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INTRODUCTION

The only noteworthy parental care numerous larval
fish species receive are the energy reserves contained
in the egg. This initial parental gift to their descen-
dants varies among species and between different
types of eggs. Demersal (sinking or deposited on the
bottom) eggs are richer in energy than pelagic eggs of
the same size (Loenning et al. 1988) and, as they are
usually larger in size than pelagic eggs, even more
energy-rich. Larvae that hatch from these high-energy
demersal eggs can thus cope better with unfavourable
nutritional conditions than those larvae which emerge
from smaller eggs (Einum & Fleming 2000). Moreover,

variability in environmental conditions should select
for larger egg sizes (McGinley et al. 1987). Short-lived
species, with only 1 or 2 spawning events during their
lifetime, should ideally have an evolutionary history
such that a specific proportion of larval survival is
guaranteed under all circumstances. The reason for
this is that the relative importance of a single spawning
event is higher than in long-lived species, which have
a more iteroparous life-history. We thus hypothesise
that short-lived species, living in highly variable envi-
ronments, will have adapted to more conservative
reproductive strategies through the production of
larger eggs, longer spawning periods and longer tran-
sition phases from internal to external feeding to
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ensure that at least subsets of their offspring will sur-
vive.

The performance of fish larvae can be assessed in
many different ways. Examples include enzyme activ-
ity, otolith growth, or the ratio between RNA and DNA
in tissue. In this study, we assessed the condition of lar-
val fishes by analysis of the ratio between their RNA
and DNA content, a method commonly used in larval
ecology and fisheries research (Clemmesen & Doan
1996, Pepin et al. 1999, Malzahn et al. 2003, Voss et al.
2006). The general assumption is that the amount of
DNA per cell is constant, whereas the amount of RNA
per cell varies with anabolic activity. This ratio has the
advantage that it integrates the feeding history over a
period of approximately 3 d (Clemmesen 1994), which
makes it robust against short-term effects such as
those shown for digestive enzymes (Ferron & Leggett
1994). The RNA:DNA ratio can be used in several
ways, as a tool to investigate nutritional condition and
survival potential in laboratory experiments (Clemme-
sen 1994, St. John et al. 2001), and in field studies
(Bulow 1987) by comparing the ratios itself. Another
widespread and promising use is its predictive power
for protein growth where species-specific models are
available (Buckley 1984, Caldarone et al. 2003, Buck-
ley et al. 2004, Caldarone 2005). One consideration,
however, is the temperature-dependence of the
RNA:DNA ratio itself. Higher RNA:DNA values at
lower temperatures are believed to be a compensatory
mechanism for the reduced activity of the anabolic
machinery (Goolish et al. 1984). This makes compar-
isons over a wide range of temperatures (and hence in
field studies) difficult, as the same RNA:DNA value
may reflect a different condition at different tempera-
tures. Indeed, Malzahn et al. (2003) reported signifi-
cant differences in RNA:DNA between larval corego-
nid fishes reared under ad libitum food supply at 2
different temperatures (8 and 18°C). However, albeit
statistically significant, the differences in RNA:DNA
were only around 0.03 per centigrade degree, whereas
studies with different food levels often report differ-
ences in RNA:DNA ranging from 1 to 3 in comparisons
between fed and unfed larvae (Suneetha et al. 1999).
Hence, RNA:DNA as a measure of nutritional condi-
tion can be used for larvae with different thermal
backgrounds. 

Our hypothesis that shorter-lived species have more
conservative reproductive strategies translates directly
into the prediction that larvae of short-lived species
should be more independent of current feeding condi-
tions. We tested this prediction by contrasting larval
stages of the lesser sandeel Ammodytes marinus and
the dab Limanda limanda investigating their condition
in the light of prevailing environmental conditions.
The lesser sandeel is a short-lived species. It comprises

up to one-third of the total fishery yield in the North
Sea (Arnott & Ruxton 2002) and is a major food source
for several predatory fish (Carruthers et al. 2005) and
bird species (Furness 2002). Sandeels normally repro-
duce in their second year; they produce large demersal
eggs and, because of extremely high natural mortality,
do not live much longer than 3 yr. As a contrast to their
larval performance we chose the temporally co-occur-
ring dab, which spawns several times during its life-
time of around 10 yr, producing smaller pelagic eggs. It
is generally accepted that in flatfishes the relative
importance of the larval stages is of minor importance
compared to the density-dependent mechanisms act-
ing on the settled juveniles, which normally dampens
year-class strength variations (Van der Veer et al.
2000). Hence, we would expect lesser sandeel larvae to
grow better and show fewer starvation symptoms
under various biological and physical conditions than
larval dab.

