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Abstract Synoptic scale variability of the Southern
Ocean wind field in the high-frequency range of
barotropic Rossby waves results in transport variations
of the Antarctic Circumpolar Current (ACC), which
are highly coherent with the bottom pressure field all
around the Antarctic continent. The coherence pattern,
in contrast to the steady state ACC, is steered by
the geostrophic f/h contours passing through Drake
Passage and circling closely around the continent. At
lower frequencies, with interannual and decadal peri-
ods, the correlation with the bottom pressure continues,
but baroclinic processes gain importance. For periods
exceeding a few years, variations of the ACC trans-
port are in geostrophic balance with the pressure field
associated with the baroclinic potential energy stored
in the stratification, whereas bottom pressure plays a
minor role. The low-frequency variability of the ACC
transport is correlated with the baroclinic state vari-
able in the entire Southern Ocean, mediated by baro-
clinic topographic–planetary Rossby waves that are not
bound to f/h contours. To clarify the processes of wave
dynamics and pattern correlation, we apply a circu-
lation model with simplified physics (the barotropic–
baroclinic-interaction model BARBI) and use two types
of wind forcing: the National Centers for Environ-
mental Prediction (NCEP) wind field with integrations
spanning three decades and an artificial wind field
constructed from the first three empirical orthogonal
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functions of NCEP combined with a temporal variabil-
ity according to an autoregressive process. Experiments
with this Southern Annular Mode type forcing have
been performed for 1,800 years. We analyze the spin-
up, trends, and variability of the model runs. Particular
emphasis is placed on coherence and correlation pat-
terns between the ACC transport, the wind forcing, the
bottom pressure field and the pressure associated with
the baroclinic potential energy. A stochastic dynam-
ical model is developed that describes the dominant
barotropic and baroclinic processes and represents the
spectral properties for a wide range of frequencies,
from monthly periods to hundreds of years.
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1 Introduction

The transport of the Antarctic Circumpolar Current
(ACC) shows a strong dependence on the strength
of the windstress over the Southern Ocean. A unified
relation, however, could not be found and may in fact
not exist in a simple but general form because many
processes inherent in the fluid dynamics of the circum-
polar ocean—topographic and eddy-induced stresses
as well as effects of stratification—interact with the
forcing and compete to shape the circulation (see e.g.,
the recent reviews by Rintoul et al. 2001; Olbers et al.
2004). With respect to variations of the ACC trans-
port, a simpler picture is sketched by various recent
studies set afoot by the work of Hughes et al. (1999)
on what they called ‘the Southern Mode’ of variability.
The ACC transport was found to be highly correlated
with the bottom pressure all around the Antarctic
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coast and with the winds over the circumpolar area.
Early investigations of this issue date back to Wearn
and Baker (1980) and Whitworth and Peterson (1985).
Hughes et al. (1999) offer an explanation of the large-
scale coherent response on the basis of the propagation
characteristics of topographically modified barotropic
Rossby waves described by the barotropic vorticity
balance. These waves, excited resonantly by the varying
wind, mediate the response along the geostrophic con-
tours f/h = const that pass in a narrow tunnel through
the southern part of Drake Passage and encircle the
continent.

Southern Ocean winds are varying over a broad
range of temporal scales, and correlations were dis-
covered from inertial to synoptic and decadal periods;
the latter periods and associated coherence pattern
are summarized as the Southern Annual Mode (SAM,
Thompson and Wallace 2000). To mention a few recent
important studies: Meredith et al. (1996) and Hughes
et al. (1999) investigate correlation of the ACC trans-
port with winds and bottom pressure records; satellite
altimetry is used by Gille (1999) and Vivier et al.
(2005); and coastal tide gauges by Aoki (2002). Some
correlation studies have addressed also the output from
numerical models, partly in combination with real data
(e.g., Hughes et al. 2003; Meredith et al. 2004; Weijer
and Gille 2005; Hughes and Meredith 2006).

The correlation between transport and bottom pres-
sure should continue to periods longer than decadal,
culminating in the geostrophic relation in steady state.
At some instance, however, baroclinic pressure varia-
tions and baroclinic Rossby waves must come into play
because, with increasing timescales, a growing part of
the transport is found in the shear component of the
current and, speaking in dynamical terms, the baroclinic
pressure torque overwhelms the windstress curl in the
integrated vorticity balance, and the pressure described
by the baroclinic potential energy dominates the bot-
tom pressure in terms of geostrophy (see e.g., Olbers
et al. 2006). The transition of the so far high-frequency
Southern Mode to this low-frequency response and the
associated dynamical regime is the topic of the present
study. The switch from a barotropic response in the
fluctuations to a baroclinic one should occur when
baroclinic Rossby waves can be resonantly excited.
Willebrand et al. (1980) suggest that this transition
occurs at the shortest period of the baroclinic mode.

We analyze the large-scale coherent pattern between
transport, windstress, and pressure variables in simu-
lations with a simplified circulation model driven by
windstress over decades to many centuries. The wind
field is either observed (a few decades of the Na-
tional Centers for Environmental Prediction [NCEP]

reanalysis) or artificial (an autoregressive [AR] SAM
type wind). The model is the two-mode version of
barotropic–baroclinic interaction (BARBI ocean model,
Olbers and Eden 2003), which in its essence is a cou-
pled barotropic–baroclinic wave model with forcing,
advection, and parameterized eddy processes incorpo-
rated. The model contains baroclinic gravity waves and
barotropic and baroclinic Rossby waves, modified and
coupled by the topography that BARBI can represent
in a realistic way. Topography and stratification deter-
mine the propagation characteristics and dispersion of
the wave modes that can be excited by variable wind
forcing. Gravity waves are mainly responsible for the
local geostrophic adjustment, and Kelvin waves spread
signals along the Antarctic and South American coast
in a narrow strip of the size of the baroclinic Rossby
radius. With the rigid-lid approximation used in most
models (also in our model), the barotropic gravity
waves are infinitely fast, and the signal propagation by
gravity waves is entirely in the baroclinic mode, but
Rossby waves have both components, a high-frequency
barotropic and a low-frequency baroclinic mode. They
propagate signals across the ocean interior.

