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List of abbreviation 

 
I) Text 

 
AARI Arctic and Antarctic Research Institute  
AL Anabar-Lena  
AMSR-E Adv. Microwave Scanning Radiometer - EOS  

APP Alternating Polarization Product 
ASAR Advanced Synthetic Aperture Radar 
AVHRR  Advanced Very High Resolution Radiometer 
CTD Conductivity Temperature Depth meter 

GAC Global Area Coverage 
IBCAO Intern. Bathymetry Chart of the Arctic Ocean 
IST Ice Surface Temperature 
LAC Local Area Coverage 

NET North-Eastern Taimyr Polynya  
NOAA National Oceanic and Atmospheric Admin. 
NS New Siberian  
psu Practical Salinity Units 
OGCM Ocean General Circulation Models 

SAA  Satellite Active Archive  
SAR Synthetic Aperture Radar 
SPM Suspended Particulate Matter  
SSM/I Special Sensor Microwave Imager 

SWNS southern West New Siberian Polynya 
T Taimyr  
WNS West New Siberian 
WSM  Wide Swath Medium 

 

II) Equations 
 
a) Radar 

 
DN Image pixels value  

β0 Radar brightness  

σ0 Radar backscatter coefficient / sigma nought 
K Absolute calibration constant  

α  Local incident angle 

 

b) Modelling polynya evolution 
 
U Wind velocity (Dunai Station)  

A(ϕn-ϕo) Constant opening and closing factor 

ϕn  Recorded wind direction (Dunai Station) 

ϕo Dominant wind direction for opening events 

ROW Open water width  
RTI  Thin ice width  
Rtotal Total polynya width  

∆t Time interval between climate measurements  

BI  Thin ice drift velocity in percent of wind speed 
bI Frazil ice drift velocity in percent of wind speed 

∆ hf   Frazil ice production rate  

hc  Frazil ice accumulation depth  
l Polynya length 
AOW Open water area 

ATI Thin ice area 

Atotal Total polynya area 
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c) Modelling ice growth 
 
QT  Upward turbulent heat flux,  

QL  Upward lw. radiation emitted by the sea,  
QB  Downward lw. radiation absorbed at ocean surface  
QS  Shortwave solar radiation. 
Qnet Surface net balance 

Ta  Air temperature (Dunai Station) 
Ts  Sea surface temperature 

ρa Air density  

C Heat transfer coefficient  

σ  Stefan-Boltzmann constant 

εs  Water surface emissivity 

CL  Cloud cover 
S0  Solar constant 

υp   Vapour pressure 
z  Sun zenith angle 

φ  Latitude  

τ Solar hour angle 
rH  Relative humidity 

ρf   Frazil ice density 
Ls  Latent heat of fusion for sea-ice 
dH Continuous thin ice growth in thin ice area 
H  Ice thickness 

hs Snow cover thickness 
ks  Thermal conductivity of snow  
ki Thermal conductivity of ice 
Ct Net surface heat exchange  

ρi Ice density  

∆ hf   Frazil ice production rate  
hc  Frazil ice accumulation depth  
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1. Introduction 

 

[1] The Laptev Sea is a marginal sea of the Arctic Ocean and ranks foremost as a source of ice 

production among the wide Eurasian shelves. It is located between the coast of Siberia, the Severnaya 

Zemlya and the New Siberian Islands (Figure 1). The total area of the Laptev Sea comprises 

approximately 661.25 × 10³ km² [Bareiss et al., 2005; Macdonald et al., 2005; Dieckmann et al., 

2003]. Formation and growth of sea-ice in the Laptev Sea is dominated by ice production in coastal 

polynyas and flaw leads [Eicken et al., 1997].  The ice regime in the eastern Laptev Sea is 

characterized by four features: Nearshore bottomfast ice, fast ice, pack ice and flaw polynyas, 

separating landfast ice from pack ice. According to Bareiss et al., [2005] most of the eastern Laptev 

Sea surface is covered with ice from October to June. Based on their passive microwave radiometer-

derived sea-ice concentration data from 1979 through 2002, sea-ice melting starts on average around 

July 4 (± 8.2 days), two months later a sea-ice minimum of 46 × 10³ km² is reached. New ice 

formation (freeze-up) starts at the end of September.  

[2] The bottomfast ice develops in shallow parts, nearshore (depths less than 2 m). Although this 

feature is important on helping to maintain submarine permafrost in the spits and thus controlling 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Map of the Laptev Sea showing the locations of main recurrent flaw polynyas 
(shaded boxes). Abbreviations are explained in the text. The typical WSM and APP coverage 

is indicated by frames (red for WSN and blue for APP). The mooring positions are marked by 

circles and the weather station by a black cross.    
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coastal morphology [Eicken et al., 2005], so far it is not well understood. Floating fast ice, which 

reforms yearly, covers 50 % of the shallow eastern Laptev Sea and extends up to 200 km off the coast 

during winter. Bottom depth is the main factor determining the extent of fast ice coverage, that usually 

ends where the water reaches a depth of about 25 m. Beyond this level, ice ridges and other pieces of 

ice, protruding from the bottom of the ice cover, rarely remain aground. Drill hole measurements 

carried out in 1999 revealed an average fast ice thickness of 1.95 m in the southern Laptev Sea [Haas 

et al., 2001a]. Freshwater fast ice adjacent to river mouths can grow up to 2.2 m [Dmitrenko et al., 

2005].  

[3] The pack ice extent varies with ice import and export processes taking place in the Laptev Sea.  

Pack ice consists of ice originally formed as fast ice, but now dislodged from shore, and ice formed at 

sea. It can be flat over extensive areas, but also areas with a rough relief occur due to convergence of 

floes.  

[4] Between fast ice and pack ice recurrent flaw polynyas are formed. A polynya is defined as a 

non-linear shaped opening enclosed in sea-ice. Sometimes the polynya is limited on one side by the 

coast (shore polynya) or by fast ice (flaw polynya) [World Meteorological Organization, 1970]. 

Polynyas which occur repeatedly at fixed geographic locations and during the same periods of the 

year are defined as recurrent polynyas [Martin, 2001]. Following Zakharov [1966], the prominent 

flaw polynyas in the Laptev Sea (Figure 1) are the New Siberian Polynya (NS), the West New 

Siberian Polynya (WNS), the Anabar-Lena Polynya (AL), the Taimyr Polynya and the North-Eastern 

Taimyr Polynya (NET). According to its geophysical mechanism and shallow bottom topography, the 

recurrent flaw polynyas in the Laptev Sea are classified as shelf water latent heat polynyas. Winter 

winds advect the pack ice away from the adjacent fast ice edge, so that large regions of open water are 

directly exposed to the cold air. The heat loss across the sea-air interface results in ice production, 

which is then continually driven away by currents and winds. Following the Steady State Model 

described in Pease [1987], the process that actually keeps this type of polynya open is the export of 

ice. The alongshore length of the Laptev Sea polynyas ranges from 100 km to 2000 km, the width 

from 1000 m to 100 km or in terms of area, from 10 to 105 km2 [Barber et al., 2001]. 

[5] Among the marginal seas of the Arctic Ocean, the Laptev Sea represents one of the most 

significant sites of net ice production. Flaw leads and polynyas produce as much as 

20 % of the ice transported through the Fram Strait [Rigor et al., 1997]. The intensive ice formation 

locally increases salinity of the water surface and induce convective mixing down to the seafloor, 

being an important source of saline shelf water for the Arctic Ocean [Winsor et al., 2000, Bareiss et 

al., 2005, Biggs et al., 2003]. Based on long-term thermohaline records in the south-eastern Laptev 

Sea, Dmitrenko et al. [2005] studied the variability of the surface characteristics in the WNS polynya. 

However, the observed strong vertical density stratification in the polynya region and a convective 
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mixing probability of only 20 % implies that its contribution to saline shelf water formation is less 

than expected. 

[6] So far, ice dynamics and ice export rates in the south-eastern Laptev Sea have received 

comparatively little attention. Eicken et al. [1999] investigated the interaction between river water and 

landfast sea-ice through SAR observations and ice growth modelling. Rivera et al. [2005] 

reconstructed the variability of freshwater discharge to the Arctic via the Lena River. The 

comprehensive study of Bareiss et al. [2005], presented sea-ice dynamics in the entire Laptev Sea 

during 24 years from 1979 through 2002 and linked the detected variability to the large-scale 

atmospheric circulation. Nevertheless, accurate satellite based calculations of ice and salt flux in the 

south-eastern Laptev Sea are still missing. The few existing studies are based on passive microwave 

satellite data. Nevertheless, sensor characteristics of the passive microwave radiometer and 

deficiencies in the used sea-ice concentration algorithms that discriminate unambiguously between 

thin ice and open water, limit the accuracy of the obtained results.  

[7] In recognition of its importance, the WNS polynya has been the subject of several Russian-

German research projects in the framework of studies of the Laptev Sea system [Haas et al., 2004a]. 

To examine ice thickness variations, surface circulation regime, salinity and water temperature 

changes in the WNS polynya, two moorings were deployed in the water body close to the fast ice 

edge. In parallel, ENVISAT Advanced Synthetic Aperture Radar (ASAR) images were acquired for 

the period between October 2003 and June 2004 to monitor the evolution of the southern WNS 

(SWNS) polynya. Wide Swath Medium (WSM) resolution image products cover the position of the 

sea floor observatories and the Lena Delta, while Alternating Polarization Mode products (APP) map 

the region around the moorings with higher spatial resolution. Figure 1 presents a map of the Laptev 

Sea, showing the locations of the most prominent flaw polynyas and typical frames of WSM (red) and 

APP (blue) images.  

[8] Our objective is to model the amount of ice produced and brine rejected in the SWNS polynya 

in winter 2003/2004. Therefore we applied an approach developed by Haarpaintner et al. [2001] that 

simulates the polynya evolution in time based on meteorological records and satellite observations. 

The polynya model reconstructs the evolution of thin ice and open water fraction, separately. Using 

algorithms for frazil ice production in open water and ice growth in thin ice regions, the total ice 

production and salt flux is calculated. Since the accuracy of the open water model developed by 

Haarpaintner et al. [2001] is rather weak, we evaluate three slightly different approaches. The 

implementation of tidal forcing and freeze-up events into the open water width model is treated in this 

study. Furthermore we demonstrate the potential of cross-polarization ratios and AVHRR/ASAR 

composites for automatic polynya segmentation. Finally, the modelled increase in water salinity is 
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compared to the long-term average salinity variance measured by Dmitrenko et al. [2005]. This 

provides information about the model accuracy and supports the interpretation of field records.  

[9] This dissertation is structured as follows: Section 2 describes the obtained satellite, climate and 

mooring data and section 3 deals with the general sea-ice regime and the microwave scattering 

evolution of the south-eastern Laptev Sea, derived from ENVISAT ASAR data.  Section 4 introduces 

the applied polynya model and algorithms used for ice growth calculations. Section 5 presents results 

of the modelling approach and examine their sensitivity to meteorological input data and ice partition 

parameters. Section 6 discusses our observations, explains the necessity for further improvements, and 

links the results to earlier studies. Section 7 gives our conclusions. 

 

 

2. Data 

 

2.1 Acquisition and processing of ENVISAT ASAR data 

 

[10] The acquired 45 VV-polarized1 WSM ENVISAT ASAR scenes cover the Lena Delta and the 

southern part of the WNS polynya (50 % of the entire WNS polynya) between October 2003 and June 

2004. The swath width is approximately 400 km with a resolution of 150 m. Scenes were obtained on 

either ascending (around 12 am) or descending (around 2 am) orbits. The mooring positions were 

mapped with 34 APP images. APP products consist of two simultaneously acquired images (VV- and 

HH-polarization), with a swath width of 100 km and a spatial resolution of 30 m. On average, WSM 

images could be obtained 0.9 times a week. The temporal coverage of APP is less, due to a lack of 

satellite ground station visibility. Image acquisition dates are given in Figure 3e.   

