large local stocks to be built up. But species relying only on 

short dispersal have to face a high risk of extinction when the environment changes 

(Johst et al. 2002). A bimodal means of dispersal (short- as well as long-range 

dispersal) would be more beneficial, as this would enable the benefits of local 

dispersal as well as allowing distant habitats to be explored. Species could dominate 

confined areas and would be still able to jump from one sheltered island to another. 

At the beginning of an interglacial period recolonisation of the shelf would also be 

fostered by an establishment in a former inaccessible habitat enabled by long 

distance dispersal, followed by a quick domination due to mass recruitment mediated 

by short dispersal. This can lead to a strong founder effect with consequences for 

evolution, e.g. the separation of sibling or cryptic species. 

Clonal organisms like sponges have such a second dispersal mode as they are able 

to disperse by fragments (Jackson 1986, Teixido in press), e.g. lifted up by anchor 

ice or rafting on the fragments eroded from iceberg keels (Dayton et al. 1969; Gutt 

2001). The achieved dispersal distances typically exceed the normal dispersal 

distances by considerable magnitudes (Jackson 1986). The importance of such an 

unusual mode of dispersal for biodiversity is known (Higgins et al. 2003; Jackson 

1986).  

The suitability of long-distance dispersal (or its absence) might explain some features 

the observed community structure e.g. the dominant role of clonal organisms, 

especially sponges (Gatti 2002), and the extinction of other groups in Antarctica. 

Thorson’s rule, a decline in planktotrophic larvae towards the poles may be 

explained, at least partially, by strong seasonal primary production and a resulting 

food limitation in these regions or by special habitat features (Gallardo and 

Penchaszadeh 2001). However our results suggest that long-distance dispersal, and 



thus a long pelagic larval phase, is not needed for regional coexistence under current 

environmental conditions. In the Antarctic the disturbance regime with a moderate 

reoccurrence frequency leads to a mosaic of different habitats. Regular reoccurrence 

superposes local competition and the relative proximity of habitats possibly 

eliminates the need for long-distance dispersal. Thus our results may present an 

additional explanation for the relative rarity of planktonic larvae in the Weddell Sea. 
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1.9 Appendix 

 

Table 1, Dependency of dmin on disturbance regime; lifetime=1 

dmin = ax³ + bx² + cx +d; x= disturbance radius; 

Lifetime=1 
   

 
 

 
a b c d r² 

dmin(1) 1.8720 2.1734 -2.4757 0.7390 >0.99 

dmin(2) 8.3652 -0.8773 -1.7530 0.5668 >0.99 

dmin(5) 15.0880 0.1764 -1.8356 0.3806 >0.99 

dmin(10) 14.2940 4.4379 -2.0458 0.2638 >0.99 

dmin(20) 18.203 7.9288 -2.0113 0.1807 >0.99 

    
  

(note dmin(20) not shown in the graph; values supplied for convenience) 

 

Table 2, Dependency of dmin on lifetime 

dmin = dmin1 * lifetime -b 

Low disturbance frequency N=1  High disturbance frequency N=10 
radius dmin1 b r2  radius dmin1 b r2 

0.01 0.7931 0.5125 0.9884  0.01 0.2539 0.5964 0.9952 
0.04 0.7628 0.6160 0.9795  0.04 0.1723 0.5594 0.9657 
0.07 0.7008 0.6776 0.9829  0.07 0.1150 0.3886 0.8475 
0.10 0.5615 0.6628 0.9858  0.10 0.0888 0.2350 0.7669 
0.16 0.3797 0.5638 0.9475  0.16 0.1000 0.0689 0.6000 
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