MATERIALS AND METHODS

The ichthyoplankton community was surveyed on
a daily (Mon–Fri) basis at 54° 11.18’ N and 07° 54.00’ E,
known as ‘Helgoland Roads’. The station is located
between the island of Helgoland and an adjacent
dune, in the German Bight, North Sea. Double oblique
hauls were carried out using a CalCOFI ring trawl
equipped with 500 µm mesh net (aperture 100 cm,
length 400 cm, equipped with a flow meter) from a
research vessel. The gear was deployed for 15 min per
sampling. Water depth at the station is approximately
8 m and the water column is mixed throughout the
year by strong tidal currents (up to 1.5 knots). On
board the research vessel, the sample was gently
flushed into a bucket, in which it was transferred to the
Alfred Wegener Institute on Helgoland. As the station
sampled is approximately 200 m away from the Insti-
tute and the ichthyoplankton haul always comprised
the last deployment before heading back to the Insti-
tute, samples usually arrived at the laboratory within
15 min. The samples were sieved and transferred to a
Bogorov chamber and larval fishes were sorted out
using a stereo microscope (Olympus B061). All larvae
(or in cases with high densities of certain fish species,
the first 50 larvae per species found in the Bogorov
chamber) were frozen at –80C° in Eppendorf vials for
further analysis. The whole procedure, from hauling in
the net to freezing the samples, took no longer than
45 min. Samples of Ammodytes marinus and Limanda
limanda for biochemical analysis were taken during
the whole period of larval occurrence in the plankton,
which was from 4 February to 4 May 2004 for sandeel
and from 18 February to 23 June 2004 for dab.
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Zooplankton samples were taken using a 150 µm
mesh net (aperture 17 cm, length 100 cm, equipped
with a flow meter) hauled vertically through the water
column by hand. Zooplankton samples were taken
weekly from 15 January to 12 February 2004 and twice
weekly from 17 February to 29 June 2004. Zooplank-
ton data were pooled as suitable prey organisms for
larval fishes based on their size, whereby all zooplank-
ters smaller than 300 µm were considered as potential
food sources for larval fishes. As different size-classes
of fish larvae were present in all catches, no further
division into specific plankton size-classes was con-
ducted. Weekly means of diatom carbon were calcu-
lated from daily phytoplankton counts following Hille-
brand et al. (1999). Sea surface temperature was
measured daily using a mercury thermometer (Wilt-
shire & Manly 2004).

RNA and DNA concentrations were analysed using a
modification of the method of Clemmesen et al. (2003).
Samples of lesser sandeel and dab were thawed and
standard length was measured using a stereomicro-
scope. Larvae were freeze-dried to constant weight
(16 h, using a Christ Alpha 1–4 freeze-drier at –51°C)
and weighed to the nearest 0.0001 mg (Sartorius
microbalance SC2). The freeze-dried larvae were
rehydrated in Tris-SDS-buffer (Tris 0.05M, NaCl
0.01M, EDTA 0.01M, SDS 0.01%) for 15 min. Cells
were disrupted by shaking in a cell mill with different-
sized glass beads (diameter 2 mm and 0.17 to 0.34 mm)
for 15 min. The homogenate was then centrifuged at
6000 rpm at 0°C for 8 min, and the supernatant used for
analysis. The amount of nucleic acids was measured
fluorometrically in a microtitre fluorescence reader
(Labsystems, Fluorescan Ascent) using the fluorophore
ethidium bromide. Total nucleic acids were measured
first, and RNase was then applied to the sample to
digest the RNA. After the enzyme treatment (30 min at
37°C) the remaining DNA was measured. RNA fluo-
rescence was calculated by subtracting DNA fluores-
cence from the total nucleic acid fluorescence. RNA
calibrations were carried out each day. The DNA con-
centrations were calculated using the relationship
between RNA and DNA fluorescence described by Le
Pecq & Paoletti (1966). All steps were done on ice.

The approach of this paper was to detect small
changes in condition, which can potentially be lost in
statistical approaches based on means. These changes
are normally found at the extremes of distributions and
usually have only minor effects on common statistical
tests. Hence, for the detection of these small-scale
changes in distribution patterns of the parameters
analysed, a nonparametric approach proposed by
Pepin et al. (1999) was used. This approach examines
how the probability distribution of a random variable y
depends on some other variable x, without any

assumptions about the form of the distributions or
about the form of the dependence. The goal is
achieved by estimating cumulative probability distrib-
utions and by computing local influences of x on y.
This is based on the idea of locally weighted estimates
of the cumulative probability distribution by kernel
smoothing (Pepin et al. 1999, Evans 2000). In this study
the scatter between the 10th percentile (lower
extreme) and the 90th percentile (upper extreme) of
the distribution was analysed. This was done by creat-
ing 500 synthetic data sets originating from a random
assignment of pairs of variables (length and RNA:DNA
ratio) from the original data set and by performing
Monte Carlo simulations to examine the probability
that the patterns of change in the cumulative probabil-
ity distribution of the original data are caused by
chance alone.