[11] The potential of radar for sea-ice mapping and general SAR principles are discussed in 

Kaleschke [2003], Mahafza [1998], Hall [1985] and Massom [1991]. A comprehensive view of the 

SAR imaging geometry, external and internal radiometric calibration and backscatter models for 

different sea-ice types are given in Small et al. [2005], Kaleschke [2003], ESA [1993, 2004a],  

Ulaby et al. [1986] and Sandven et al. [1999]. 

[12] ASAR level 1 products are delivered without geometric and radiometric calibration. The 

radiometric calibration of ENVISAT scenes was carried out with the ESA software B.E.S.T (Basic 

                                                 
1 Polarisation refers to the orientation of the plane of the electric field in conventional imaging radar systems. The ENVISAT ASAR system is designed to 

transmit either vertically polarised or horizontally polarised radiation. This means that the electric field of the wave is in a vertical plane or a horizontal plane. 

Likewise, the radar can receive either vertically or horizontally polarised radiation. Thus the polarisation of a radar image can be HH, for horizontal transmit, 

horizontal receive, VV for vertical transmit, vertical receive, HV for horizontal transmit vertical receive, and vice versa (VH) [ESA, 2004b]. 
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ENVISAT SAR Toolbox). The relationship between the image pixels value (DN), the radar brightness 

(β0) and the radar backscatter coefficient2 (σ0) for ASAR level 1 products is expressed as: 

0
0

02 )(
)sin(

DN σα
α

σ
β ⋅=⋅=⋅= KKK ,    (1) 

 

where K is the absolute calibration constant and α is the local incident angle. According to ESA 

[2004a], K is based on measurements over precision transponders and varies with processor and 

product type and might eventually also change between different beams for the same product. 

Calibrated sigma nought and gamma images for WSM and APP products can be derived by: 
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Finally sigma nought is converted to dB by: 

 

[ ] )(log10 0
10

0 σσ ⋅=dB ,    (1.3) 

 

 

The geometric registration (using the provided geolocation grid information stored in the header) is 

based on standard methods. All scenes were geocoded to an UTM projection. 

[13] The ASAR images and WSM products in particular, show large variations of σº across the full 

swath for most surfaces, because returns due to surface scattering are normally strong at low incidence 

angles and decrease with increasing incidence angle, with a slower rate of decrease for rougher 

surfaces [ESA, 2004b]. For visual image interpretation, comparison and presentation, the effect of the 

incident angle on sigma nought was eliminated by a so called Range-Normalization procedure. 

Following Sandven [2000], we applied a pre-defined range-normalization function to all scenes:  

 

                                                 
2 Scattering coefficient, or the conventional measure of the strength of radar signals reflected by a distributed scatterer, usually expressed in dB. It is a 

normalised dimensionless number, comparing the strength observed to that expected from an area of one square metre. Sigma nought is defined with respect  
to the nominally horizontal plane, and in general has a significant variation with incidence angle, wavelength, and polarisation, as well as with properties of 
the scattering surface itself [ESA, 2004]. 
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DNRN
βασ )tan()( 0 ⋅= ,               (1.4) 

 

For fast ice and pack ice in ASAR images we found β = 1.8 to give overall good results (see Figure 2, 

before and after range-normalization). To eliminate incident angle effects over large open water 

regions, we used 5.2 for β. A flow diagram of the automated calibration procedure for ENVISAT 

ASAR products is given in Figure 2.  

 

 

 

 

2.2 AVHRR and AMSR-E data 

 

[14] For each WSM acquisition date, an Advanced Microwave Scanning Radiometer - EOS 

(AMSR-E) and an Advanced Very High Resolution Radiometer (AVHRR) scene were obtained. 

AMSR-E is a passive-microwave radiometer aboard Aqua.  Sea-ice concentration is calculated using 

the ARTIST (ASI 5) sea-ice algorithm, which is freely available at the University Bremen 

(http://iup.physik.uni-bremen.de:8084/amsr/amsre.html).  

[15] Under cloud free conditions, AVHRR aids radar image interpretation. Global (GAC) and Local 

Area Coverage (LAC) AVHRR data at visible- (channel 1) and infrared- (channel 5) wavelengths was 

downloaded from the NOAA Satellite Active Archive (SAA) and processed with TeraScan software 

by the University of Trier (http://klima.uni-trier.de/).   

 

 

Figure 2. Flow diagram of automated radiometric and geometric radar image calibration.  

 

WSM/APP ENVISAT file (.N1) 

• Convert in internal BEST format 

• Create power image (amplitude²) 

• Calculate sigma nought (σº) 

• Calculate gamma nought (γº) 
 

• Incident angle (α) image generation 
 
 γº =σº/cos(α),  

 

• Range-normalization 
     σº×(tan α)β ,  

• and Lee speckle Filter 

 

• Geometric conversion of σº images and  

α-images  
  1) Export α-image to 32 bit GeoTif  

  2) Export σº image to 32bit GeoTif 

  3) Export σº image and  8bit  GeoTif 

 

 

IDL 

PCI/Geomatics IDL 

BEST 

β = 1.8 
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2.3 Moorings 

 

[16] Two moored oceanographic bottom observatories were deployed on the Laptev Sea shelf for a 

one-year period (August 31, 2003 to September 15, 2004). Objective of the investigation was to 

monitor seasonal variations in currents and suspended particulate matter (SPM) and their implications 

for sediment transport and budget calculations and to relate them to polynya processes  

(Wegener et al., 2005). Both bottom moorings were deployed beneath the fast ice edge at a depth of 

25.4 m and 28.5 m, respectively. The locations of the bottom mooring stations  

(Lena: 74°07'N, 126°25'E and Yana: 74°31'N, 130°19'E) are marked in Figure 1 with solid circles.  

[17] A mooring system consists of an Acoustic Doppler Current Profiler (ADCP) and a 

Conductivity Temperature Depth meter (CTD). ADCPs transmit sound pulses, propagating through 

the water column. The received backscatter intensity at the transducer enables to measure SPM 

concentrations and provides information about the ice thickness above the mooring. ADCP 

measurements were carried out at 1 min intervals and averaged over 30 min. The recorded distance 

between surface and pulse transmitter over time is plotted in Figure 3d. In addition, the ADCP 

provides data on current speed and direction and temperature at different depths. A description of the 

mooring setup is given in Wegener et al. [2005]. Ice thickness retrieval from ADCP and associated 

errors are discussed in Shcherbina [2002]. Unfortunately, rough sea-ice conditions caused the entire 

westerly mooring Yana and the salinity measurement device of mooring Lena to fail. 

 

2.4 Weather data and bathymetry 

 

[18] The meteorological data were provided by the Arctic and Antarctic Research Institute (AARI) 

in St. Petersburg, Russia, and are presented in Figure 3a, b and c. The weather station on Dunai Island, 

indicated as a black cross in Figure 1, recorded wind direction, wind velocity, air temperature and sea 

level pressure in 6-hour intervals. The station is located 50 km and 180 km away from the seafloor 

observatories, respectively.  

[19] Bathymetry data are freely available for the entire Arctic on the NOAA IBCAO homepage 

(http://www.ngdc.noaa.gov/mgg/bathymetry/arctic/arctic.html). Data were masked to the study area 

and contour lines extracted in 5 m intervals.  
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3. Sea-ice regime in the south-eastern Laptev Sea 

 

3.1 Deriving seasonal sea-ice parameters 

 

[20] Figure 5 shows a set of calibrated WSM ASAR images, geocoded to UTM projection, acquired 

between November 14, and June 24. For presentation and to support image interpretation, the radar 

scenes have been speckle-reduced (Lee speckle filter, 3 × 3 kernel) and range-normalized by  

equation 1.4 with β = 1.5. To obtain a general insight of how the sea-ice regime of the Lena Delta 

develops in time, several sea-ice parameters have been extracted manually from the time-series. 

Tracking single prominent ice floes at a spatial sampling rate of 50 × 50 km on two sequential images, 

Figure 3. Meteorological data recorded at the Dunai Station: a) is air temperatures, b) wind 
direction and c) wind velocity and d) is ADCP derived distance between ice/water and 

transmitter. Lines in 2e) show the dates of WSM (solid) and APP (dotted) coverage. 

b) 

c) 

d) 

e) 

a) 
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visualizes the ice drift regime. The temporal sampling rate is between 7 and 10 days and the accuracy 

of tracked positions equal to the pixel size. The drift arrows in Figure 6 represent the ice movements 

between image pairs. The lower end of an arrow indicates where a tracked feature originally came 

from and the arrowhead where it drifted to. In addition to sea-ice drift, fast ice extent and grounded ice 

floes were mapped (indicated by the orange lines). Based on the ice tracking approach a number of 

statistics, such as mean sea-ice drift velocity and direction, were derived. A linkage of the sea-ice drift 

parameters to meteorological forcing shows that the ice drift direction in the Laptev Sea is mainly 

governed by wind direction. Figure 4 plots the observed wind direction averaged between two image 

dates over the observed mean sea-ice drift extracted from image overlap. The correlation coefficient r 

is 0.77. The agreement between recorded wind velocity and ice drift velocity is less (r = 0.4), since ice 

drift distance is strongly affected by the presents of grounded ice or fast ice in track direction and 

varying drift-resistances in open water, thin ice and pack ice zones. The high correlation coefficient 

between wind direction and drift direction suggest that the Dunai weather station is representative for 

the northern Lena Delta and the SWNS polynya. The correlation between ice movement and ocean 

current information recorded by the seafloor mooring is rather poor. 

 

3.2 Seasonal sea-ice variability 

 

[21] The interpretation of the ASAR images is supported by wind and air temperature records and 

sea level pressure data, obtained at the Dunai weather station in winter 2003/2004. From October 

2003 on, the recorded temperatures continuously decreased until a minimum of -40°C was reached in 

early January (Figure 3a). Temperatures remained around -30°C to -40°C throughout the winter and 

rose only slowly in April. The temperatures exceeded freezing point of sea water (-1.8°C) first time in 

 

Figure 4. Mean wind direction, recorded at the Dunai weather station between two adjacent 

image dates, over mean sea ice drift direction, extracted from image overlap.  
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the beginning of June. This threshold marks the change from a positive to a negative atmosphere-

ocean heat budget and indicates the end of the ice production period. The wind regime is presented in 

Figure 3b. As discussed later, the wind directions revealed two main wind regimes  

[Haas et al., 2004a]. Between October and end of January, the histogram peaked at 180° (southerly 

winds), while in the second half of winter winds prevailed at 90° (easterly winds). The average wind 

speed recorded at the weather station is around 4.3 m sec-1.  In addition to climate data, the seafloor 

mooring aids image interpretation, since continuous single point information about ice thickness 

supports ice type classification. 

[22] According to passive microwave observations [Bareiss et al. 2005], freeze-up in the south-

eastern Laptev Sea starts on September 25 (± 8.5 days). 2-3 weeks after temperatures dropped below 

0°C, ice formation commences in the coastal shallow waters of the south-eastern Laptev Sea. In 

November, most of our study area is covered with a freely floating first-year ice cover and partially 

grounded fast ice. Convective mixing induced by strong winds in October/November quickly cooled 

the water body and accelerated ice formation in shallow parts. An ASAR image taken on  

November 14, (Figure 5a) shows that a narrow fast ice cover has established along the southern shelf. 