Both Rossby modes are influenced by topography
but barotropic waves have much stronger steering by
topographic features, mathematically imprinted in the
f/h contours, than baroclinic ones. The low-frequency
response (decadal to centuries) is thus governed to an
increasing degree by baroclinic dynamics with variables
which have correlation patterns that are independent
of the f/h tunnel through Drake Passage. In the range
of ultra-long periods, well above a decade, variations
of the ACC transport have most of their power in
variations of the shear current with the baroclinic po-
tential energy as associated geostrophic pressure field.
The paper investigates dynamics of the high- and low-
frequency regimes with a coherence and correlation
analysis, regression models and stochastic-dynamical
models.

The paper is organized as follows. Section 2 gives
an introduction of the processes and timescales that
govern steady and fluctuating states of the ACC. The
model setup and the different wind forcing fields are
explained in Section 3, and the spin-up is analyzed in
Section 4, including some linear model concepts. A
comparison of the transport variability, obtained from
the BARBI simulations, with observation of the ACC
transport from hydrography and from numerical eddy-
resolving models is found in Section 5, and finally, in
the Sections 6 and 7, we discuss the coherence and
correlation pattern between the ACC transport, pres-
sure gradients, and windstress of the simulations, sup-
porting the interpretation by simple linear regression
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and stochastic models. The last section is a conclud-
ing discussion of our findings. We have added two
appendices. In Appendix 1, we give a short summary
of the BARBI model. In Appendix 2, we derive the flat-
bottom and topographic wave properties of the model.

2 Processes and timescales in steady and fluctuating
states of the ACC

The circulation model used in this study is a two-mode
version of the BARBI model (Olbers and Eden 2003).
The physics of the BARBI model—the governing equa-
tions and parameterizations—are briefly outlined in
Appendix 1. The fundamental variables describing the
flow in BARBI are the vertically integrated velocity U =∫

udz = (−∂ψ/∂y, ∂ψ/∂x) or its streamfunction ψ , and
the baroclinic potential energy E = g

∫
zρdz stored in

the density perturbation ρ about a mean profile with
Brunt–Väisälä frequency N. Both these variables are
vertically integrated from top to the ocean depth at
z = −h, and U or ψ reflect fast barotropic timescales,
whereas E is a baroclinic variable with slow baroclinic
timescales. Whereas U and E are prognostic variables,
the other important variable in the BARBI model, the
bottom pressure P (barotropic plus baroclinic), is cal-
culated diagnostically (see Appendix 1).

The low-frequency version of BARBI’s governing
equations 12 to 15 is the coupled set of the barotropic
vorticity balance and the balance of baroclinic potential
energy that may be cast into the form1
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where λ = Nh/(
√

6| f |) is the local internal Rossby ra-
dius in the BARBI frame. The first equation is derived
by taking the curl of the balance of the depth-averaged
velocity U/h, and the second is derived in this form
from the BARBI model equations 13 and 15 by taking
the baroclinic velocity moment balance (13) diagnos-
tically, which filters out baroclinic gravity waves and
short baroclinic Rossby waves. In Eq. 1, we notice the
advection of planetary–topographic vorticity and the
JEBAR torque associated with density and topography
gradients, both written as Jacobians, and the forcing,

1The nabla-4 operator �4 is similar to the familiar ∇4 but modi-
fied by the depth h, see Olbers et al. (2006).

friction, and the tendency terms. Equation 2 reflects the
balance of vertical pumping by geostrophic, barotropic,
and Ekman velocities (the third and fourth terms on
the left hand side and the first term on the right hand
side, respectively), acting on the mean stratification,
given by N, in the generation of potential energy. In the
following discussion, these equations serve to discuss
the processes and timescales of the steady ACC circu-
lation and its variability. We draw from Olbers et al.
(2006) who have analyzed the steady circulation of the
ACC and its dynamical balance, modeled with BARBI,
and from Hughes et al. (1999) who have introduced
and described the concept of ‘a Southern Mode’ of
variability in the Southern Ocean. Vivier et al. (2005)
have substantiated this concept by extensive data analy-
sis and numerical experimentation with a barotropic
model.

In the context of studying variability with the BARBI
model, it seems appropriate to mention the wave prop-
erties of the two-mode version. A linear wave analysis
based on Eqs. 1 and 2 (see Appendix 2) shows that
the low-frequency version of BARBI has the famil-
iar set of mixed barotropic–baroclinic Rossby waves
of topographic–planetary dynamics (see e.g., Rhines
1977). The two-mode BARBI model may thus be in-
terpreted as the coupled mixed planetary–topographic
wave problem for the first two modes, with forcing by
windstress as well as friction, diffusion, and advective
nonlinearities included. The modes are neither strictly
barotropic nor strictly baroclinic if topographic slopes
are present. They are of a mixed quality (details are
found in Appendix 2) and very similar to the two-layer
quasigeostrophic modes analyzed by Hallberg (1997).
Note that topography is implemented in BARBI without
any depth scaling as, e.g., required in quasi-geostrophic
models.