RESULTS

Environmental conditions

The water temperature at the sampling site dropped
from 6°C in early January to 3°C in early March and
increased to 12°C by the end of May (Fig. 1). Zoo-
plankton data were pooled as suitable prey organisms
for larval fishes, using the >300 µm criterion, which
yielded a combination of meroplanktonic larvae
(Asteroidea, Aphroditidae, Polychaeta, Gastropoda,
Bryozoa, Balanidae) and holoplankters (Cladocera
[Evadne spp., Podon spp.] and naupliar and cope-
podite stages of several copepod species). Total poten-
tial prey densities increased from January to the mid-
dle of April from 1.2 to 10 individuals l–1. This increase
was followed by a steep drop in density to around 2
zooplankters l–1 within just 1 wk around 20 April 2004
(Fig. 1). The collapse of zooplankton abundance was
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directly followed by a sharp increase in phytoplankton
biomass from 25 to 215 µg diatom carbon l–1 (Fig. 1),
which could indicate top-down mechanisms acting on
phytoplankton growth in spring 2004.

Species occurrence

Lesser sandeel larvae first occurred in the ichthy-
oplankton in early February. In general, February was
characterised by high sandeel numbers in the catches,
ranging from 2 to 50 individuals m–3. A second peak in
sandeel abundance was observed in early, middle and
late March with densities of up to 8 individuals m–3.
Thereafter, numbers remained low at 0.01 to 0.1 larvae
m–3 until the last larva was caught in the beginning of
May (Fig. 2). Larval dab were first caught at the end of
February and their mean abundance in 2004 was
0.2 individuals m–3. Two distinct peaks in dab abun-
dance were observed in the middle of March and at
the end of April, with densities of up to 1 larva m–3.
From April until late June, when the last dab larva was
caught, abundance remained low.

Nutritional condition of dab

Standard length, dry weight and RNA:DNA were
analysed for a total of 419 larval dab. Variability in
their standard length was high but fairly constant
throughout the whole period of their occurrence in the
plankton (Fig. 3). None of the flatfish larvae analysed
in this study showed any signs of asymmetry (an indi-
cator of imminent settlement). A high proportion of lar-
vae in better condition were found in the middle of the
sampling period. This caused a steady elevation of the
90th percentile of the RNA:DNA distribution until the

middle of April. While the lower parts of the RNA:DNA
distribution (indicated by the 10th and 50th per-
centiles) decreased just slightly from 20 April onwards,
larvae in better condition were lacking later in the sea-
son. This resulted in a sharp decrease in the 90th per-
centile. As a result, the mean RNA:DNA decreased. 

In order to distinguish between periods of high and
low food availability (before and after 20 April, see also
Fig. 1), we compared the slopes of the regression lines
relating length with RNA:DNA from the 46 larvae
caught within the 2 wk prior to and the 78 larvae caught
within 2 wk following the breakdown in zooplankton
abundance. The standard length of the larvae was in-
cluded into the analysis to investigate whether all size-
classes were affected in the same way by the reduction
of zooplankton prey. The temperature difference be-
tween the 2 weeks was 2.1°C. The slopes of the regres-
sion lines before and after 20 April were significantly dif-
ferent, with higher slopes observed in larvae caught
before the breakdown in food availability on 20 April
(0.53 vs. 0.18) (Fig. 4; p < 0.01). Further analyses of the
RNA:DNA of larvae smaller than 4 mm, before and after
food deprivation, revealed no significant difference in
RNA:DNA values (Student’s t-test, p > 0.05) indicating
that larger larvae were affected by the decrease in prey
availability, while smaller larvae were not.

Nutritional condition of sandeel

In contrast to dab size distribution, the variability and
the standard length of the 366 sandeel larvae analysed
increased over time. A constant supply of small larvae
maintained the 10th percentile at roughly 5 mm while
the 50th and 90th percentiles increased until the middle
of April, reaching values between 11 and 14 mm (50th
and 90th percentiles respectively) (Fig. 5). Late in the
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season a decrease in larval length due to a lack of larger
larvae in the catches was observed. The RNA:DNA in
larval lesser sandeel was highly variable throughout the
season, ranging from 2 to 9. The amount of data avail-
able for the period after the middle of April is low, but
nevertheless, no RNA:DNA value greater than 4 was
found in the 16 larvae caught in the last 30 d of the
sandeel season, a value well below the mean
RNA:DNA for the whole season (Fig. 5). 