Ice formation is speeded up by river discharge that lowers the water salinity. In the first 3 weeks of 

November, a narrow band of high-backscatter ice developes along the coast, mostly confined to the 

area adjacent to the main river channels, which account for between 80% and 90% of the total Lena 

discharge.  The band closely follows the 10 m isobaths and is coincident with regions of low salinity 

(0.1‰) [Eicken et al., 2005]. In the region of our westerly mooring, banded structures indicate spots 

of ice production and the existents of a small coastal polynya. A period of strong persistent winds led 

to a partial break up of the fast ice cover [Haas et al., 2004a] between end of November and mid of 

December. Ice was advected north-eastward (Figure 6b), so that a large coastal polynya can be seen 

along the fast ice edge in Figure 5b. Wind roughened open water surface with Langmuir strike (see 

section 3.4) are visible throughout the scene. This event shows that a stable fast ice cover does not 

develop before the middle of December [Haas et al., 2004a]. Break up events are expected to play an 

important role for sediment transport and sea-ice formation in the south-eastern Laptev Sea  

[Wegener et al., 2005; Reimnitz et al., 1994]. Strong winds accompanied by low air temperatures 

supercool the entire water column and speed up the re-freezing process. In addition, high drift rates 

contribute to grounding and deformation of the freely floating first-year ice, which leads to the 

development of a large grounded area over a shallow bank southwest of the elliptical shaped island 

(Figure 6c). During the next 4 weeks, the distribution of fast ice hardly changed. Prevailing southern 

winds push the ice northward out of the delta (Figure 6d and 6e). A small peak in the bottom 

topography (10m depths) at 129.15° E and 74.15° N, close to the 25m isobaths, acts as a cork. A 

grounded  small  ice  flow,  which was already immobile from the very beginning, rapidly increases in  



T.Krumpen / Master Thesis Earth Observation 2006 

 15 

!A

!A

125°E 126°E 127°E 128°E 129°E 130°E 131°E 132°E 133°E 134°E

73°N

74°N

75°N

Lena Delta

0 50 10025 Kilometers

November 14, 2003
12:30:22

!A

!A

125°E 126°E 127°E 128°E 129°E 130°E 131°E 132°E 133°E 134°E

73°N

74°N

75°N

Lena Delta

0 50 10025 Kilometers

December 7, 2003
12:07:25

!A

!A

125°E 126°E 127°E 128°E 129°E 130°E 131°E 132°E 133°E 134°E

73°N

74°N

75°N

Lena Delta

0 50 10025 Kilometers

January 14, 2004
12:13:21

!A

!A

125°E 126°E 127°E 128°E 129°E 130°E 131°E 132°E 133°E 134°E

73°N

74°N

75°N

Lena Delta

0 50 10025 Kilometers

February 18, 2004 
12:13:20

 

!A

!A

125°E 126°E 127°E 128°E 129°E 130°E 131°E 132°E 133°E 134°E

73°N

74°N

75°N

Lena Delta

0 50 10025 Kilometers

March 5, 2004
12:10:29

!A

!A

125°E 126°E 127°E 128°E 129°E 130°E 131°E 132°E 133°E 134°E

73°N

74°N

75°N

Lena Delta

0 50 10025 Kilometers

April 28, 2004
12:13:20

 

a) b) 

c) d) 

e) f) 



T.Krumpen / Master Thesis Earth Observation 2006 

 16 

!A

!A

125°E 126°E 127°E 128°E 129°E 130°E 131°E 132°E 133°E 134°E

73°N

74°N

75°N

Lena Delta

0 50 10025 Kilometers

May 20, 2004
02:27:28

!A

!A

125°E 126°E 127°E 128°E 129°E 130°E 131°E 132°E 133°E 134°E

73°N

74°N

75°N

Lena Delta

0 50 10025 Kilometers

June 24, 2004
12:22:02

 

 
 

 
 

 

b) 

 

a) 

 

Figure 5. Time-series of ASAR-VV WSM images between November 2003 and June 2004. 
Images are calibrated and range-normalized.  
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size, until ice export out of the southern shallow regions stops. On January 14 (Figure 5c and  

Figure 6f), the fast ice cover is finally fully developed, but the break-up events have left it 

homogeneous. 

[23] From January on, the fast ice edge closely followed the 25 m depth contour. As discussed by 

Dmitrenko et al. [1999], the landfast ice extent in the south-eastern Laptev Sea is linked to the 

dispersal of river freshwater prior to fall freeze-up through its impact on thermohaline circulation and 

stabilization of the ice cover. Therefore, large interannual differences in landfast ice extend can be 

observed [Eicken et al., 2005; Bareiss et al., 2005].  Between fast ice and seaward drift ice, zones of 

ice-free water or young ice are formed. Opening and closing of the SWNS flaw polynya varies in time 

and is mainly driven by wind directions and wind velocities.  Section 4, 5 and 6 discuss the polynya 

dynamics and sea-ice export in the southern part in detail, using a polynya flux-model. Figure 5 d, e, f, 

g and h show different stages of the southern SWNS polynya in February, March, April, May and 

June. 

 

3.3 Microwave scattering evolution of the system 

 

[24] The strength of the backscattered signal increases until the end of December and varies only 

slightly across the winter. Recent research results have shown that a distinct pattern exists for the 

seasonal evolution of the microwave scattering coefficient over various sea-ice types [Barber et al., 

2000; Drinkwater, 1989; Eicken et al., 2005]. Phenomenological patterns in the σ0 cycle of sea-ice 

features vary with the dielectric properties of the material, incident angle, frequency and sensor 

polarization [Belchansky et al., 2004]. To demonstrate the capability of the seasonal microwave 

scattering evolution for measuring geophysical and thermodynamic sea-ice states, we routinely 

e) 

 
f) 

 

Figure 6. Sea-ice drift (arrows) and fast ice extend (orange lines) during the freeze-up period. 
Recorded mean wind velocity and direction between image pairs is plotted in the lower left.  
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extracted backscatter time-series at different sampling points for fixed incident angles. A fixed 

incident angle geometry means, that observed changes in σ0 can be attributed solely to changes in the 

dielectric properties of the material and not to imaging angle [Yackel et al., 2000].  For demonstration, 

the σ0 evolution of fast ice and ice adjacent to the river mouth is presented below: 

[25] The upper right panel in Figure 7 presents the backscatter evolution of fast ice in WSM 

imagery at two different sample points. The mean σ0 was calculated over a 150 x 150 pixel kernel. 

Following Livingstone et al. [1987], the phenomenological σ0 cycle can be classified in freeze-up-, 

winter-, early melt- and melt onset periods. The freeze-up period for fast ice is characterized by high 

amplitude of microwave scattering (Figure 7a). The presence of frost flowers temporarily strengthens 

the received signal, until snow deposition in mid December reduces scattering and breaks down the 

frost flower effect [Barber et al,, 2000]. During winter period (Figure 7b, January to May) the 

microwave backscatter oscillates only slightly. Following Yackel et al. [2000], the oscillation is driven 

by atmospheric forcing of the snow/ice interface temperature. Compared to grounded ice that  

characterize the western Arctic shelves, the backscattered fast ice signatures in the south-eastern 

Laptev Sea are generally low (-17.56 ± 0.67 dB in winter). According to Eicken et al. [2005] the low 

σ
0 values can only be explained by the lack of roughness or deformation features. The melt-onset of 

fast ice (Figure 7c) is accompanied by an increase of reflected microwave energy. There are two 

mechanisms responsible for the observed increase. At relatively low water volumes (1 to 3 %) the 

large brine wetted snow grains in the basal layer contribute a significant volume scattering term to σ0. 

Figure 7. Seasonal evolution of σ
0
 at 5.3 GHz (based on ENVISAT data) for fast ice (15 

images at incident angle 30°) and river mouth ice (21 images at incident angle 33°). 
Backscatter was extracted at sample locations specified in the left image. A description of the 

seasonal sigma nought evolution is given in the text. 
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As the water in liquid phase continues to increase, it is likely that the snow surface contributes a 

surface scattering term to σ0 [Barber et al., 2000]. 

[26] The increase in fast ice radar brightness at the end of winter is widely used to estimate the time 

of melt-onset. Monitoring and mapping melt parameters using active and passive microwave data 

provide spatial and temporal information about variations in the surface energy balance. Therefore we 

developed an algorithm, calculating winter σ0 means for sample points throughout the fast ice area, 

and interpolating the backscatter evolution in between two image pairs by a linear function. Then a 

threshold value for the melt-onset is defined. The day when σ0
n > threshold value is taken as the melt 

onset. Various detection methods and threshold settings are discussed in literature [Belchansky et al., 

2004; Cavalieri et al., 1990; Winebrenner et al., 1994].  

[27] The phenomenological profile of ice located next to the river mouth (bottomfast ice) 

significantly differs from fast ice.  A continuous increase in backscatter until end of December is 

related to ice thickening taking place (Figure 7d). Following Jeffries et al. [1996] and  

Eicken et al. [2005], the high backscatter coefficient of low salinity ice in the rivermouth during 

winter months is caused by tabular air inclusions (Figure 7e). Grey tones in the rivermouth zone vary 

between -6 dB and -12 dB. Variations can be partially explained whether the ice is frozen to the 

bottom or not. Light tones denote strong backscatter from ice that has water beneath it (high dielectric 

constant). Darker tones denote from ice that is frozen to the bottom (lower dielectric contrast at ice-

water interface). The rapid decrease in sigma nought in May is presumably caused by flooding events 

(Figure 7f). On average, river flooding starts between end of May and beginning of June  

[Bareiss et al., 2005]. The overflow of the nearshore ice dampens microwave scattering and speeds up 

fast ice melting and retreat.  

[28] For mapping of coastal flooding events, an algorithm was developed, that automatically detects 

overflow-related decreases in σ0. Due to lack of time for the preparation of this thesis, the introduced 

algorithms for melt- and flooding-onset detection are far from finished. Inconsistencies have been 

found and further calibration needs to be carried out first. In addition we found the temporal coverage 

of our time series in spring to be insufficient for measuring geophysical and thermodynamic sea-ice 

states, as it does not extent far enough into July.  

 

3.4 Polynya backscatter signatures 

 

[29] Because of their accessibility, coastal and flaw polynyas have been studied more frequently 

than sensible heat polynyas3. Figure 8 presents an idealized schematic drawing of the geophysical 

processes taking place inside the SWNS polynya and a corresponding ASAR backscatter profile from 

                                                 
3

 Thermally driven polynya. They appear as a result of oceanic sensible heat entering the area of polynya formation in amounts large enough to melt any pre-

existing ice and prevent the growth of new ice [Morales Maqueda et al., 2004]. 
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an image taken on March 8, 2004: Prevailing southerly winds (180°) advect the ice cover away so that 

open water is exposed and heat is released to the air. With distance from the coast, the wave amplitude 

and wavelength increase and so does the backscattered radar energy (see radar profile Figure 8b). For 

wind speeds greater than 5 m s-1, the interaction of the wave with the wind stress creates circulation 

within the water column. Following Martin [2001], “the circulation consist of rotating vortices with 

the rotor axes approximately parallel to the surface winds, where adjacent rotors turn in opposite 

directions and the rotor diameter is approximately equal to the bottom depths in well mixed 

waters…”. The circulation (convective mixing) and wave interaction mixes the upper water column 

and cools it down to freezing point so that frazil crystals4 are formed. Brine rejection during the 

formation of frazil ice increases the thickness of the convective mixing layer and eventually 

contributes to the development of cold saline waters.  

[30] Once ice crystals reach the surface, the circulation herds them into slurries, visible as grey 

strikes (Langmuir strikes) in between bright water strips on the ASAR image (Figure 9). Wind pushes 

 

 

 

                                                 
4 Collection of loose, randomly oriented ice crystals formed below −1.8 °C [Wikipedia] 

Figure 8. Schematic drawing of geophysical processes taking place inside the SWNS flaw 
polynya and the corresponding SAR backscatter profile from an ENVISAT WSM VV image 
taken on March 8, 2004. The different sections of the SAR profile are explained in the text.  