The steady state Provided that topography is present,
the circulation in a homogeneous ocean differs sub-
stantially from the case of a stratified ocean. In the
first case, E ≡ 0, there is no JEBAR, and only the
advection of f/h-vorticity, wind forcing, and friction
remain in the vorticity balance (1). The latter two terms
determine the flow across f/h contours. The balance,
however, allows for ‘free’ flow along the contours, ψ =
f ct( f/h), which of course is not entirely free because it
is affected and coupled to the forced part of the solution
by friction. As the f/h contours are largely expelled
from Drake Passage, the current through the passage is
of minor size. A large bottom formstress is opposing the
wind in the zonally mean balance of momentum. The
circumpolar flow in this barotropic setting is thus along
a bundle of f/h contours that close around Antarctica
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Fig. 1 Left geostrophic
contours f/h, CI =
5 × 10−9 m−1 s−1. Middle
and right steady solution
obtained with the barotropic
BARBI model forced by
NCEP windstress. Middle
streamfunction, CI = 10 Sv.
Right bottom pressure, CI =
0.1 m2 s−2. Positive contours
are black, negative red

in a narrow strip along the continental slope. There
are, however, large-scale circulation cells with quite
substantial currents in areas with closed f/h contours,
occurring over the mid-ocean ridge in the South At-
lantic and Indian Ocean and around Kerguelen Plateau.
The circulation is exemplified in Fig. 1 with the steady
BARBI solution (forcing and model setup are given
below). It clearly is a quite unrealistic simulation of the
ACC.

When the system has approached equilibrium in a
stratified case with topography, the Jacobian terms in
each of the above balances (1) and (2) overwhelm the
remaining terms. As shown in Olbers et al. (2006), they
can be related to vertical velocities induced by either
the barotropic flow (the ψ-terms) or by the geostrophic
baroclinic flow (the E-terms) induced by crossing of
the topography by the current. The potential energy is
found to be almost constant along the flow. A reason-
able approximation is E ∼ fψ + const, and the poten-
tial energy balance may be used in a rigorous expansion
to express the Jacobians in the vorticity balance in a
new form with the result
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We should emphasize that this balance becomes valid
only after the spin-up to steady state because it is based
upon the balance of the Jacobians. It is evident that
the baroclinic JEBAR forcing overcomes the constraint

of the f/h term and restores zonal characteristics. It
also introduces a modified forcing by wind and buoy-
ancy flux Q and dissipation D. Olbers et al. (2006)
call Eq. 3 the ‘baroclinic Stommel equation’ because
the viscosity term is outweighed by far by the eddy
diffusivity term taking the place of Stommel’s bottom
friction (note that K f 2/N2 is an effective vertical dif-
fusivity of momentum). The stratified ACC solution is
exemplified in Fig. 2, again obtained with the BARBI
model. Evidently, f/h contours do not shape the cur-
rent any more. According to Eq. 3, ‘free’ flow is now
possible along latitude circles through Drake Passage,
but the bottom formstress is as efficient as before to
balance to a large degree the zonal forcing of the mean
current. Note, however, that the bottom pressure has
still imprints of the f/h contours and resembles to
some degree the pressure of the homogeneous system
(compare the right most panels of Fig. 1 and Fig. 2).
The reason for this behavior is that the f/h contours
are still dominating the pressure in the Poisson equa-
tion 18. A very approximate solution of the latter is
P ∼ ( f/h) (ψ − E/ f ). The bottom pressure gradient is
small compared to the pressure gradient induced by the
potential energy. The current U is thus in approximate
geostrophic balance with ∇E.

The fluctuating state The balance conditions in Eqs.
1 and 2 change completely when transient behavior
occurs. Trivially, the tendency terms are gaining impor-
tance, but we must realize the totally different sizes of
the natural timescales in these equations. The natural
timescale of the streamfunction ψ (or integrated ve-

Fig. 2 Steady solution
obtained with the BARBI
model LN forced by
NCEP windstress. Left
streamfunction, CI = 10 Sv.
Middle baroclinic potential
energy, CI = 1,000 m3 s−2.
Right bottom pressure,
units: CI = 0.1 m2 s−2
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locity) is found from Eq. 1 to be of order 1/(βeff L),
whereas the baroclinic equation 2 reveals L/(βeffλ

2) for
the timescale of variations of the potential energy E.
In this study, βeff includes the topographic β, and L is
a lateral length scale. The timescale of ψ relates to the
period of barotropic Rossby waves and the timescale
of E to the period of baroclinic Rossby waves. The
periods of these modes differ by the very large ratio
L2/λ2. Their group velocities are highly different as
well: Barotropic Rossby waves, with a speed of a few
meters per second, can travel once around Antarctica
in a few months, and baroclinic waves need a much
longer time, a few years. The speed of the baroclinic
mode, a few centimeters per second in the flat-bottom
case, is generally slower than that of the mean flow so
that its natural westward propagation is reverted by the
strong eastward ACC: Baroclinic waves in the ACC are
supercritical.

The fast response of the coupled barotropic-
baroclinic system on timescales up to a few months is

evidently governed by barotropic dynamics. Fluctua-
tions in the wind-forcing excite barotropic planetary–
topographic Rossby waves which are balanced by the
two terms on the left hand side of Eq. 1. The baro-
clinic potential energy is only slowly responding and
the JEBAR term can be taken constant at a first ap-
proximation. It drives the mean flow as outlined above.
In a more refined approximation, variations of E can
be described within the framework of the stochastic
climate model of Hasselmann (1976): the slow baro-
clinic subsystem—the potential energy (and JEBAR)—
integrate the fast ‘stochastic’ forcing implemented by
the windstress (the Ekman pumping term in Eq. 2)
and the barotropic pumping acting of the mean strat-
ification (the ψ-Jacobian in Eq. 2). In contrast to the
classical stochastic model this forcing is a red-noise.