Interspecific comparisons

Analysis of the relationship between larval size and
RNA:DNA revealed different patterns for both species.
In both species the 50th percentile increased with
increasing larval size. In sandeel, this elevation was

caused by the loss of larvae in poor condition, with
maximal ratios remaining constant (Fig. 6). Larval dab
also showed a loss of larvae in poor condition but, in
contrast to sandeel, a massive increase in the
RNA:DNA maxima with increasing size (Fig. 7). The
probability that the observed scatter between the 10th
and the 90th percentile of the length and RNA:DNA
ratio relationship is produced by chance alone ranged
between 5 and 20% for larger sandeel (Fig. 8), indicat-
ing that, indeed, only the fittest individuals survived in
the larger sandeel size-classes. For dab, a probability
of nearly 100% for the larger size-classes was calcu-
lated, which means that the scatter was significantly
higher than the average scatter of the data set (Fig. 9).
This reflects the large scatter and the evenly distrib-
uted RNA:DNA ratios of the larger size-classes of dab.
The high probability of the scatter being larger than
the average scatter of the data set indicates that this
elevation in scatter was caused by the increase in lar-
vae of extremely good condition that were not present
in the smaller size-classes of the population.
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DISCUSSION

This study provides insights into the early life history
of 2 fish species with contrasting reproductive strate-
gies in the North Sea. Both species are characterised
by a similar seasonality and both have a prolonged
hatching season compared to other species in this
region, which presumably represents a bet-hedging
strategy to deal with high variability in environmental
conditions. Since feeding conditions are variable intra-
and interannually, bet-hedging seems a good strategy.
In 2004, those larvae that hatched before mid-April
seemed to constitute the survivors. However, as the
timing of the zooplankton peak is generally highly
variable, it is likely that in other years larvae that hatch
at different times comprise the survivors.

Although a prolonged period between sampling and
freezing of samples may influence the RNA:DNA ratio,

this was not a problem in our study, since the time-
frame between sampling and freezing was usually in
the order of 45 min. During this time, the larvae were
exposed to ambient temperatures on board and stored
on ice upon arrival in the laboratory. Moreover, a study
by Ferguson & Drahushchack (1989) showed that even
leaving material for nucleic acid analysis on wet ice or
in water of 8.5 to 9.5°C for up to 24 h did not cause sig-
nificant degradation of either RNA or DNA. Hence, no
significant breakdown of nucleic acids occurred in our
samples prior to the analysis.

Low food availability at low temperatures early in
the season does not necessarily mean that this consti-
tutes adverse conditions. Since growth is, however,
accelerated by increasing temperature, low tempera-
ture conditions result in slow growth, leading to a
longer persistence of the most vulnerable larval stages
and a prolonged phase of high predation risk. Later in
spring, temperature and food availability usually rise;
a pattern clearly reflected by the higher condition of
both dab and sandeel in early April. In 2004, we
observed a drastic reduction in food availability from
the middle of April to the end of May. This may have
had several consequences for the larval fishes: not only
did they run the risk of starvation, but the risk of pre-
dation increased with decreasing condition. Later in
the season, the larvae faced better feeding conditions
following the recovery of zooplankton abundance;
however, their condition did not improve in response
to this increased prey abundance. This could be the
result of changes in nutritional quality of the zooplank-
ton as food for larval fishes, and/or a result of higher
temperatures, which were potentially outside the opti-
mal temperature range for the investigated larvae.
Thus, during this period, the larvae were not able to
utilise the abundant food supply for growth.

Consequently, only a short period of the year yielded
favourable conditions for the larval fish species in our
study, a pattern already proposed by Hjort (1914) and
Cushing (1974, 1990). In fact, several studies concen-
trating on growth rates or hatch date distribution
derived from otolith readings revealed similar results.
Baumann et al. (2003) found the highest growth rates
and thus the highest survival probability of radiated
shanny Ulvaria subbifurcata at intermediate tempera-
tures. Wright & Bailey (1996) compared the observed
hatch dates of larval sandeel and back-calculated
hatch dates derived from otolith microstructures of
juvenile sandeel in 3 consecutive years. They found
that the survivors´ hatch dates differed somewhat
between years; an early hatch comprised the survivors
in 1990, a late hatch in 1991 and an intermediate hatch
in 1992. They concluded that there was an indication
for a seasonal cycle of growth opportunity in the 3 yr of
their investigation, that interannual differences occur
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and that a coupling of hatching and the onset of sec-
ondary production may be an important factor in year-
class variability. The results of our study also showed
strong seasonality in larval condition but, in contrast to
Cushing’s (1974, 1990) predictions, the period of high-
est larval condition was not at the peak of food avail-
ability but 2 to 3 wk earlier. 