 

a) b) c) d) e) f) 
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the long bands of grease ice downwind, so they increase in thickness and damp out the wave 

amplitude and frequency.  Finally, the grease ice surface freezes and pancake ice is formed through 

longer ocean swell and wave-induced collisions, until the thin ice piles up against the edge of the pack 

ice or freely floating fast ice. In section c of Figure 8, the radar profile exhibits a downwind increase 

in  intensity provoked by increasing surface roughness. The inhomogeneous backscatter profile of 

section 8d represents a large ice floe that broke off earlier from the fast ice edge.  Both, the downwind 

and upwind site of the thick floe shows pile-up and deformation signatures (high σ0).   Profile 8e 

belongs to an older thin ice area. Since ice thickening took place, scattering is slightly reduced 

compared to the newly formed thin ice of profile 8c.  

[30] Under calm wind conditions (less than 5 m s-1), the ice export slows down and frazil ice or thin 

ice is formed immediately adjacent to the coast [Martin, 2001]. The Langmuir circulation is no longer 

evident in the radar image. If the wind stops blowing completely, the slurries and thin ice cover freeze 

into a solid thin ice layer, the so called nilas ice.  

 

 

 

 

 

4. Polynya evolution and ice production model 

 

[31] Because in general, coupled ice-ocean general circulation models (OGCMs) do not have a 

sufficient spatial resolution to represent polynya events, special polynya models are widely used to 

predict how the area of a polynya will develop in time. The polynya flux models, boundary layer 

models or dynamic-thermodynamic sea-ice models provide more accurate information about ice 

Figure 9. A ENVISAT APP colour composite of the SWNS polynya on March 25 (R: HH; G: 
VV; B: VV). The width of the polynya is approximately 6 km. The wind direction is 115° and 
the wind velocity around 7 m sec-1. On the image, a) is the fast ice cover, b) shows a narrow 
wind roughened open water stripe, c) is the Langmuir plumes (parallel to the wind direction), 
d) is grease ice, e) is piled up thin ice and grease ice and f) is pack ice and freely floating fast 
ice.  

 

a) 

b) 

c) 

d) 

e) 

f) 

5 km 
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formation and associated salt rejection to parameterize the water mass transformation processes that 

take place within OGCMs [Morales Maqueda et al., 2004]. As inputs for polynya models, oceanic and 

meteorological data are required. In addition, the implementation of geophysical processes such as 

frazil and consolidated ice drift velocity and thickness, ice pile up and rafting is crucial. 

[32] In this study, the model used to reconstruct the ice flux of the SWNS polynya is based on an 

approach of Haarpaintner et al. [2001]. The model is categorized as a flux model which was first 

formulated by Pease [1987], embracing an idea of Lebedev [1968] that wind-generated coastal 

polynyas attain a certain maximum size. According to Pease’s Steady State Model, which describes 

the polynya size in terms of four variables, the width is determined by a balance between ice 

production within the polynya and the flux of ice out of the polynya: 

 

R = hc  ⋅ Uice dirft / hf ,      (2) 

 

where R is the polynya width, hc the consolidated frazil ice accumulation thickness, Uice drift the ice 

export velocity away from the polynya and hf the frazil ice growth in open water regions given in  

m sec-1 [Drucker et al., 2003]. 

[33] The Haarpaintner polynya approach, which was first applied to the Storfjorden polynya during 

winter 1997/1998, idealizes ice dynamics by the classification of the ice cover on pairs of ASAR 

images and interpolates in between using polynya widths models. The open water widths ROW and the 

total polynya widths Rtotal are separately reconstructed. Within the open water area, frazil ice is 

assumed to grow at a rate determined from the surface heat budget [Cavalieri et al., 1994]. Wind 

stress herds the frazil ice downwind until it consolidates as new ice with the thickness hc at the 

offshore edge of the polynya. Surface currents are not taken into account. The continuous thin ice 

growth (dH) in the thin ice area is calculated based on Stefan’s law, assuming an initial thin ice 

thickness of hc for every polynya event. Based on the calculated ice growth dH and frazil ice growth 

hf, the associated brine production is derived.  

[34] The following sections explain the method used and formulates the algorithms. The results are 

discussed and compared to literature in section 6. For a more extensive description of the applied 

algorithms see Haarpaintner et al. [2001]. A model work flow is given in the Appendix (A1). 

 

4.1 Modelling polynya evolution 

4.1.1 Polynya segmentation 

 

[35] To calibrate the polynya width model, polynya widths information is extracted manually from 

the calibrated satellite imagery. 45 WSM-, 34 APP-ENVISAT and 150 AVHRR images provide
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valuable information about the SWNS polynya evolution in time. Details about processing and image 

enhancement for visual interpretation and segmentation are given in chapter 2.1 and 2.2.  

[36] In the images we consider regions of four different ice types: Open water and thin ice, defining 

the active polynya zone, and fast ice and old deformed thin ice or pack ice, limiting the polynya 

dimension. Along three lines parallel to the dominant wind direction (ϕo) with the strongest effect in 

opening of the polynya, the widths of the active zone is measured and averaged to a total single 

polynya width. Figure 10 shows a WSM ASAR image taken on February 18, 2004, classifying the 

SWNS polynya into thin ice, open water, old thin ice and fast ice. The polynya widths measurement 

lines are indicated by white dashed bars.  

[37] The challenge is to reliably identify the active polynya extent consisting of thin ice and open 

water. The fast ice region, limiting the southern extent of the SWNS polynya, is assumed to be 

constant, since it is not moving. The downwind polynya extent is restrained by pack ice or older 

deformed thin ice coverage. The homogeneous backscatter of old thin ice, fast ice and pack ice shows 

only moderate or no changes in sequential images. 

Figure 10. WSM image taken on February 18, 2004, segmented into four different features: 
Open water, fast ice, older thin ice and thin ice. The dashed bars represent polynya width 
measurement lines.   
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[38] The backscatter coefficient of the polynya itself is quite variable with strong dynamics in the 

time-series. The appearance of open water in the ENVISAT scenes is a function of incident angle,  

wind velocity and open water width. The generated wind-wave field strengthens the backscattered 

microwave energy as the wave amplitude and wavelength increase away from the coast. Under windy 

conditions (wind speed greater than about 5-10 m s-1) [Martin, 2001], the presence of Langmuir 

circulation parallel to the wind direction supports the identification of open water in ASAR imagery. 

A low sea state (wind speed less than 5 m s-1) results in development of nilas ice. Similar to open 

water at calm wind conditions, this very thin elastic crust of ice has a low backscatter coefficient. 

Discrimination of ice/water is therefore complicated and not always possible with low resolution  

VV-polarized WSM images alone. 

[39] To more accurately depict the location of the ice edge, ice concentration and ice stage of 

development we use ASAR/AVHRR composites from near-concurrent images. Due to a lack of time 

for preparing the thesis, the absolute Ice Surface Temperature (IST) could not be derived from the  

 atmospherically corrected AVHRR images. However, the combination of the radar texture with the  

AVHRR information of channel 5 reveals sufficient additional indices for open water identification. 

Figure 11 shows an atmospherically corrected AVHRR image (channel 5) taken on February 26, pan-

sharpened with a WSM scene, taken approximately one day later. The spatial distribution of bright 

AVHRR pixels (red in the composite) coincide with locations of Langmuir stripes in the radar image. 

We therefore expect bright pixels to be equal to the freezing point of open water (-1.8 °C) and dark 

ones to be close to the recorded air temperatures appearance of fast ice and pack ice: The dark first  

Figure 11. AVHRR and WSM ASAR composite 
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Figure 12. Automatic polynya classification of an APP image taken on March 4, 2004: The co-
polarization ratio c) of a VV- and HH-polarized APP ENVISAT image a) and b) is segmented 
using a simple threshold based classifier d). A colour composite of HH, VV and VV/HH-
polarization is given in e). A WSM scene (March 5, 2004) covering the same region with lower 
spatial resolution is given in f).   
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year ice in the south is nerved by bright bands indicating ice deformation processes. The rough surface 

and higher volume scattering of the pack ice in the north results in a brighter and more 

inhomogeneous signature. Using only low resolution WSM imagery (f), the area in between the fast- 

and multi year ice is difficult to define. However, the co-polarization ratio enables a more exact 

differentiation. Since the ratio of VV to HH backscatter is larger than 1 for open water and nilas ice, 

but close to 1 for fast ice and pack ice, thicker ice is seen to be much darker on the co-polarization 

ratio image (c), independent of incidence angle or wind condition. The sharp contrast between fast 

ice/pack ice and thin ice/open water in co-polarization ratios certainly possess great potential for 

automatic polynya segmentation. For demonstration, we applied a simple threshold based classifier to 

the filtered HH/VV image (d).  

[41] Despite of the amount of satellite data and segmentation techniques used, on several images it 

is still very difficult to discriminate the active polynya zone from the adjacent ice. These images have 

been excluded from the model calibration procedure (see section 6.1). 

 

4.1.2 Total polynya width reconstruction 

 

[42] Following Haarpaintner et al. [2001], the first model approach is to reconstruct and interpolate 

the evolution of the polynya in size, estimated subjectively from the ASAR imagery. According to 

Pease [1987], opening and closing of latent heat polynyas in time can be described in terms of wind 

direction, wind velocity and ice export. Thus, Haarpaintner et al. developed a simple wind-driven ice 

drift algorithm:  

  

Rtotal = Rtotal (n-1) + A(ϕn - ϕo) ⋅ BI ⋅ U ⋅ cos(ϕn - ϕo) ⋅ ∆t ,            (3) 

 

where Rtotal is the polynya width at time n (sum of thin ice width  and open water width), U is the wind 

velocity in m sec-1, in our case recorded at the Dunai weather station, ∆t the time interval between two 

meteorological measurements  and  BI  the thin ice drift velocity in percent of wind speed. A(ϕn - ϕo) is 

the opening and closing factor, where ϕn is the recorded wind direction and ϕo is the dominant wind 

direction with strongest effect on the opening of the polynya. The constant A(ϕn-ϕo) factor, which 

differs for opening and closing, is defined by:  

 

if  -90°< ϕn - ϕo > 90° ⇒  opening 

     if   90°< ϕn - ϕo > 270° ⇒  closing,    (3.1) 
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Figure 14. Model calibration: Observed over modelled ice drift rates (Uice drift) 

 

 

 

The meteorological data recorded at the Dunai station reveals two main wind directions in the south-

eastern Laptev Sea: The wind direction plot in Figure 2 peaks at 180° (southerly winds) in early 

winter between October and end of January and at 90° (easterly winds) after February [Haas et al., 

2004a]. Consequently, we found that southern winds open the polynya until early February, while in 

second half of winter eastern winds govern the polynya form. Opposite wind directions result in a 

close up. Therefore, we model the widths evolution under the two wind regimes separately, using 

different A(ϕn-ϕo)  constants, one for the first and one for the second half of winter.  

Figure 13. Ice flows inside the polynya are tracked on 8 WSM image pairs. The Figure plots 
the observed BI   values over the recorded wind direction between image dates.  
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[43] The ice drift velocity of thin ice BI is typically taken as 2% (0.02) of the wind velocity 

[Nansen, 1906]. To obtain more precise information about BI in the SWNS polynya, ice floes inside 

the thin ice regions are tracked on 8 ASAR image pairs between February 05, and May 26, with 

approximately 10 hour time difference. Figure 13 plots the 8 measured BI values over the recorded 

wind direction between two image dates. The thin ice drift velocity BI   in percent of U peaks with  

1.8 % at a wind direction of 100°. Based on 

 

Uice drift = U ⋅BI ⋅ cos(ϕn - ϕo) ⋅ ∆t ⋅ A(ϕn - ϕo),   (3.2) 

 

a sensitivity study of A(ϕn-ϕo)  and ϕo is performed, taking BI as 1.8 % (0.018). Figure 14 presents the 

observed and modelled Uice drift. For the second winter period, dominated by eastern winds, the highest 

correlation of 0.89 is found, if setting the dominant wind direction (ϕo) to 100° and A(ϕn-ϕo) to 0.8 

(opening) and 13 (closing). A systematic validation of the early winter period through equation 3.2 is 

not possible, since only three ASAR observations between January 07, and February 05, are available.  