The geostrophic contours regain importance in the
fluctuating state because long barotropic waves prop-
agate along constant f/h. For the waves in BARBI
we demonstrate this by a Wentzel–Kramer–Brillouin

Fig. 3 Upper row the first
three EOFs of the NCEP
zonal windstress, units
10−5 m2s−2. Lower row
power spectral density of
the zonal windstress
for NCEP (green) and
AR (blue)
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(WKB) analysis which, however, might be questioned
in view of the large wavelengths involved: ‘long’ should
be compared to the external Rossby radius

√
gh/ f ∼

2,000 km. This value is as well roughly the size of
the coherence scale of synoptic wind fluctuations (see
Fig. 3). Nevertheless, the fast response to wind driving
in the Southern Ocean seems to be mediated along
these contours and thus is mainly visible in the tunnel of
f/h contours that pass around Antarctica close to the
continental slope. This feature strongly distinguishes
the fluctuating response from that of the steady state
(in the presence of stratification), and as stated by
Hughes et al. (1999), ‘it makes little sense to think
of wind-driven fluctuations as changes in the strength
of the mean flow’. As the transients are barotropic,
the associated currents are in balance with the bottom
pressure gradients, not like the mean flow, which is
mainly coupled to spatial variations of the potential
energy. In this fluctuating state, the bottom pressure
is thus highly coherent in the area around Antarctica
bounded by the northernmost closed f/h contour. The
pressure fluctuations in this ‘tunnel area’ is negatively
correlated with transport fluctuation of the ACC due to
the constraint of geostrophy. Hughes et al. (1999) refer
to this regime of wind-driven transport fluctuations as
‘the Southern Mode’. Variations of the ACC transport
on these fast timescales can thus be monitored by the
variations of bottom pressure in the southern Drake
Passage or at other locations around the Antarctic
continent. It has been documented in many studies,
applying a correlation to bottom pressure records (e.g.,
Meredith et al. 1996; Hughes et al. 1999), satellite
altimetry (e.g., Gille 1999; Vivier et al. 2005), coastal
tide gauges (e.g., Aoki 2002), and wind data, part of
them also in combination with output from numerical
models. The Southern Mode is the ocean response to
the SAM (Thompson and Wallace 2000) on synoptic
timescales. This connection was explicitly drawn by
Hughes et al. (2003).

A similar response in the bottom pressure and
correlation with the ACC transport is also taking
place on interannual and longer timescales, as sug-
gested by Hall and Visbeck (2002) and found by
Meredith et al. (2004) in bottom pressure records
and output from the Ocean Circulation and Climate
Advanced Modelling (OCCAM) 1/4◦ model. As an
extension of the barotropic Southern Mode we ex-
pect a corresponding large-scale coherence pattern
with the potential energy field for slower baroclinic
timescales, i.e., above a few years. Baroclinic Rossby
waves are not bound to the f/h contours and hence,
the coherence of transport and E should not be con-
strained by these contours. This conjecture is the

issue of the present investigation. Some of the results
reported in the following derive from the thesis of
Lettmann (2006).

3 Model set-up and forcing functions

The present applications of BARBI uses a model do-
main from 76 to 20◦S with a resolution of 2◦ × 1◦.
Topography data from the ETOPO5 data set are inter-
polated onto the model grid. The geostrophic contours
f/h = const of the model are displayed in Fig. 1. The
Drake Passage of the model is open between 62.5 and
55.5◦S. Note that only a small bundle of f/h contours
passes through very close to the Antarctic continent.
The parameters of the simulations presented in this
study are slightly different from those in Olbers et al.
(2006). The horizontal viscosity is A = 5 × 104 m2 s−1,
and the eddy diffusivity is K = 2 × 103 m2 s−1. We
use a linear damping form D = μE for the dissipa-
tion of potential energy with a coefficient μ = 1.5 ×
10−10 s−1. Two versions of the full baroclinic model
are used, differing in the Brunt–Väisälä frequency:
Model SN has N = 1.5 × 10−3 s−1, whereas model LN
has a slightly larger N = 1.8 × 10−3 s−1. The corre-
sponding baroclinic Rossby radii are λSN = 19.3 km and
λLN = 23.3 km, respectively. The barotropic version is
obtained by taking N ≡ 0.

BARBI can be forced by a surface windstress and
by a source of the baroclinic potential energy (the Q
term in Eqs. 15 and 2). The latter is set to zero in the
present experiments, and thus, a purely wind-driven
variability of the Southern Ocean circulation is studied.
Two different kinds of wind forcing are used: The first
one (NCEP wind) are daily winds from NCEP/National
Center for Atmospheric Research (NCAR) for the
time span 1948 to 2006, and the second type (AR
wind) is an artificial windstress derived from the first
three empirical orthogonal functions (EOFs) of the
NCEP/NCAR monthly winds and the long-term mean
windstress τ̄ (x, y) vector field from 1948 to 2006. The
AR windstress for the zonal components has the form

τ x(x, y, t) = τ̄ x(x, y) +
3∑

i=1

ai(t) · σ 2
i · EOFx

i (x, y) (4)

