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Many palaeoclimate records from the North Atlantic region show
a pattern of rapid climate oscillations, the so-called Dansgaard–
Oeschger events, with a quasi-periodicity of ,1,470 years for the
late glacial period1–6. Various hypotheses have been suggested to
explain these rapid temperature shifts, including internal oscil-
lations in the climate system and external forcing, possibly from
the Sun7. But whereas pronounced solar cycles of ,87 and
,210 years are well known8–12, a ,1,470-year solar cycle has not
been detected8. Here we show that an intermediate-complexity
climate model with glacial climate conditions simulates rapid
climate shifts similar to the Dansgaard–Oeschger events with a
spacing of 1,470 years when forced by periodic freshwater input
into the North Atlantic Ocean in cycles of,87 and,210 years. We
attribute the robust 1,470-year response time to the superposition
of the two shorter cycles, together with strongly nonlinear
dynamics and the long characteristic timescale of the thermo-
haline circulation. For Holocene conditions, similar events do not
occur. We conclude that the glacial 1,470-year climate cycles
could have been triggered by solar forcing despite the absence of
a 1,470-year solar cycle.

The onset of successive Dansgaard–Oeschger (DO) events, as
documented in Greenland ice-cores1,2 for example, is typically spaced
by ,1,470 years or integer multiples thereof13,14. Because deviations
from this cyclicity are small, often less than 100–200 years15, external
forcing (solar or orbital) was suggested to trigger DO events6,15,16.
However, neither orbital nor solar forcing shows a 1,470-year
frequency. Spectral analysis performed on records of cosmogenic
nuclides8–11, which are commonly used as proxies for solar varia-
bility12, indicates the possible existence of pronounced and stable10,11

centennial-scale solar cycles (the DeVries–Suess and Gleissberg
cycles with periods near 210 and 87 years10,11) but does not reveal a
1,470-year cycle8. However, the DeVries and Gleissberg cycles
are close to prime factors of 1,470 years (1,470/7 ¼ 210;
1,470/17 < 86.5). The superposition of two such frequencies could
result in variability that repeats with a 1,470-year period.

Here we propose that these two solar frequencies could have
synchronized the glacial 1,470-year climate cycle. Support for the
idea that a multi-century climate cycle might be linked with century-
scale solar variability comes from Holocene data: a multi-centennial
drift-ice cycle in the North Atlantic was reported17 to coincide with
“rapid (100- to 200-year), conspicuously large-amplitude variations”
in the production rates of the cosmogenic isotopes 14C and 10Be. To
test our hypothesis, we force the coupled climate system model
CLIMBER-2 (version 3) with the two solar frequencies. Earlier
simulations with this model showed that, when forced by periodic
and/or stochastic variations in the freshwater flux into the northern
Atlantic, abrupt glacial warming events are triggered that reproduce

many features of the observed DO events, including the characteristic
time evolution and spatial pattern of these events and also the
phase relation of the Antarctic response18–20. In the model, the
events represent rapid transitions between a stadial (‘cold’) and an
interstadial (‘warm’) mode of the North Atlantic thermohaline
circulation, triggered by a threshold process.

Following these simulations, we here force the model with vari-
ations in freshwater input consisting of two sinusoidal components
with periods T 1 ¼ 1,470/7 ( ¼ 210) years and T 2 ¼ 1,470/17
(<86.5) years, representing the DeVries and Gleissberg solar
cycles. Our focus is the frequency in the glacial climate response
(which needs to be studied with a model allowing sufficiently long
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Figure 1 | Applied freshwater forcing in the simulation. a, b, To represent
the DeVries and Gleissberg solar cycles we consider two sinusoidal
components: DeVries component F1 with period T1 ¼ 210 years (a) and
Gleissberg component F2 with period T2 < 86.5 years (b). c, Total forcing
(F1 þ F2). The dashed lines indicate the period of 1,470 years in the forcing.
In the figure, the amplitudes A1 and A2 are chosen to be 10mSv and the
phases J1 and J2 to be 0. The additional offset K is not shown here.
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simulations, and correspondingly less resolution and detail). Our
study is not aimed at suggesting a certain mechanism for solar
influence on freshwater fluxes; this should be studied with more
detailed and higher-resolution models. A possible mechanism that
has recently been proposed is that solar irradiance variations over the
solar periods could generate cyclic salinity anomalies in the North
Atlantic by their effect on the thermohaline circulation (THC)21. Our
simplified approach implies that we assume the known solar fre-
quencies to be present in the hydrological cycle, as suggested

previously22,23. A more direct implementation of solar forcing in
the model (such as one based on records of cosmogenic 10Be)
is hindered by several difficulties: for example, a reliable reconstruc-
tion of solar activity over tens of thousands of years would be
required, with a resolution and dating precision necessary to show
the ,87-year Gleissberg cycle realistically. This is so far unachievable
during the Last Glacial. Furthermore, when transforming solar
forcing into variations of freshwater fluxes, a chain of complex
and uncertain processes is involved (for example, atmospheric
chemistry24–26 and the dynamics of continental ice sheets27 and sea
ice28) that cannot explicitly be resolved in climate models designed
for millennial-scale simulations.