For further fine-tuning, the results of the sensitivity study for the second winter period are used as 

inputs for equation 3. The model gives best fit between observed and calculated Rtotal at ϕo = 110°, 

A(ϕn-ϕo) = 0.72 (opening) and 15 (closing) (Figure 15). The early winter period, dominated by 

southerly winds, is roughly calibrated using the three ASAR observations by setting ϕo to 180° and 

A(ϕn-ϕo) to 0.72 (opening) and 14 (closing), respectively. Table 1 summarizes the parameterized 

driving forces for opening and closing events under the two wind regimes.   

 

Winter 

period 
ϕo 

A(ϕn-ϕo)  

opening 

A(ϕn-ϕo)  

closing 

BI 

Oct. – Jan. 180° 0.72 14 0.018 

Feb. - June 110° 0.72 15 0.018 

 

It was found that most of the time closing occurs much faster than opening. This can be explained by 

the frazil ice that accumulates at the lee-site of the polynya under a north-western wind regime, which 

consolidates and closes the polynya by thickening and compression. If temperatures rise about -1.8°C 

(freezing point of sea water), the net heat flux of open water becomes negative, frazil ice production 

stops and polynya closing events are slowed down. Therefore, the model is limited to air temperatures 

below -1.8°C.  

Table 1. Total width model inputs (equation 3.2) for the SWNS polynya 
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4.1.3 Open water width reconstruction 

 

[44] To reconstruct the evolution of open water, three different open water models are applied and 

evaluated.  

[45] The first approach (Equation 4) takes the effect of high frazil ice production rates (see section 

4.2.2) during periods of low air temperatures and high wind speeds on open water dynamics into 

account. Following Haarpaintner et al. [2001], the open water fraction of the total polynya width can 

be expressed as:  

ROW = ROW (n-1) ⋅ 












 ∆
−

c

f

h

h
1 + bI ⋅ U ⋅ cos(ϕn - ϕo) ⋅ ∆t,   (4) 

 

where ROW is the open water width at time n, bI is the frazil ice drift velocity in percent of the wind 

speed (1 % higher than BI), hc is the consolidated frazil ice thickness and ∆ hf is the amount of frazil 

ice produced between n and n-1 (see section 4.2.2). The polynya fraction covered with open water is 

given by (1- hc / ∆ hf ). Thus, high frazil ice production rates (∆ hf) close, while low ice production 

rates enlarge the open water area. The consolidated frazil ice thickness hc is chosen during model 

calibration such that the modelled open water widths match the satellite observations. In literature, 

different values to account for the accumulation thickness hc are used. Pease [1987] assume that hc is 

between 5 and 30 cm, Haarpaintner et al. [2001] assume hc to be 20 cm, and Windsor et al. [2000] 

assume that the accumulation thickness is a linear function of the 10-m wind speed. Morales Maqueda 

et al. [2000] choose hc as 10 cm, and Biggs et al. [2000] set hc to 48 cm [Drucker et al., 2003]. Our 

Figure 15. Model calibration: Observed (ASAR) over modelled polynya width (r = 0.92), 

setting ϕo to 110°, A(ϕn-ϕo)  to 0.72 (opening) and 15 (closing) and BI to 1.8 % 
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modelled open water widths fit the satellite observations best, if hc is constant around 11 cm. Figure 

16a shows the regression plot between modelled and observed open water widths for a constant hc (r = 

0.635).  

[46] Following Pease [1987], the velocity of frazil ice in percent of wind speed bI is taken to be 1% 

(0.01) higher than BI , since the drift resistance in open water zones is less than in thin ice zones. 

Therefore, frazil ice can be expected to accumulate faster on the thin ice lee-side under windy 

conditions. This effect is simulated, if hc is supposed to be a function of wind-velocity. The 

implementation of a logarithmic hc that increase from 5cm to 15cm as the wind velocity increases 

from 1 to 8 m sec-1  

 

hc = 0.05 · log (U) + 0.04 ,     (4.1) 

 

results in a slightly higher correlation coefficient r of 0.643 (Figure 16b).  

[47] In the third ROW approach, we neglect the ∆ hf / hc  ratio of equation 4. Comparing different 

polynya stages from ASAR imagery with meteorological data shows that equation 4 underestimates 

the velocity of freeze-up events under periods of weak and very cold winds. Since the frazil ice 

production rate ∆hc considered in equation 4 is empirically included in the A(ϕn-ϕo)  factor, we 

implement freeze-up events in equation 3 by: 

 

  if U > 3  m sec-1
:      

  ROW = ROW (n-1) + A(ϕn-ϕo)  ⋅bI ⋅ U ⋅ cos(ϕn - ϕo) ∆t , 

         if U < 3  m sec-1 for ∆t > 48 hours: 

              ROW = 0 ,      (5) 

 

The A(ϕn-ϕo) values are taken from equation 3. The freeze-up threshold (U < 3 m sec-1 for ∆t > 48 

hours) is chosen during model calibration, such that the open water widths extracted from ASAR 

imagery match the modelled widths. The obtained correlation coefficient r is  0.7. Before ice can drift 

northward and re-open the polynya after freeze-up events, some energy is needed to break-up the 

newly formed thin ice layer from the fast ice edge. The delay of break-up events varies with the drag 

forces acting on the ice cover. We expect it to be a function of wind velocity, wind direction and sea-

ice roughness (deformation). However, due to a lack of ASAR observations, this process could not be 

reliably implemented so far. Figure 16c presents the regression plot of the third open water modelling 

approach. The effect of using different open water models (constant hc, logarithmic hc and freeze-up 

simulation) on the total ice and salt flux is discussed in section 5.1.   
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4.1.4 Polynya area 

 

[48] We apply equation 3 through 5 to interpolate the total polynya widths and the open water 

fractions. The width of the thin ice cover is calculated by:  

 

RTI = Rtotal –ROW , 

 

AVHRR imagery and AMSR-E sea-ice concentration data show that the SWNS polynya is relatively 

constant in length during winter 2003/2004. For calculation of open water (AOW) and thin ice area 

(ATI), the thin ice and open water widths is multiplied with a 195 km length l (Figure 17):  

 

    Atotal = Rtotal  · l = AOW  + ATI  = (ROW  · l)+( RTI  · l) ,   (6) 

 

 
4.2 Modelling ice growth 

   

4.2.1 Open water heat budget  

 

[49] Over open water or thin ice (<10 cm thick, so that thermal inertia can be neglected) the surface 

heat balance can be decomposed as: 

 

        QT + QL -  QB – QS = Qnet ,     (7) 

 

Figure 16. Regression plots of observed (ASAR) and calculated (model) open water widths. a) 

gives the model performance using a constant hc value, b) using a logarithmic hc value and c) 

using a freeze-up threshold. 

 

a) b) c) 
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where  QT is the upward turbulent heat flux, QL is the upward component of the longwave radiation 

emitted by the sea, QB is the downward atmospheric longwave radiation absorbed at the ocean surface 

and QS is the shortwave solar radiation. If Qnet is positive, the water column gains heat. The terms 

given in equation 7 are described below: 

[50] The turbulent heat flux is expressed as: 

 

QT  = ρa C cp U(Ta –Ts),     (7.1) 

 

with air density ρa of 1.3 kg m-3, a heat transfer coefficient C of 2.0 × 10-3 and the specific heat of air 

at constant pressure cp of 1004 J deg-1 kg-1. U is the wind speed and Ta is the air temperature observed 

at the nearby weather station. Ts  is the sea surface temperature. The ocean surface in the polynya is 

assumed to be at the freezing point of sea water during the winter period (Ts = -1.8 °C). Turbulent heat 

losses is the single most important component of the surface heat balance over winter polynyas, 

contributing up to 75% of the total heat loss [Winsor et al., 2000].  

[51] The emitted upward component of the longwave radiation is expressed by the Stefan-

Boltzmann law: 

 

       QL = εs σ Ts
4  ,     (7.2) 

 

where σ is the Stefan-Boltzmann constant and εs the water surface emissivity (0.98). Because the sea 

surface temperature Ts is fixed at -1.8°C, the upward longwave radiation Qlwo is constant around 

298 W m-2.  

Figure 17. Geometry of the SWNS polynya. RTI and ROW are the thin ice and open water width, 

respectively. l defines the polynya length and ϕo is to the dominant wind direction. The area 

(orange square) is the product of polynya width and polynya length.   
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[52] The downward atmospheric longwave radiation Qlwa is expressed as: 

 

QB = εs (εa σ Ta
4),     (7.3) 

 

where εa =0.7829 (1 + 0.2232 ⋅ CL
2.75

) and CL is the cloud cover. Since we do not have cloud 

observations over the Lena Delta between January and June 2004, CL is assumed to be constant at 0.8. 

Following Maykut [1986], for air temperatures within the range from -20°C to 0°C, the difference in 

QB between clear conditions and overcast is only 40 Wm-2. The sensitivity study in section 5.1 

evaluates the effect of varying cloud coverage (± 0.2) on the salt and ice flux calculation.  

[53] The net shortwave radiation is an important component of the surface heat budget in the 

summer period when the sun is high enough above the horizon, but can be neglected during winter. 

Following Markus et al. [1998], the incoming solar radiation is 

 

     QS = 
1.010 z) cos  (2.7  z cos1.085

z cos S
3

 p

2
0

+⋅++⋅

⋅
−υ

,   (7.4) 

  

where S0 is the solar constant (1353 W m-2), υp  is the vapour pressure and z is the sun zenith angle 

expressed by: 

 

            cos z = (sin φ ⋅ sin ι) + (cos φ ⋅ cos τ ⋅ cos ι) ,   (7.5) 

 

with φ = latitude and τ = solar hour angle.  υp is calculated by: 

 

        υp  = rH ⋅ υsat   with υsat  = 
)/(

1011.6 aa TT +⋅⋅ βα ,   (7.6)

 

where rH is the relative humidity (fixed to 0.8), α = 7.5 and β = 237.3.  

[54] For a fuller description of net shortwave radiation calculation see Markus et al., [1998] and 

Haarpaintner et al. [2001]. The single components of equation 7 are presented in Figure 18.  

 

4.2.2 Frazil ice accumulation 

 

[55] After applying equation 7 through 7.6 to derive netQ , the frazil ice production in the water 

column is calculated by: 
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fh∆  = t
L

Q

sf

net ∆⋅
⋅ρ

,     (8) 

 

where ρf  is the frazil ice density of 950 kg m-3 and sL  is the latent heat of fusion for sea-ice: 

  

Ls = 







⋅−⋅⋅+⋅+⋅−⋅−⋅ ss

s
s 009.08.0431153.27T505.068.79187.4 TTS

T

S
S ice

ice
ice , (8.1) 

 

sL varies with the water (Swater) and ice salinity (Sice). Following Martin et al. [1981], the salinity of 

ice is expressed as: 

 

     Sice = 0.31 ⋅ Swater,     (8.2) 

 

Based on hydrological data from 1979 to 1999 the average water salinity of the upper water layer in 

the SWNS polynya is assumed to be 28 psu [Dmitrenko et al., 2005]. This corresponds to Sice = 8.7 

psu and Ls = 252 kJ kg-1. 