Table 1 Variances of the first three EOF of the NCEP windstress
vector

EOF1 EOF2 EOF3

Zonal 0.263 0.144 0.071
Meridional 0.355 0.065 0.056
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Fig. 4 Correlation of the zonal windstress in Drake Passage
with the zonal windstress in the Southern Ocean (left NCEP,
right AR)

where σi is the variance by the i-th EOF of τ x. It con-
trols the influence of the different EOFs to the wind-
stress. The EOFs of the zonal windstress are displayed
in Fig. 3 (they are renormalized to carry the units of
windstress according to von Storch and Zwiers (1999)).
The meridional component is modeled in a similar way;
the σi, however, are different for the two vector com-
ponents (see Table 1), and also, the amplitudes ai(t)are
different. They are red noise time series with mean zero
of the AR-form

ai(t) = αai(t − 
t) + Z (t) (5)

with α = 0.98 and white noise Z (t), which are equally
distributed random numbers on the interval [−3.0, 3.0]
(for the vector windstress, six independent realizations
are generated). A comparison of the spectral density of
the NCEP windstress with the AR-stress for τ x is given
in Fig. 3. The spectra of NCEP and the AR-stress are
dissimilar. For periods exceeding a year, the AR-stress
is white, and for higher frequencies, we find the well-
known ν−2 power law of a first-order AR process. The
NCEP data cover only a fairly limited range of frequen-
cies, emerging into a ν−1 frequency dependence in the
high-frequency range. Note that the annual and semi-
annual peaks are visible. Also the spatial coherence in
NCEP and AR is drastically different. By construction
from only a few EOFs, the AR wind has extracted the
large-scale coherent pattern of the SAM. As demon-
strated in the lower middle and right panels of Fig. 4,
the NCEP stress has a zonal correlation scale of roughly
2,000 km. In contrast, the AR stress is highly coherent
all around Antarctica according to the SAM pattern.

4 Analysis of spin-up

All experiments are started from a state of rest, forced
with the time mean windstress τ̄ (x, y), and integrated

to equilibrium, which then is used as initial state for the
experiments with variable winds. Various steady cir-
culations with barotropic and baroclinic conditions are
discussed in Olbers et al. (2006). The barotropic model
has an ACC transport of 29.5 Sv with streamfunction,
and the bottom pressure predominantly follows f/h
contours (see Fig. 1). The baroclinic simulations get
reasonably sized circumpolar flow with little apparent
influence of the underlying topography in the stream-
function. The baroclinicity overrides the effect of the
f/h contours, as described in Section 2. Figure 2 exem-
plifies the solutions by depicting the streamfunction, the
potential energy, and the bottom pressure for NCEP
forcing and model version LN. The steady ACC trans-
port T0 in this simulation is 141 Sv. Model version SN
with a smaller N yields 110 Sv, which is in accordance
with the scaling T0 ∼ τ x/(K f 2/N2) derived in Olbers
et al. (2006). The linear relation between transport and
the windstress is due to setting K to a constant. More
elaborate parameterizations of K would result in other
power laws, all of which are questionable as discussed
in various studies with numerical models (see, e.g.,
Tansley and Marshall 2001; Gent et al. 2001; and the
review by Olbers et al. 2004). Note that the potential
energy follows the streamlines quite closely, whereas
the bottom pressure has a tendency to follow the f/h
contours and therefore has some resemblance to the
barotropic flow. In the geostrophic balance of the ver-
tically integrated velocity, the influence of the bottom
pressure is overwhelmed by the pressure associated
with the potential energy field that is fairly zonal as the
current. The streamfunction shows a distinct Weddell
Sea gyre and a weak Ross Sea gyre.

The approach of the circulation toward the steady
solution is more or less of exponential form. For the
total transport through Drake Passage, we find T(t) =
T0(1 − e−t/tT ) as displayed in Fig. 5 and suggested by the
simple relaxation model of Wearn and Baker (1980),

Ṫ + T
tT

= Bτ x (6)
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Fig. 5 ACC transport during spin-up from a state of rest after
switching on the windstress. Left barotropic regime with N = 0
(the sampling time step is 3 days). Right baroclinic regime with
N = 0.0018 s−1 (model LN, the sampling time step is 800 days).
Blue actual transport, green exponential fit from Eq. 6, red
difference
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where τ x(t) is a measure of the zonally averaged zonal
windstress (with time mean τ0) and B the width of the
current. Wearn and Baker estimate the relaxation time
tT from the steady solution T0 = tT Bτ0, and using rea-
sonable values for T0, B and τ0, they find a surprisingly
small value of tT = 7 days.

Assuming that Eq. 6 is valid as well as for fluctu-
ating state, we interpret T(t) as a random excursion
about a mean transport, which is driven by the noise
in the forcing τ x(t). Equation 6 then becomes a stochas-
tic differential equation (it is an Ornstein–Uhlenbeck
process). The system is an example of Hasselmann’s
(1976) stochastic climate model. We will proceed along
this approach in Section 7. Wearn and Baker apply
a lagged correlation analysis of time series of the ob-
served circumpolar averaged windstress and the trans-
port evaluated from the observed pressure difference
across Drake Passage and find a lead of the wind by
about 8 to 9 days, close to damping timescale of the
spin-up model. The authors refer to the very fast long
gravity waves to mediate such a fast response. Grav-
ity waves, however, are important in the geostrophic
adjustment, taking place on a rather regional scale. In
BARBI, as in other rigid-lid models, these fast gravity
waves are filtered out. In view of the f/h modulated
correlation behavior found later by other studies (see
Section 2 and below), it is more likely that barotropic
Rossby wave propagation works in the short relaxation
on the very large scales. These waves can travel around
Antarctica within a few days to a month (see Table 2
for the timescales of different processes).

The spin-up of the barotropic BARBI simulation
follows quite closely the Wearn–Baker model with a
timescale of ttrop = 11 days for our particular forcing
and model configuration. As shown in Fig. 5 (left
panel), there are fluctuations of transport in the first
few days, which likely are associated with barotropic
planetary–topographic Rossby waves. They help adjust
the transport to its steady state value that is then gov-
erned by friction, topography height, and the geometry
of the f/h contours. In Table 2, we give estimates

of frictional, diffusive, advective, and wave propaga-
tion times. For the circulation through the narrow
f/h tunnel in the barotropic case, frictional and wave
timescales are indeed of the order of ttrop. Further
details on these wave equilibration processes are given
by Olbers et al. (2006), and for a low-order version
of the relevant balances, see Olbers et al. (2007). To
determine the barotropic time constant, the barotropic
Rossby waves in the transport record were smoothed
with a Gaussian low pass filter.

