Text, Data and People – How to Represent Earth System Science

Hans Pfeifferberger
Ana Macario
Alfred Wegener Institut, Bremerhaven
Introduction

- Earth System Science (ESS) is an interdisciplinary and global collaboration
- ESS output is heavily data-centric
 - data come from observations
 - and simulation (“in silico” experiments)
- ESS work is organized around
 - expeditions or campaigns and
 - coupled models of earth’s sub-systems
- Logistics and system cost are extremely high
 - one ship may cost up to 500 G€
 - “Earth Simulator”, the fastest computer 2 years ago
- ESS data potentially are of extreme long term value
An important, typical Experiment

- **EISENEX / EIFEX**: Conducted during two expeditions of “Polarstern”, with a 4 year pause

- **EIFEX (2004):**
 - 54 scientists (and students) from
 - 14 institutes and 3 companies from
 - 7 European countries and South Africa
 - Oceanographers
 - Biologists
 - Chemists.....

- “Biogeochemistry”
Collaboration’s data needs

- Need to work from a common understanding of what is known about the subject
- Need to plan expeditions and coordinate with ships’ operators general plan (5 or more years in advance)
- Need to coordinate instrument design, operation and interfacing before ships departure
- Meet aboard, sail and work 8 weeks or so
- Do evaluation, when at the home institute, exchanging their particular results.
- Publish text; PhD students dump the data somewhere, if nobody watches, or keep it “private”
Data Publishing

There is reason enough to thoroughly publish data:
- Potential reuse in many more contexts than foreseen
- Enable peer reviewers to have a critical look at data quality

Problem: Metadata
- ISO 19115 is a metadata standard (with ~1000 attributes) for georeferenced data
- Almost no producer of data knows how to form ISO 19115 for his/her data (nor wishes to know)

There is no reward system (like: number of peer reviewed papers) in place to stimulate individuals
- There should be a solution for well curated datasets and databases
Data Management

- Metadata needed even on “work in progress”- or auxiliary datasets,
 - both need to be “archived”, or managed
 - Even if they may never achieve a level of “published” data
 - They need to be available to a distributed project group during their project, long before publication

- There are too many datasets to produce correct and complete ISO 19115 metadata “manually”
 - Find ways to produce ISO by each instrument at the time of data creation, automatically
 - Use context or relationship instead of descriptive metadata
Relating all relevant Objects

...but for AWI expeditions only, today
Current PANGAEA relationship encoding

Dataset-to-Publication relationship metadata should be expressed in RDF/XML and placed in the “Relations datastream”

Identifiers needed (in addition to locators)
Goals

- Transfer concepts and content from “homegrown”, internal repositories to federations of standards-based IRs around the world

- Harvest (f.e.) Polarstern-expedition related text and data from all IRs of participants

- Display / sort / analyze / rank the maze of material through all meaningful criteria

- Find key networks of people, projects, text,…..
Welcome to Helmholtz Web Services for primary data, publications and personal portfolio.

Search: [macario]

Select Repository:
- Fedora at AWI
- Pangaea

Search

Results 1-5 for 'macario':

1. Personal Homepage of Dr. Ana Macario [text, people]
 (2005) Ana Macario

2. A Discovery Service for Knowledge Related to Research Platforms [event, international talk]

3. Portal for Earth Sciences in Polar Regions [event, international talk]

4. Research platforms in polar regions - a portal approach [event, international talk]

5. An homogeneous Directory of People, Publications, and other Resources as a means for IT-based Knowledge Management in Science [event, invited national talk]

Fedora at AWI Response Time: 0.144s, 5 Results
Pangaea Response Time: 0.374s, 0 Results
Show Results 6-10 -->

Script Time: 0.399s
Types of Object In the order of appearance (1)

- (Institutions)
- Person
 - represented by splash page (Personal home page)
 - uid: eduPersonPrimaryName
 - primary encoding: eduPerson schema
- (informal group)
- Project
 - represented by splash page (Project home page)
 - uid: maybe a specific encoding of the funders’ project number
 - primary encoding: eduPerson/eduOrg schema
- Expedition, Campaign:
 - represented by splash page (Expedition home page)
 - treat it as a project, generate project number from expedition identifier
 - primary encoding: eduPerson/eduOrg schema
Types of Object In the order of appearance (2)

- **Datasets**
 - represented by splash page
 - uid: maybe the same kind as publications
 - primary encoding: Community specific (f.e.: ISO 19115)

- **Publications**
 - represented by splash page containing
 - abstract, etc.
 - pointer to article at publishers site
 - pointer to article at IR
 - publisher’s word about what is the “original”, etc.
 - uid: DOI, permanent URL, etc.
 - primary encoding: repository’s (proprietary) format (f.e.: Fedora’s, it must be possible to map this in an unambiguous way to METS, MPEG21-DIDL, ...
Object relationships (tentative)

Person
- IsMemberOf
 - Group
 - Project

Group
- IsPartOf
 - **Project**

Project
- IsMemberOf
 - Expedition / Experiment / Campaign
- IsPartOf
 - **Publication**
- IsPIOf

Publication
- IsAuthorOf
 - **Person**
 - **Dataset**
- IsBasedOn
 - **Dataset**

Dataset
- IsResultOf
 - **Publication**
- IsDescribedBy

Expedition / Experiment / Campaign
(Text-)Publications and related primary data have to be cross-referenced

- We need ontology and schema designs to express the relationships (to solve reuse/aggregation problem)

Extensive descriptive metadata (f.e. ISO19115) are useful only to big repositories of well curated datasets with similar content

The full text of publications (and its relation to datasets) may be the best “metadata” for the datasets you will get

- Primary hit in a (Google-like) search may be a publication, which refers to primary data
Conclusions 2 - Full Relation Network

- Service providers should make use of network of all relevant objects - people, projects, ... datasets, text
 - harvest relationship metadata
 - harvest descriptive metadata (Dublin Core quality)
 - enable new search paradigms

- Data providers need to expose the relationship of objects
 - will require a “complex” metadata format
 - will require an ontology for relationships
 - will require unique identifiers for people etc. (from eduPerson schema, ~ email address)
 - introduce identifiers for projects and “experiments”