 

4.2.3 Thin ice growth 

 

[56] A review of different mathematical treatments of simple sea-ice growth models is given in  

Eicken [2004]. To estimate the thickening of the thin ice layer we applied Stefan’s law:  
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where H is the ice thickness given in cm, sh is the snow cover thickness, sk  describes the thermal 

conductivity of snow (= 0.31 W m-1 K-1), ik the thermal conductivity of ice (= 2.03 W m-1 K-1), tC  is 

the net surface heat exchange (= 0.24 W m-1 K-1), iρ is the ice density (= 920 kg m-3), and L  is the 
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latent heat of fusion ( Liρ  = 272 J cm-3 for 10% brine volume). θ  is the cumulative number of 

freezing degree days (FDD), defined by:   

 

                )(
1

a

n

i

sn TTFDD ∑
=

−= ,     (9.1) 

 

Where n is the number of consecutive days, sT  is the sea surface temperature at freezing point, and 

aT  is the averaged daily air temperature recorded at the Dunai weather station. 

Evaluating equation 8 with the inputs given above, we obtain following general expression for H (in 

cm):  

 

      [ ] θθ d
hH

dHHhH
s

s
8.161.132

9.12
9.128.161.132

++
=⇔=⋅++ , (9.2) 

 

Since it is new ice, we neglect the snow layer, reducing the equation to [Haarpaintner et al., 2001]: 

 

        θθ d
H

dHHH
8.162

9.12
9.128.162

+
=⇔=+ ,   (9.3) 

 

Following Haarpaintner et al. [2001], we assume the initial ice thickness for every polynya event to 

be equal to the frazil ice accumulation depth hc. However, the continuous opening and closing of the 

polynya leads to compression and dispersion of the thin ice thickness. The conservation of mass inside 

the polynya is considered by:  

 

           
( ) ( )

TIn

fnOWnnTI
n

A

hAHA
H

∆⋅+⋅
=

−−− )1()1()1(
,    (9.4) 

 

4.3 Salt fluxes 

 

[57] To study the impact of the SWNS polynya on saline shelf water formation in the Arctic Ocean, 

we roughly determine the amount of salt released based on the modelled ice production. For a salt flux 

computation the initial water salinity needs to be known. Dmitrenko et al. [2005] analyzed the impact 

of latent heat polynyas in the Laptev Sea on surface salinity, along with variable river runoff and 

atmospheric forcing. Hydrological data from 1979 to 1999 provide long-term average salinity data and 
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a) 

b) 

c) 

their variance for the Laptev Sea. Dmitrenko et al. [2005] found intensive river runoff and ice melting 

in summer to be responsible for relatively low water salinity throughout the year. Based on their long-

term observations, we consider the average water salinity to be around 28 psu (practical salinity units) 

during winter 2003/2004. Due to intensive ice production and the lack of river runoff (10 % in winter 

months), the salinity of the surface layer is expected to increases towards spring.  Dmitrenko et al., 

[2005] measured the seasonal surface salinity to vary by 3.5 to 4.2 psu throughout the winter season. 

Unfortunately we do not have precise information about the salinity variance. Therefore we assume 

the salt concentration to be constant between January and June. Following Haarpaintner et al. [2001], 

a spontaneous salt rejection of 69 % during ice production is realistic. Additionally, 10-15% of the 

initial salinity is released during continuous ice growth, aging and cooling, thought gravity drainage 

and flushing during melting [Haarpaintner et al., 2001]. 

 

 

Figure 18. Heat exchange components over time: a) the absorbed downward longwave radiation at the 
ocean surface QB, b) the turbulent heat flux QT  and c) the total net flux Qnet. The upward longwave 
radiation QL is constant around 298 W m-2. During winter period, the net shortwave radiation QS is close 
to 0 W m-2. 
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5. Polynya model results 

 

 

 

[58] In the following chapter we show results of the polynya model described in section 4. 

Therefore, we applied equation 3 through 3.2 to reconstruct the polynya widths evolution in time. 

Since the open water model based on equation 4 with a constant hc of 11 cm is least sensitive to 

disparities in the meteorological dataset and empirical coefficients (section 5.1), it is used for open 

water computation in the following chapter. The derived widths are multiplied with the polynya length 

to obtain the thin ice area and open water area. The total ice production is the sum of ice produced in 

the thin ice region based on Stefan’s law, (equation 9 through 9.4) and the frazil ice production in the 

open water column (equation 7 through 8.2).  

[58] Figure 19 presents the modelled polynya total width evolution and width measurements 

obtained from the ENVISAT ASAR imagery. The correlation coefficient r between observed and 

modelled widths is 0.92 with a mean deviation of 9.1 km (Figure 15). The average polynya width 

between January 07, and June 03, is 36 km. From February on, the SWNS polynya grows constantly 

until its maximum extension of around 129 km is reached on March 09, 2004. Further extensive 

openings occur in April and May. The sharp drop in polynya width from 20 km to 0 km on February 

05, is an artificial model effect and coincident with the change from southern to eastern wind regime 

in the model (use of different A(ϕn-ϕo) and ϕn inputs; section 4.1.2). Unfortunately, the lack of 

interpretable satellite data at the end of January does not allow an accurate model calibration. The 

overall good correlation coefficient of the model approach indicates that the meteorological data from 

Dunai Station is feasible for the SWNS polynya and that the model is well tuned and applicable. 

 

Figure 19. Modelled total polynya width (line) presented together with the ENVISAT ASAR 
width observations (dots) over time. The total width is the sum of thin ice and open water 
width.   
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[59] Three slightly different open water models are applied to reconstruct the evolution of open 

water. Equation 4 takes the frazil ice production into account with different inputs for hc, while 

equation 5, neglecting the ∆hf / hc ratio, contains the A(ϕn-ϕo) constant of equation 3 and simulates 

freeze-up events under calm wind conditions. Figure 20 presents the evolution of the open water 

fraction between January 7 and June 4, 2004 for all three approaches. The use of a constant hc  (11 cm) 

results in an average open water fraction of 34 % and a correlation coefficient of 0.635 (Figure 16a). 

Assuming hc to be a logarithmic function of the wind-velocity, that increases from 5cm to 15cm as the 

wind velocity increases from 1 to 8 m sec-1, results in an average fraction of 35 % and r = 0.643

 (Figure 16b). The red line in Figure 20 represents the output of equation 5. During periods of calm 

wind conditions, the open water area is automatically set to zero, giving the curve a saw-blade like 

shape. However, we expect the high open water peaks to be overestimated, although the obtained 

correlation coefficient between predicted and observed widths is the highest (r = 0.76). Probably, 

ASAR measurements of the open water width are undersampled, interfering model validation.  

[60] Both, the evolution of the thin ice area and open water area (with constant hc) are plotted in  

Figure 21. Since the development of thin ice requires frazil ice formation first, a slight delay in thin 

ice growth after freeze-up events is visible in the graph. Towards end of the winter, the frazil ice 

productivity decreases (Figure 23), causing the delay to increase. Plotting the delay (in days) over 

frazil ice production, averaged between the onset of the break-up event and the onset of thin ice 

growth in the model, gives a correlation coefficient of 0.88 (Figure 22). We expect r to be a valuable

parameter for model fine-tuning or a measure for model accuracy. However, to examine this 

coherence more closely, field measurements need to be carried out first.  

Figure 20. Modelled open water width presented together with ENVISAT ASAR WSM and 
APP width measurements over time. The black and blue line shows the evolution of the two hc 

based open water models; the red line presents the modelled width based on equation 5. 
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[61] The daily ice production in m m-2 for frazil ice and thin ice between January 7, and June 4, is 

given in Figure 23 and is a measure for the potential productivity. Daily thin ice production remains 

around 0.05 m m-2 d-1 between February and March.  The rate of frazil ice formation follows the 

oscillation of the net heat flux with a peak at 0.36 m m-2 in early April. The increase in air 

temperatures in late winter lowers frazil ice and thin ice production. The average productivity of thin 

ice and frazil ice is 0.13 m m-2 and 0.04 m m-2, respectively.  

[62] The daily absolute ice production in km³ in winter 2004 is shown in Figure 24. The 24h ice 

growth curve is the product of the thin ice area with thin ice production and the open water area with 

frazil ice production, respectively. The daily thin ice growth decreases towards June, while the ice 

volume produced in open water areas remains more constant, owing to an increasing open water area.  

Figure 22. Delay in onset of thin ice growth (in days) over frazil ice productivity in m m-², 
averaged between the onset of break-up events and first thin ice formation  

 

Figure 21. Modelled thin ice and open water area in the SWNS polynya. 
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 [63] Figure 25 visualizes the accumulated thin ice and the accumulated frazil ice production in 

time. A total ice volume of 51 km³ in thin ice and 15 km³ in open water area is generated between 

January 7, and June 4. This corresponds to an ice production of 9.6 m m-2 in the SWNS polynya.   

[64] The daily and accumulated salt rejection from both, ice formation and aging processes, is 

presented in Figure 26. A total of 1506 Mt of salt is released until June 4, 2004, with a daily average 

rejection of 10.5 Mt.  

Figure 24. Daily ice production in km³ for open water area (blue line) and thin ice area (red line) 

between January 7, and June 4, 2004.    

Figure 23. Daily ice production in m m² for frazil ice (blue line) and thin ice (red line) between 
January 7, and June 4, 2004.    
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5.1 Sensitivity study 

 

[65] The high correlation coefficient of 0.92 between modelled and observed total polynya widths 

implies that the meteorological dataset recorded at the Dunai Station is representative for the SWNS 

polynya. However, the remoteness of the weather station (150 km from the polynya centre point) 

might results in discrepancies. Therefore, the effect of disparities between the recorded and 

predominant meteorological conditions is tested below. The sensitivity of the modelled sea-ice  

 

Figure 26. Accumulated salt rejection (solid black line) and daily salt rejection (blue line) of 
the SWNS polynya in Mt between January 7, and June 4, 2004.    

 

Figure 25. Accumulated ice production in km³ in open water regions (blue line) and thin ice 
areas (red line) between January 7, and June 4, 2004.    
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   PEASE model with 

log. hc  

(Equation 4) 

PEASE model with 

constant hc  

(Equation 4) 

Freeze-up threshold 

model 

(Equation 5) 

Average  

(column 1-3) 

Parameter Variation 
Model 

value 

Ice 

volume 

(%) 

Salt 

release 

(%) 

Ice 

volume 

(%) 

Salt 

release 

(%) 

Ice 

volume 

(%) 

Salt 

release 

(%) 

Ice 

volume 

(%) 

Salt 

release 

(%) 

ϕ0,  
± 10° 

180°/110
° (1) 

± 5.5 ± 5.5 ± 4.7 ± 4.7 ± 3.8 ± 3.8 ± 4.7 ± 4.7 

bi ± 0.5 % 2.8 % ± 8.3 ± 8.2 ± 9.7 ± 8.2 ± 18.3 ± 6.3 ± 12.1 ± 7.6 

Bi ± 0.5 % 1.8 % ± 18.0 ± 17.8 ± 19.9 ± 18.2 ± 31.1 ± 20.2 ± 23.0 ± 18.7 

hc  ± 4 cm 11 cm ± 12.6 ± 12.4 ± 12.2 ± 12.2     

TDunai to TWNS ± 2°C - ± 6.6 ± 6.5 ± 6.2 ± 6.2 ± 8.9 ± 8.8 ± 7.2 ± 7.2 

UDunai to UWNS  
± 0.5  

m sec-1 
- ± 5.8 ± 10.7 ± 4.9 ± 9.3 ± 10.1 ± 16.7 ± 6.9 ± 12.2 

Bulk transfer 
coefficient  

± 0.5 × 
10-3 

 2.0×10-3 ± 2.3 ± 2.3 ± 1.7 ± 1.7 ± 6.1 ± 6.0 ± 3.4 ± 3.4 

Cloud cover  ± 0,2 0,8 ± 1.0 ± 1.0 ± 1.1 ± 1.1 ± 1.3 ± 1.3 ± 1.1 ± 1.1 

Relative 
humidity  

± 20% 80% ± 0.0 ± 0.0 ± 0.0 ± 0.0 ± 0.1 ± 0.1 ± 0.1 ± 0.1 

Water salinity ± 2 psu 28 psu ± 0.0 ± 7.3 ± 0.0 ± 7.3 ± 0.0 ± 7.8 ± 0.0 ± 7.5 

           

(1) Fist and second winter wind regime  

 

 

production and salt rejection to uncertainties in the meteorological dataset and empirical coefficients 

is summarized in Table 2. A comprehensive chart is attached to the Appendix.  