The transport in the baroclinic simulations also ad-
justs exponentially but on a much longer timescale, as
displayed in the right panel of Fig. 5 for the model
LN. We find a relaxation time tclin = 5,780 days. From
the wave analysis of BARBI (see Appendix 2) and
the timescales in Table 2, it is evident that, now, the
baroclinic Rossby waves participate in setting this long
timescale, in cooperation with advective and viscous-
diffusive effects. Clearly, the fast barotropic response
is effective in the baroclinic system as well (high-
frequency oscillations appear in the initial phase but
are filtered in the figure by taking a large sampling
time step) so that the transport is always adjusted on
a timescale of days to the windstress and the baroclinic
forcing acting at the moment. In the momentum bal-
ance (12), this is the pressure gradient conveyed by
the potential energy; in the vorticity balance (1), it is
the JEBAR torque. The transport in model version LN
compares well with observations of the Drake Passage
transport of 134 ± 13 Sv (see, e.g., Rintoul et al. 2001;
Olbers et al. 2004), but in fact, this value has been
tuned by choosing appropriate model parameters: It
can easily be tuned by K or N because the steady state
transport is governed by the eddy diffusion K f 2/N2

and not by viscosity (see Section 2 and Olbers et al.
2006).

The long baroclinic timescale calls for an extension
of the Wearn–Baker model. Equation 6 can be viewed
as a parameterization of the mean zonal momentum
balance of the current between input of eastward mo-
mentum by windstress and export to the solid earth by

Table 2 Timescales arising from friction, diffusion and wave propagation

Lat. friction Diffusion Advective Clin wave Trop wave
B2/Ah B2/K L/u L/cclin L/ctrop

Timescale (days) 233 (14.5) 5,790 (362) 4,630 2, 315 22

The parameters are those of the BARBI model. The current velocity is assumed u = 0.05ms−1, the group velocities are evaluated as
ctrop = 10 ms−1, cclin = 0.1 ms−1. These are topographic wave speeds taken from a WKB wave analysis in Appendix 2 Waves, using
moderate topographic slopes. The length B is taken here as width of the current, 1,000 km for the baroclinic case or 250 km for the
barotropic case (in brackets); for the advective and wave adjustment the circumpolar length L = 20,000 km is considered
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bottom formstress (see, e.g., Rintoul et al. 2001; Olbers
et al. 2004, 2006),

∂Ū
∂t

= τ̄ x − h
∂ P
∂x

(7)

where the overbar denotes the zonal mean. The bot-
tom formstress builds up by propagation of planetary–
topographic Rossby waves, generated by the zonal flow
crossing the submarine topographic barriers and adjust-
ing to them by friction (see Olbers et al. 2006, 2007).
The formstress in the barotropic state relates to the
zonal transport, and with Ū B ∼ T and hPx ∼ Ū/tT

with appropriate geometric scales (essentially the width
B of the current), we obtain Eq. 6. This is the scenario
of Charney and DeVore (1979), which originally ap-
plies to barotropic conditions. In a baroclinic system,
however, the formstress includes a barotropic and a
baroclinic component (see, e.g., Olbers and Völker
1996; Völker 1999). The pressure Poisson equation im-
plies approximately ∇ · h∇P = f∇2ψ − ∇2 E, and thus,
it seems reasonable to relate the bottom formstress in
addition to the transport also to the baroclinic potential
energy. A more complete linear model of barotropic
and baroclinic variables is then of the form

Ṫ + aT + bC = mF

Ċ + cT + dC = nF (8)

where we take C = 
E/ f = (En − Es)/ f as represen-
tation of the baroclinic variable2 and F as a proper
measure of the zonal windstress τ x, e.g., a zonal mean
at the latitude of Drake Passage. The matrix (a, b , c, d)

describes the linear response to the forcing, and m and
n are parameters measuring the strength of the forcing
in the appropriate balance. The balance of transport in
Eq. 8 follows the zonal balance (7) of zonal momentum;
hence, the forcing in the first arises from the zonal
windstress and thus m ∼ B. Furthermore, the para-
meterization of the bottom formstress implies a ∼ b .
The baroclinic equation in Eq. 8 may be motivated
by the balance of potential energy in the form (2).
Hence, the forcing in the second equation arises
from the windstress curl, and we get estimates for
the parameters c, d and n directly by suitable scal-
ing (not parameterization) of Eq. 2. This yields n ∼
λ2/B, d = c ∼ − fλ2/B2. According to Eq. 8, the spin-
up of T(t) is now governed by the two eigenvalues
of the matrix (a, b , c, d) with the trace θ = a + d ≈ a

2The indices n and s refer to northern and southern points in the
model’s Drake Passage.

and the determinant δ = ad − bc ≈ d(a − b); hence,
λ± = −(θ/2)(1 ± √

1 − 4δ/θ2) results in λ+ ≈ −a, λ− ≈
−d(1 − b/a). The response of T(t) is hence governed
by 1/a ∼ ttrop on the short term and by the timescale
a/((a − b)d) ∼ tclin of the baroclinic field on the long
term, as shown in Fig. 5.