In general, low food availability is known to lead to
reduced growth and increased mortality in larval
fishes (Clemmesen 1994, St. John et al. 2001). In this
study, low RNA:DNA was found to be linked to poor
feeding conditions only at times of an extreme
decrease in food availability. Indeed, the slope of the
length–condition regression was significantly higher
in the period before the breakdown in food availability
than in the 2 food-deprived weeks. The temperature
difference during this 4 wk timeframe was within the
window of direct comparability of RNA:DNA ratios
(Caldarone et al. 2003), and thus it is unlikely that tem-
perature-related effects can explain the results. In fact,
our findings show that larger larvae suffered from poor
feeding conditions while smaller larvae showed no sig-
nificant decline with decreasing prey abundance.
Suneetha et al. (1999) reported less serious starvation
effects in small herring larvae Clupea harengus than in
larger ones and attributed this to benefits derived from
yolk remnants. This fits well with our findings that
smaller larvae were not affected by the decline in zoo-
plankton prey density. They may have benefited from
their ability to utilise 2 sources of energy, internal yolk
reserves and external food. Additionally, young stages
of larval fishes are known to feed on phytoplankton in
the first days of external feeding. This has been shown
in various field observations (Last 1978, Monteleone &
Peterson 1986) and controlled experiments (van der
Meeren 1991a). Van der Meeren (1991a) showed that
for first-feeding cod Gadus morhua larvae this uptake
of phytoplankton organisms was the result of active fil-
ter-feeding and not accidental in nature. Nevertheless,
the nutritive value of phytoplankton for larval fishes is
considered low (May 1970), and hence, it is unlikely
that larval fishes can acquire their whole energy
demand from autotrophic organisms. However, they
may derive some essential components from the algal
diet and at least compensate shortages of zooplankton
food (van der Meeren 1991a). Further, small larvae
regularly prey on protists (van der Meeren 1991b).
Although no data on protozoan abundance are avail-
able for the months under investigation, it is likely that
as a response to the diatom bloom the abundance of
heterotroph protists in the system increased. As these
are in the size range of copepod nauplii, protists are
predominantly consumed by smaller fish larvae, while
larger larvae select older copepodite stages. Thus it
can be hypothesised that the smaller larvae of this

study may have switched food sources in order to
exploit the rapidly increasing diatom biomass.

The relationship between maximum larval nutri-
tional condition and size showed a different pattern in
the 2 species under investigation. Larval dab showed a
clear increase in condition with increasing size. Similar
patterns were shown by Clemmesen et al. (2003) for
Atlantic cod larvae in mesocosm studies. The pattern
of displaying the same maximum condition at all larval
size-classes, as found for lesser sandeel in this study,
was previously reported by Pepin et al. (1999) for sev-
eral species from Conception Bay, Newfoundland. In
their study, they demonstrated condition-dependent
mortality showing that maximum condition remained
constant with growth but that larvae in poor condition
were lacking in the larger size-classes. The species
with the clearest condition-dependent mortality in the
investigation of Pepin et al. (1999) were short-lived
species. The production of larvae in maximum condi-
tion at the time of hatch can be interpreted as a more
conservative strategy than that of producing larvae far
below their maximum possible condition at hatch,
which first have to develop a good condition.

Larval sandeel, representative of a short-lived fish
species, did not show a strong dependency on high
prey density and performed well under various food/
temperature conditions. Only at the end of the season
did we detect a deterioration in larval condition co-
inciding with decreasing prey levels. In general, high
temperatures are considered counterproductive for
sandeel production. Arnott & Ruxton (2002) found a
negative correlation between sandeel recruitment and
water temperature in the North Sea, with strongest
effects in the southern part of the North Sea, which
represents the southernmost distribution limit of this
species. In contrast, a positive relationship between
condition and prey availability was found in dab, rep-
resentative of a long-lived species, indicating a higher
dependence on environmental factors in this species.

Our hypothesis that short-lived species have more
conservative reproductive strategies than long-lived
forms is supported by the fact that sandeels produce
large, energy-rich eggs as well as by their long
transition period from internal to external feeding. To
summarise, these adaptive characteristics indicate a
relatively high independence of sandeels from envi-
ronmental factors such as temperature and/or prey
densities, thus enabling this short-lived fish species to
produce larvae in good condition.
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