Low frequency changes in the carbon cycle during the last 120 kyr and its implications for the reconstruction of atmospheric Δ^{14}C and the 14C production rates estimates — a simulation study

P. Köhler1, R. Muscheler2 & H. Fischer1

1: Alfred Wegener Institute f. Polar & Marine Research Bremerhaven, Germany
2: National Center for Atmospheric Research Boulder, CO, USA

We use the ocean/stratosphere/biosphere box model of the global carbon cycle BICYCLE (Köhler et al. 2005) to reproduce low frequency changes in atmospheric 14CO$_2$ as seen in Antarctic ice cores during the last glacial cycle (~120,000 years) (Köhler et al. 2006). We force the model forward in time by various paleo-climatic records derived from ice and sediment cores. The simulation results of our proposed scenario match a compiled CO$_2$ record from various ice cores with high accuracy ($r^2 = 0.83$). The processes that contribute most to the glacial/interglacial changes in CO$_2$ are variations in the sedimentation and dissolution rates of CaCO$_3$, ocean circulation, ocean temperature and glacial ice fertilization of the marine biota in the Southern Ocean. The BICYCLE model includes also calculations for the carbon isotope 13C and 14C and we assess what changes in atmospheric Δ^{14}C might be based on variations in the carbon cycle. Our results suggest that during the last glacial cycle in general less than 120% of the increased atmospheric Δ^{14}C are based on variations in the carbon cycle, while the largest parts of the variations have to be explained by changing 14C production rates. Processes acting on the glacial carbon cycle that increase glacial Δ^{14}C are restricted glacial gas exchange between the atmosphere and the surface ocean through sea ice coverage, a reduced glacial ocean circulation, and the enrichment of DIC with 14C in the surface waters through isotopic fractionation during higher glacial marine export production caused by iron fertilization. From the available 14C data covering the last 50,000 years and our carbon cycle-based simulation results we can infer changes in the 14C production rates, which are then compared with two other estimates based on 10Be and geomagnetic field reconstruction. The agreements and discrepancies between these three independent approaches to estimate the 14C production rates are discussed and highlight the limitations and possible uncertainties in all three approaches.

Keywords: carbon cycle, 14C cycle, 14C production rates, glacial/interglacial, modeling, box model, radionuclides

References:

Variable 14C production rate

Comparing three approaches to estimate 14C production rates

Carbon cycle-based reconstruction of 14C production rate based on different Δ^{14}C data sets.
Literatur