[66] Disparities in the recorded wind direction would necessitate the model input ϕ0  to differ.  A 

ϕ0  variation of ± 10° results in an average model error of ± 5.2 % for thin ice, ± 3 % for frazil ice (see 

Table in Appendix) and ± 5.5 % for the total ice production and salt flux.  

[67] Since even small variations in the thin ice drift factor Bi of up to ± 0.5 % lead to a final ice 

production error of ± 23 %, Bi is based on an ice tracking approach (see section 4.1.2). The open water 

width remains unaffected by fluctuations in Bi, and so does the frazil ice production. Disparities in bi 

however, influence both, the thin ice (± 3.5 %) and frazil ice productivity (± 22.8 %), and reflects in 

total ice production and salt flux by ± 12.1 % and ± 7.6 %, respectively.  

Besides frazil ice drift and thin ice drift velocity, another parameter with a major effect on ice 

partition is the frazil collection thickness hc. Because the frazil accumulation depths underlie ocean 

and atmospheric dynamics, we vary hc between 15 cm and 7 cm. Assuming hc to be constant causes a 

total ice production and salt flux error of ± 12.2 %. If hc is taken as a logarithmic function that 

increases with wind velocity, the total error in ice production is around ± 12.5 %. Equation 5 does not 

include the ∆hf / hc ratio.  

[68] An average uncertainty of ± 2°C in recorded air temperatures between the Dunai Station and 

the SWNS polynya (TDunai to TWNS) causes the total ice production to vary by ± 7.2 %. This assumption 

affects all three models equally. Next we induce a wind velocity deviation of ± 0.5 m sec-1 in the 

Table 2. Influence of uncertainties in the meteorological dataset and empirical coefficients on 
modelled sea ice production and salt rejection 
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polynya region. This results in an average sea-ice growth error of ± 6.9 % and the final salt flux to 

differ by ± 12.2 %.  The open water model with the freeze-up threshold is found to be more sensitive 

to wind velocity variations (error in ice accumulation ± 10.1 %), since it suggests the wind to be the 

only driving force for the opening and closing of the open water area.  

[69] Furthermore, we evaluate the model response to variations in empirical coefficients, assisting 

heat flux computations. According to Haarpaintner et al. [2003], the bulk transfer coefficient for 

turbulent heat fluxes between atmosphere and thin ice or water differs in the literature by about 50 %. 

Varying the bulk transfer coefficient by ± 0.5 × 10-3 results in a final average model error of ± 3 % for 

thin ice, ± 2.7 % for frazil ice (Table in Appendix) and ± 3.4 % for total ice production and salt flux, 

in all three models. The sensitivity of the models to variations in cloud cover (± 0.2) and relative 

humidity (± 20 %) is tested and found to be insignificant.  

[70] Although the open water widths model performance (r) of equation 5 is significantly better, its 

final ice and salt flux estimations are strongly affected by disparities in the meteorological dataset and 

empirical coefficients. The implementation of hc in the open water model improves its sensitivity to 

external parameters. The open water model with a constant hc shows the lowest overall sensibility, but 

differs only slightly from the usage of a wind-depended logarithmic hc.  

 

 

6. Discussion 

 

[71] The total ice production of the SWNS polynya was calculated based on a method of 

Haarpaintner et al., [2001]. A description of the applied algorithms for width modelling and ice 

growth computation is given in chapter 4. The objective of this study is to model the amount of ice 

produced and brine rejected in the SWNS polynya during winter 2003/2004 and link it to the long-

term average salinity variance of the south-eastern Laptev Sea. Our calculations are limited to thin and 

frazil ice growth in the active polynya zone. 

 

6.1 Total polynya width algorithm 

 

[72] The algorithm (equation 3) developed by Haarpaintner et al. [2001], was successfully applied 

to the SWNS polynya. Since the model approach is highly empirical, it can be easily tuned to the 

ASAR measurements. The high correlation coefficient we obtained between observed and modelled 

total widths (Figure 15) shows that the width model, originally developed to study the Storfjorden 

polynya, is transferable to the eastern Laptev Sea.  
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[73] On some images, the transition zone between thin ice and first year ice/pack ice is distorted, so 

that sometimes the absolute accuracy of the width measurements varies by several kilometres. To 

calibrate the polynya model, we excluded measurements of low precision. Figure 27 illustrates the 

problem of polynya widths interpretation. The left ASAR image was taken on February 27. Bright 

banded zones of newly formed ice can be seen, each band indicative of different stages of 

development and ice thickness [Haas et al., 2004a]. During the next 2 weeks the polynya extent is still 

increasing, while the backscatter of the former thin ice region darkens through changes of ice 

properties. On March 11, 2004 (Figure 27b) it is difficult to extract a reliable width. The former 

downwind polynya extend is still visible in the image, but since ice thickening took place, the 

smoothed new ice layer can not be referred as thin ice without greatly overestimating ice production. 

In this case, we defined the break-off event with the narrow thin ice zone along the fast ice edge as the 

active polynya zone (indicated by white arrows).        

126°E 127°E 128°E 129°E 130°E 131°E

74°N

75°N

0 30 6015 Kilometers

February 27, 2004
12:30:35

a)

126°E 127°E 128°E 129°E 130°E 131°E

74°N

75°N

0 30 6015 Kilometers

March 11, 2004
02:27:27

b)

 

 

6.2 Open water width algorithm 

 

[74] The general performance of the open water models is weaker. Although equation 4 (with 

constant hc) has the lowest correlation coefficient between modelled and observed open water widths, 

it is least sensitive to meteorological uncertainties. The use of a logarithmic function for frazil ice 

accumulation thickness does not significantly improve model output and sensitivity. Furthermore, we 

displaced the consolidation thickness in equation 4 with a freeze-up threshold and A(ϕn-ϕo) factor 

(equation 5). This somehow improves the widths accuracy, but the model output becomes more 

Figure 27. WSM ENVISAT ASAR images of the SWNS polynya taken on February 27, and 
March 11 2004. 
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susceptible to wind velocity variations, since it suggests the wind to be the only driving force for 

opening and closing of open water areas.  

[75] In addition, a reliable extraction of open water zones from the ASAR imagery is not always 

guaranteed. Since the measurement rate is undersampled, a systematic validation of the applied open 

water models is more difficult. As discussed in section 4.1.1, wind speeds greater than about  

5-10 m s-1 creates Langmuir circulations, which provide hints for the presence of open water. Under 

calm wind conditions however, the backscatter of open water and nilas ice overlaps, limiting the use 

of WSM products. The higher spatial resolution of APP products and the VV/HH co-polarisation 

certainly burrows additional potential. Furthermore, the use of ASAR/AVHRR composites from near-

concurrent images proved its capability for open water localisation. However, the implementation of 

AVHRR data is restricted by its low resolution and the necessity of cloud free conditions.   

[76] According to Dmitrenko [2005], the general character of the circulation measured along 

transects at the fast ice margin is most likely due to salinization of the surface water caused by ice 

formation in the flaw polynya. The consideration of tidal forcing in the Eastern Laptev Sea would 

eventually improve the accuracy of the simulated open water evolution. Since currents contribute to 

ice motion and frazil ice accumulation, we extended equation 4 by a current component. Together 

with ice thickness, velocity and flow direction of surface currents were recorded by ADCP in the 

WNS polynya. Equation 10 implements the current information by assuming the downwind herded 

frazil ice to be a function of surface currents (Vcurent drift) and wind stress (Uice drift):  

 

  ROW = ROW (n-1) ⋅ 












 ∆
−

c

f

h

h
1 +(W1⋅ Uice drift + W2⋅ Vsurface drift)  ,   (10) 

 

W1 + W2 = 1 ,  

Uice drift  = (bi ⋅ U ⋅ cos(ϕn - ϕo) ⋅ ∆t) ,  

    Vcurent drift  = (V ⋅ cos(δn - δo) ⋅ ∆t) , 

 

where W1 and W2 are constant factor chosen during model calibration, that weight the effect of 

currents and winds on open water formation. The sum of W1 and W2 is 1. V is the recorded current 

drift velocity (ADCP), δn is the recorded current direction and δo represents the dominant current 

direction. So far, the extension of the open water algorithm by a current factor gives only reasonable 

results. We found the correlation coefficient between observed and modelled widths to be lower than 

the accuracy of equation 4. However, since the effect of surface circulation on frazil ice accumulation 

is still ill-understood, it is difficult to empirically include it in the model. 
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[77] Following Pease, the velocity of frazil ice drift in percent of wind speed (bi) is supposed to be  

1 % higher than the thin ice drift rates, although it is likely that Bi and bi are not constant but vary with 

the geometry of the fast ice edge and ice thickening. A more accurate bi constant might also contribute 

to an improvement of the open water model performance. Another model simplification is the 

idealized accumulation of frazil ice against the downwind polynya edge. The frazil ice formed in the 

water body is assumed to instantaneously pile up.  To overcome this deficiency, Ou [1988] develops a 

model incorporating a finite frazil ice drift rate together with time-varying winds and air-temperature 

[Marqueda et al., 2005].   

 

6.3 Polynya length 

 

[78] A number of recent polynya studies have addressed axial length-variation scenarios with 

models of various complexities [Biggs et al., 2003]. The simple model we applied to the eastern 

Laptev Sea neglects polynya lengths variations since AVHRR and ASAR data indicates no serious 

perturbations in length scale during winter 2003/2004 in our study area. 

 

6.4 Ice growth modelling 

 

[79] Thin ice growth was calculated based on Stefan’s law (equation 9), neglecting an insulating 

snow coverage. However, it is likely that interim snow fall events lead to a snow cover of the thin ice 

area, affecting the ice thickness evolution substantially. We therefore examined the effect of 

intermediate snow coverage on the thin ice productivity. Figure 28 presents the negative impact of an 

insulating snow layer on the total thin ice growth (total thin ice reduction in percent) over the 

proportion of thin ice that might have been covered with snow. Assuming only 15% of the total 

accumulated thin ice to be covered with a snow deposition of 1.1 cm (10 % of hc), results in a thin ice 

flux reduction of 4 %.  Unfortunately, the lack of precipitation data for winter 2003/2004 does not 

allow consideration of snow fall in the model.  

 [80] The surface energy budget of the SWNS polynya and the frazil ice accumulation in the open 

water area was investigated through the combination of meteorological data and simple physical 

models. The net heat flux curve is characterised by periods of high heat fluxes, interspersed with more 

quiescent episodes. The sensitivity study in section 5.1 examines the effect of disparities in the bulk 

transfer coefficient and the recorded wind and temperature data on the modelled Qnet. As discussed, 

oscillations in heat flux are almost exclusively associated with changes in air temperatures and wind 

speed. However, we must not forget that as the near surface air crosses the polynya, it is gradually 

warmed and moistened. Therefore, the sensible and latent heat flux decreases with distance from the  
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upwind fast ice edge. Renfrew et al. [2000] estimate the rate of heat flux to decrease in the order of 

20% over fetches of 50 km. A crude parameterization of this effect would certainly improve the 

accuracy of the modelled frazil ice production. Consequently, we suppose the frazil ice accumulation 

in the SWNS polynya to be overestimated by 15%. Figure 29 presents an AVHRR image (channel 1)

taken on March 04, 2004, showing a convective cloud downwind (to the East) of the SWNS polynya. 