5 Variability and trends from 1975 to 2005

The time history of the transport T(t) for the NCEP
wind and model version LN is displayed in Fig. 6 and
compared with measurements collected on the World
Ocean Circulation Experiment (WOCE) section SR1
across Drake Passage by Cunningham et al. (2003,
Table 1) and Cunningham and Pavic (2007). The early
observations from 1975 to 1980 are transport estimates
relative to 3,000 dbar and thus considerably less than
the above-mentioned mean value of 134 Sv for the
absolute transport through Drake Passage. We have
shifted the mean of these early data to the mean of
the time series of Cunningham and Pavic (2007) who
estimate absolute transports through Drake Passage
for each year from 1993 to 2003 from the section
data, satellite altimetry, and current measurements.
Their mean is 137.1 Sv, and the standard deviation is
6.9 Sv. There is a bias in these section data toward
the Austral summer. On the SR3 section between
Tasmania and Antarctica, Rintoul et al. (2002) find a
similar standard deviation (their transport estimate is
147 ± 6.1 Sv) from six repeats from 1991 to 1996 dis-
tributed more evenly over the seasons. The values for
the BARBI experiment are 144.4 Sv for the mean and
13.7 Sv for the standard deviation. The variability of
BARBI is thus considerably more intensive than the
observed variability (but note that we compare a trans-
port record with a sampling step of 7 days for 30 years

1980 1985 1990 1995 2000 2005
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140

160

180

time

T

Fig. 6 Transport through Drake Passage from 1975 to 2005. The
magenta circles mark the measured values listed in Table 1 of
Cunningham et al. (2003) for hydrographic sections taken from
1975 till 1980. The green circles are yearly estimates from 1993 till
2003 from WOCE sections according to Cunningham and Pavic
(2007). The blue curve is the BARBI transport with a sampling
time of 7 days, the red curve is the Drake Passage transport from
the OCCAM model (5-day mean values). The section data 1975–
1980 (magenta circles) have been shifted to the same mean as the
section data 1993–2003
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daily forcing with a few section data). The standard
deviations of transport derived from pressure differ-
ences across the ACC in Drake Passage, as reported
by Meredith et al. (1996) from 10-day filtered data,
have a higher temporal resolution and range from 5.3 to
8.9 Sv.

Figure 6 also shows the Drake Passage transport
from the numerical eddy resolving model OCCAM
(B. De Cuevas, personal communication; it is the 1/4◦
model; Webb et al. 1998). OCCAM was forced by six
hourly NCEP winds from 1985 to 2004. As a side note,
we mention that adjustment timescale of the OCCAM
transport, visible in Fig. 6, has a similar size as the
baroclinic timescale of BARBI (cf. Fig. 5). The mean
transport in OCCAM, 143.5 Sv, is of similar size as the
section data and the result from BARBI. Its standard
deviation 6.9 Sv (from 5-day mean values) is low, and
we have to face that BARBI may have a too large vari-
ability. In contrast to OCCAM, the Modeling Eddies
in the Southern Ocean (MESO) project (Hallberg and
Gnanadesikan 2006) reports a much higher variability,
a weekly peak-to-peak range of 30 Sv, although the
experiments are forced by constant windstress. The
1-year low-pass-filtered transport in the 1/6◦ MESO
model still varies by about 5 Sv. The comparison of
the variability resulting from the simple BARBI model
with the one simulated by eddy-resolving models as
OCCAM or MESO thus leads to a note of caution.
The variability arising from wind forcing seems to be
less in these models than in BARBI, most likely because
eddies behave more nonlinear than a diffusive eddy
parameterization. In addition, the presence of (real or
adequately resolved) eddies excites its own variability
of transport that is not directly related to wind varia-
tions. Furthermore, eddies seem to produce at the same
time a lower saturation limit for the variability. As we
are mainly concerned with linear aspects—wave prop-
agation and correlations of directly forced variability—
we expect that the discrepancy between eddy resolved
simulations and the coarse BARBI simulations is not a
severe problem.

Applying a Student’s t-test to the section data,
Cunningham et al. (2003) conclude that the mean val-
ues (for the relative transport values) during the two
periods 1975–1980 and 1990–2000 are different, but not
at a significance level of 95%. A long-term trend cannot
be derived from these measured transport values. The
NCEP windstress, however, is clearly increasing over
these 30 years. In the upper panels of Fig. 7, the NCEP
zonal wind stress, spatially averaged between 68 and
47◦S, shows a positive linear trend with an increase of
25.5% over the considered period. The BARBI model
responds to the NCEP winds by a linear increase of
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Fig. 7 Upper panel spatially averaged zonal wind stress be-
tween 68 and 47◦S (units are 10−4 m2s−2). The following panels
show the transport through the Drake Passage, the difference of
bottom pressure across Drake Passage, converted to transport
units by −h0(Pn − Ps)/ f with h0 = 2,000 m, and the difference
of potential energy in the form −(En − Es)/ f (the data are from
model version LN). The data are unsmoothed with sampling step
7 days. The red lines are linear fits

transport by 8.2% (see second panel of Fig. 7). The
figure also displays the difference of bottom pressure
P and of potential energy E across Drake Passage,
converted to transport values. The pressure gradient
increases by 11.2%, and the potential energy gradient
increases by 6.4% over the 30 years, respectively. Note
however, that the potential energy rises mainly after
1990. There is a delay of roughly 10 years, which is
consistent with the long response time of the baroclinic
field. The comparison of the time history of E with
the wind and P nicely demonstrates that E is indeed
the slow component of a stochastically forced system
in the sense of Hasselmann (1976).