In our simulations, we consider the Last Glacial Maximum (LGM)
as the underlying climate state. The total freshwater forcing F (Fig. 1)
reads as follows:

FðtÞ ¼2A1 cosðq1tþJ1Þ2A2 cosðq2tþJ2ÞþK ð1Þ

with amplitudes A 1 and A 2, frequencies q1 ¼ 2p=T1 and
q2 ¼ 2p=T2, and phases J1 and J2. The constant offset K represents
changes in the background climate compared with the LGM. Follow-
ing earlier simulations18, the freshwater perturbation is added to the
North Atlantic in the latitude belt 50–708N. This area is particularly
sensitive to solar forcing: On one hand, variations in the atmospheric
heat fluxes can trigger shifts of the sea-ice margin that—because of
the insulating effect of sea-ice28—result in evaporation anomalies. On
the other hand, solar forcing can cause meltwater anomalies by its
effect on the mass balance of the ice sheets surrounding this region.
The applied amplitudes A1 and A2 are very small: in the range of
10 mSv (1 Sv ¼ 1 Sverdrup ¼ 106 m3 s21); that is, about 5 cm yr21 in
the surface freshwater flux into that area. Although the total forcing
does not explicitly have a spectral component of 1,470 years, it
repeats with this period because of the combined effect of the applied
cycles.

In the response of the model, three different regimes exist: a ‘cold
regime’ in which the THC persists in the stadial mode, a ‘warm
regime’ in which the interstadial mode is stable, and a ‘Dansgaard–
Oeschger regime’ in which cyclic transitions between both modes
are excited. These transitions result in abrupt warm events in the
model box containing Greenland, similar to DO events (Fig. 2).
Figure 3 illustrates the model response for various amplitudes A
(A ¼ A1 ¼ A2) and offsets K. Events with a spacing of 1,470 years are
found within a continuous forcing-parameter range. This 1,470-year
timescale in the model response is robust when the phases, the

Figure 2 | Simulated changes DT in Greenland surface air temperature.
The amplitudes A1 and A2 of the two forcing cycles are chosen to be 10mSv,
with different values for the offset K. a, K ¼ 29mSv; b, K ¼ 214mSv;
c, K ¼ 219mSv. The dashed lines indicate the first-order minima in the
forcing (that is, the maxima in the salinity flux), which show a period of
1,470 years (see Fig. 1).

Figure 3 | Schematic response of themodel for different amplitudesA (with
A 5 A 1 5 A2) and offsets K in the forcing. Upper left area (blue): ‘cold’
regime (stadial mode is stable). Upper right area (red): ‘warm’ regime
(interstadial mode is stable). Lower area (green): ‘Dansgaard–Oeschger’

regime (none of the modes is stable). The numbers in this regime indicate
the most frequently occurring temporal spacing between successive events
(in multiples of 1,470 years) for each combination of A and K.
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amplitudes and the periods of the two forcing cycles are changed
over some range (Supplementary Information). White noise, when
added to the periodic freshwater forcing, acts as an amplifier but does
not affect the robustness of the 1,470-year model timescale (Sup-
plementary Information). In the presence of noise, different DO
events look different, unlike the identical events occurring for
completely regular forcing (Fig. 2). When instead of two sinusoidal
cycles a more realistic forcing is applied with spectral properties close
to those observed in solar proxies8,10,29, a regular 1,470-year model
response can still be obtained (Fig. 4 and Supplementary Infor-
mation).

The stability of the simulated 1,470-year climate cycle is a plausible
consequence of two well-known properties of the THC: its long
characteristic timescale, and the high degree of nonlinearity (that is,
the threshold character) inherent in the transitions between the two
modes of the THC. A very simple conceptual model that only
incorporates these two properties is able to mimic key features of
CLIMBER-2, for example the existence of three different regimes in
the model response, the frequency conversion between forcing and
response (that is, the excitation of millennial-scale spectral com-
ponents in the model response that do not exist in the forcing) and
the amplitude dependence of the period in the model response. The
general idea of this model is that DO events represent highly non-
linear switches between two different climate states corresponding to
the stadial and interstadial modes of the glacial THC. A detailed
description of the conceptual model, as well as a discussion of its

response to the applied forcing, is given in the Supplementary
Information.

A key aspect of our concept is that the events are triggered by very
sharp peaks in the forcing, with duration of only decades. This can
explain the puzzling regularity in the timing of DO events in the
Greenland data, which were reported to deviate by no more than
,10% from exact multiples of 1,470 years15. If the events were
triggered by broad peaks (for example by some sinusoidal-like
forcing cycle of a 1,470-year period), much larger deviations from
exact timing would be expected in the ‘noisy’ climate system. Hence,
the exact timing of the more recent DO events (ages between 10,000
and 50,000 years) is a strong observational indication that they are
synchronized by shorter cycles.

We have demonstrated that a coupled ocean–atmosphere climate
model can reproduce DO events with a robust spacing of 1,470 years
when forced by the superposition of two freshwater cycles with much
shorter periods near 87 and 210 years. A frequency of 1,470 years is
therefore not found in the forcing; it is found only in the model
response. We illustrated that this frequency conversion between
forcing and response is a plausible consequence of highly nonlinear
dynamics inherent in the simulated DO events. Our results indicate
that the observed 1,470-year climate cycle could have originated from
solar variability despite the lack of a 1,470-year spectral contribution
in records of solar activity. Moreover, the 1,470-year climate response
in the simulation is restricted to glacial climate and cannot be excited
for substantially different (such as Holocene) boundary conditions;
for these, the model response shows the frequencies of the applied
forcing (,86.5 and 210 years), as also documented in various climate
archives22,23,30. Thus, our mechanism for the glacial ,1,470-year
climate cycle is also consistent with the lack of a clear and
pronounced 1,470-year cycle in Holocene climate archives.
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