The upward rising clouds, originating from the moisture-laden air warmed by the ocean, cool and 

condensate instantly.  The process of thermal internal boundary layer (IBL) formation over polynyas 

is described in detail by Renfrew et al., [2000, 2002] and Morales Maqueda et al., [2004]. Table 3 

Figure 29. AVHRR image (channel 1) of the south-eastern Laptev Sea, taken on March 4, 
2004. Upward rising clouds (arrows), originating from moisture-laden air warmed by the 
ocean, cool and condensate instantly.  

Figure 28. Effect of a snow coverage (percent thin ice growth with snow layer) on the 
modelled thin ice production (thin ice reduction in percent) for different snow thicknesses hs 
(percent of hc). 
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(reprinted from Morales Maqueda et al. [2005]) displays a compilation of net turbulent and radiative 

heat fluxes over selected polynyas reported in the literature and compares it to our computations for 

the SWNS polynya in winter 2003/2004.  

Polynya(s) Observation Period 
Area  

1000 km² 

Qturbulent, 

W m-2 

Averaged 

Net Heat 

Flux 

Rad. Flux 

W m-2 
Source 

Bennet Island 18 February 1983 0.3-0.375 -458  -105 Dethleff, [1994] 

Dundas Island March 1980 1 -270  -60 Topham et al., [1983] 

   -270   Den Hartog et al., [1983] 

Okhotsk Sea 
coast 

(southwest) 

December 1987–

1982 
25b -471  -94 Alfultis et al., [1987] 

Okhotsk Sea 
coast 

Januar –March 

1990 -1995 
25.4b  -256  Martin et al., [1998] 

Queen Maud 
Land coast 

December 1986 to 

February 1987 
… 3  142 Ramesh Kumar et al., [1989] 

Ronne Ice Shelf winter 1992-98 4.893 -272  -47 Renfrew et al., [2002] 
Ronne Ice Shelf summer 1992-98 36.2 -1  160 Renfrew et al., [2002] 
St. Lawrence 
Island 

Winter 1981 …  -535  Schumacher et al., [1983] 

St. Lawrence 
Island 

February 1982-83 … -192/-412 c  -79/91 c Pease, [1987] 

Northeast Water July–August 1992 10-18 -7.1 d  80.9 d Minnett, [1995] 
Northeast Water Spring 1993 … -31  195 Schneider et al., [1995] 

Storfjorden 7 March 1998 6 -300  -100 Haarpaintner et al., [2001] 
Terra Nova B. May –September 1 -790  -38 Kurtz et al.,  [1985] 
Weddel Sea 
coast  
(60°W-20°E) 

May–October 1992 15 -100/-300 e  50/-100 e Markus et al., [1998] 

SWNS polynya February-March2004 18; 1.3 b -342 -482   
a Negative values indicate heat loss from the polynya to the atmosphere 
b Value does not include area of thin ice 
c Values are for the 1982 and 1983 events, respectively 
d Values are weighted by observed ice cover 

 

6.4 Ice and salt flux 

 

[81] The interannual and seasonal variability of sea-ice in the Laptev Sea has been recently studied 

in detail by Bareiss et al. [2005]. Satellite derived passive microwave data (Sensor Microwave Imager 

SSM/I) from 1997 through 2002 was used to monitor the evolution of polynya open water areas with a 

simple threshold method. According to Bareiss et al., the average open water area in the entire WNS 

polynya is 4 × 10³ km² in winter. Maximum polynya events, covering up to 25% of the eastern Laptev 

Sea (73 × 10³ km²) have been observed in the past 24 years. However, sensor characteristics of the 

passive microwave radiometer and deficiencies in the used sea-ice concentration algorithms to 

discriminate unambiguously between thin ice and open water, limit the accuracy of the obtained mean 

seasonal statistics for flaw polynyas in the Laptev Sea. Winsor et al. [2000] investigated Arctic 

polynyas during 39 winter seasons from 1958 to 1997 by means of a large scale polynya model. A 

mean width of 3.4 km and an average ice production of 4 km³ was found for the Laptev polynyas. 

This corresponds to an ice production of 14.2 m (around 5 m higher than our computation). Based on 

the hydrographical model of Dmitrenko et al., the total ice production in the Laptev Sea is around  

Table 3. Net turbulent and radiative heat flux in selected polynyas a (reprinted from Morales 

Maqueda et al., [2004]) compared to the SWNS polynya.  
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3-4 m. Any discrepancies in the literature according the WNS polynya extent, frequency and 

productivity can be partially explained by the use of different sensor systems, models, observation 

periods and alternating definitions for the term ”active polynya”. However, since we only examined a 

small fraction of the Laptev polynyas, it is difficult to directly compare it to earlier studies.  

[82] The final amount of salt released depends on the initial water salinity [Haarpaintner et al., 

2001]. We assumed the average long-term salinity measurements obtained from hydrological data, 

taken between 1979 and 1999 in the south-eastern Laptev Sea, to be representative for situation in 

winter 2003/2004. A linear increase of the surface salinity throughout the season due to intensive ice 

production was not taken into account.  Since 69 % of the initial water salinity is released by 

spontaneous salt rejection, frazil ice formation (high potential productivity, Figure 23) plays a major 

role in adding salt to the surface layer. However, the general calm wind condition in the Lena delta 

(on average 4.3 m sec-1) limits the development of large open water areas. Therefore, we assume the 

thin ice area to essentially govern brine rejection in the south-eastern Laptev Sea. Because continuous 

salt rejection during thin ice growth, aging and cooling (10% of the initial salinity) is slower and 

distributed over a larger area, we found the total amount of salt produced to be less than expected. 

Following Dmitrenko et al., [2005], the probability for convective mixing down to the seafloor in the 

eastern Laptev Sea does not exceed 20 %, which can be partially explained by our modelled high thin 

ice fraction.  

[83] To evaluate the effect of salt released on the initial water salinity, the total ice production was 

calculated over an area of 25,000 km² (maximum extent of the SWNS polynya), roughly estimating 

continuous pack ice and fast ice growth. Assuming a mean water depth of 35 m, the water volume is 

around 8.75 × 1011 m³. Neglecting observed strong surface currents [Dimitrenko et al., 2005] 

dispersing the outflow of brine enriched surface waters, 2086 Mt of salt (including pack ice and fast 

ice rejection) would temporarily increase the overall water salinity in the polynya by 2.4 psu between 

January and June. Based on average long term salinity records, Dmitrenko et al. [2005] found the 

local maxima in salinity variance to be coincident with the long-term mean location of the flaw 

polynya. A winter variance of 3.5 - 4.2 psu was measured at the surface northward the fast ice edge. 

Since the observed strong vertical density stratification in the polynya region and the calculated low 

convective mixing probability restricts a salinity increase to upper layers, we suppose the distribution 

of modelled salt flux to be limited to 15 m depth [Dimitrenko et al., 2005]. Consequently, the surface 

salinity in the polynya area would increase by 4.6 psu. Neglecting any advection, this value slightly 

exceeds the salinity deviation range of 3.5 – 4.2 psu recorded by Dmitrenko et al. [2005].  However, 

surface currents from outside the polynya region renew water masses and reduce the continuous water 

salinity increase during winter. Therefore we used ADCP surface current velocity data to account for 

the effects of currents on the salinity evolution of the upper water layer. An implementation into our  
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calculations reduces the seasonal salinity variance by 0.2 psu to 4.4 psu (Figure 30). Since current 

records are based on a single point observation and the initial salinity at the origin of the surface 

current is unknown, the computed salinity increase in the polynya area is only a crude estimation. 

However, the results show that the modelled salt flux for the SWNS polynya matches field 

observations and may provide more accurate input for complex ocean and convection models.  

 

 

7. Conclusion and future direction 

 

[84] The WSM and APP ENVISAT ASAR images taken over the south-eastern Laptev Sea 

between November 2003 and June 2004 and the polynya flux model, developed by Haarpaintner et 

al. [2001],  provides new detailed insight into sea-ice regime dynamics and ice and salt fluxes of the 

southern West New Siberian polynya.  

[85] The model calculates the width of open water zones and the total polynya width separately, 

using two different algorithms, driven by meteorological data recorded at a nearby weather station. 

Because the agreement between modelled and measured total polynya width was very high, we 

assume that opening and closing of the SWNS polynya can be expressed as a function of wind 

velocity and direction. The performance of the open water width algorithm was generally weaker. 

Therefore we tested three slightly different models, with correlation coefficients varying between 0.65 

and 0.75. A sensitivity study showed that the approach first formulated by Pease [1987], is least 

sensitive to disparities in the meteorological datasets and the parameters assisting heat flux 

computations. To derive the open water and the thin ice area, the modelled thin ice widths and open 

Figure 30. Seasonal evolution of salinity (in psu) in the upper water layer of the SWNS 
polynya (8.75 × 1011 m³), taking into account water mass fluxes recorded by ADCP.  
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water widths were multiplied with the length of the study area (195 km). The computation of frazil ice 

formation in the open water area was based on the net surface heat balance and continuous thin ice 

growth in the thin ice area was assumed to follow Stefan’s law.  

[86] A total ice volume of 51 km³ in thin ice and 15 km³ in open water areas was generated in the 

SWNS polynya between January 7, and June 4, 2004. This corresponds to an average ice production 

of 9.6 m m-2. A period of strong persistent eastern winds between February and April contributed 

significantly to ice production and salt rejection. A maximum extent of around 129 km could be 

observed at the beginning of March.  The modelled average polynya width was around 36 km.  

[87] The accumulated salt rejection from both, ice formation and aging processes during the 

observation period was 1506 Mt. Considering additional continuous pack ice and fast ice growth in an 

area of 25,000 km² and water mass exchange, induced by strong surface currents, the surface salinity 

increased by approximately 4.4 psu between January and June. This corresponds well with the salinity 

deviation range of 3.5 – 4.2 psu for the WNS polynya location, derived from long-term average 

salinity records by Dmitrenko et al. [2005]. According to their calculations, the probability for 

convective mixing down to the seafloor in the south-eastern Laptev Sea does not exceed 20%. 

Modelled high thin ice fraction and mostly very little open water during winter 2004 partially explain 

the absence of mixing events, since continuous salt rejection during thin ice growth, aging and cooling 

is slower and less concentrated in space.    

[88] The good agreement between the modelled increase in water salinity and long-term salinity 

field records shows the potential of the Haarpaintner model for salt and ice flux computations in flaw 

polynyas. However, the SWNS polynya must be studied in more detail over next winter periods. As 

already discussed by Haarpaintner et al. [2001], a better quantification of open water areas in the 

SAR imagery is necessary. We demonstrated the capability of cross-polarization ratios for automatic 

polynya segmentation and AVHRR/ASAR composites for open water identification. The 

implementation of currents, affecting open water formation in the algorithm would certainly 

contribute to the model sensitivity and model cross-error.  Furthermore, we expect the use of 

precipitation data and the consideration of heat flux decrease over open water areas with distance from 

coast, to improve the applied ice growth algorithms.     

[89] To study the effect of varying polynya driving forces on the ice, salt and heat budget of the 

SWNS polynya require the studies such as this one be extended, with a combination of ground-based 

and remote-sensing measurements. Therefore, three winter expeditions and new mooring deployment 

in the region north of the Lena Delta are planed until 2008. A helicopter based electromagnetic 

induction device [Haas, 2004b] will provide ice thickness variability information in the polynya 

region to validate thin ice thickness data derived from AVHRR [Drucker et al., 2004] and radar [Kern 

et al., 2006] imagery, contributing to the calibration of the flux model. The importance of the amount 
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of ice and salt produced as compared to the local circulation system and the halocline of the Arctic 

Ocean, still needs to be established.   
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Appendix A1 Model work flow 
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Appendix A2  Sensitivity study 

 