In steady state, the ACC is in geostrophic balance,
and on the basis of BARBI experiments, Olbers et al.
(2006) have shown that pressure gradients associated
with the potential energy E are dominating over gra-
dient of the bottom pressure P in this balance. In fact,
one finds the approximate relation f∇ψ ∼ ∇E or ψ ∼
E/ f over most of the Southern Ocean. The quantity
(1/ f )∇E is approximately equal to the geostrophic
transport relative to the bottom (see Olbers et al.
2006). This correspondence has also been suggested
by Borowski et al. (2002). A reasonable proxy for
the time-mean transport is the difference of E across
Drake Passage, more specifically T � −(En − Es)/ f =
−C. For fluctuations, we have pointed out the long re-
sponse time of the baroclinic field, and thus, the above
relations should not hold for periods less than a few
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Fig. 8 Power spectral density of T (blue), h0(Pn − Ps)/ f (green),
and (En − Es)/ f (red) for the NCEP (left) and AR (right) exper-
iments, with h0 = 2,000 m and f = −1.2 × 10−4 s−1. The straight

lines indicate various spectral slopes (see text). The outstanding
peaks in the NCEP-forced simulation have annual and semian-
nual periods

years (smaller than tclin). Figure 8 compares the power
spectra of T, h0(Pn − Ps)/ f and C = (En − Es)/ f for
the NCEP and AR experiments. These quantities have
units m3s−1, and for an appropriately chosen depth h0

for Drake Passage, the steady-state geostrophic bal-
ance would equate T to the (negative) sum of the two
pressure gradients, with the E-term dominating. Al-
though the NCEP resolution is just enough to speculate
that the simulation approaches such a state, we see
that the low-frequency domain of the AR simulation
has reached it. At high frequencies, however, the P-
term carries most of the variability of the geostrophic
transport. The NCEP simulation shows annual and
semiannual peaks in all spectra. The AR case has a
clear impact from the forcing. For periods exceeding
500 days—the ramp period of the forcing as shown
in Fig. 3—the T and h0(Pn − Ps)/ f spectra flatten to
a plateau, and while the latter continues for higher
periods, the T spectrum picks up some redness again.
This arises from the C part that increases right from the
ramp frequency on to lower frequencies.

At frequencies above 0.1day−1, there is a manifesta-
tion of the barotropic variability, clearly visible in the
C-spectrum but also in the more energetic other two
spectra. The marginal break of spectral slope at about
2 × 10−4day−1 ≡ 5,000 days in the T-spectrum might be
an indication of the baroclinic timescale. More spectac-
ular are broad peaks in the C-spectrum at intermediate
frequencies, most prominent at about 5 × 10−3day−1 ≡
200 days but also appearing higher frequencies. It is
hard to judge whether these latter peaks are harmonics
of the previous peak (the potential energy balance is
nonlinear) or whether they have independent values.

Note that there is also some overshooting of spectral
power in the T and P spectra before these settle to
their respective plateau. As these peaks cannot arise
from the forcing nor from the barotropic or baroclinic
intrinsic adjustment, we suggest that these intermediate
peaks are associated with resonant Rossby waves or
partly or even fully developed baroclinic basin modes
of the circumpolar system. The maximum period of
baroclinic topographic Rossby waves are typically 100
to 200 days (cf. Appendix 2).

Due to these broad band peaks at intermediate fre-
quencies, it is hard to extract a power law behavior for
the high-frequency range. The power spectral densi-
ties of T and h0(Pn − Ps)/ f have a similar behavior,
whereas (En − Es)/ f is much ‘redder’. In Fig. 8, we
show various spectral slopes. For the high- and the low-
frequency T spectrum of the AR simulation, a −2 slope
is included, whereas for the high-frequency E spectrum,
a −4 slope. The corresponding slopes for the NCEP
simulations are −1 and −3, respectively.

6 Correlation patterns

Several studies (see, e.g., Hughes et al. 1999, 2003; Aoki
2002; Meredith et al. 2004; Vivier et al. 2005) have
shown that the bottom pressure in the south of Drake
Passage and, more generally, along the Antarctic conti-
nental shelf reflects the oscillations in transport through
Drake Passage. This result is strongly supported by the
BARBI experiments as well. Figure 7 demonstrates, for
model version LN and real winds (NCEP wind forcing),
a very high correlation between the transport and the
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Fig. 9 Coherence and phase between transport through Drake
Passage and various quantities: the difference (Pn − Ps)/ f of
bottom pressure across Drake Passage (blue), the meridional

difference (En − Es)/ f of potential energy (red), and the mean
zonal windstress τ x (green), for NCEP winds (left panels) and the
artificial AR wind forcing (right panels)

bottom pressure gradient across Drake Passage; the
correlation coefficient in this example is 0.9 with a
sampling time step of 7 days. Figure 9 (left panels)
shows the coherence and phase of the ACC transport
with the mean zonal wind, with the pressure difference
(Pn − Ps)/ f , and with C = (En − Es)/ f for periods less
than a year (obtained with NCEP forcing). The coher-
ence between T and the bottom pressure Ps in the
south of Drake Passage is not shown; it is slightly less
than the one with pressure difference. Transport and
windstress are highly correlated for periods above a few
months. Their phase lag is negative indicating a lead of
the wind as in the result of Wearn and Baker (1980) and
previously cited more extended studies. The coherence
with the bottom pressure is at high levels for the entire
interval of periods, whereas the one with the potential
energy gradient remains quite small. The phases be-
tween T and the pressure difference are consistent with
a geostrophic balance for periods approaching 1 year.
The phase of T and C remains indifferent at these low
periods.

The situation changes if longer periods are consid-
ered. The right panels of Fig. 9 display the coherence
and phase, now calculated from the simulations with
the artificial AR windstress. The coherence between
transport and potential energy increases toward larger
periods to values that exceed the coherence with the
wind forcing and the one with the bottom pressure.
Again, the phase relations in the low-frequency range
indicate an approach toward a geostrophic balance.
As can be seen in the spectra of Fig. 8 as well, the
baroclinic field clearly dominates the low-frequency
variability of the system. All AR-simulated fields have

a loss of coherence in frequency range of about 10−3

to 10−2day−1 (equivalently 1,000 to 100 days), most
dramatically appearing in the baroclinic field. A shift
of phase by 360◦ is accompanying its coherence drop.
This is the interval where the peaks occur in the spectra
(see Fig. 8).

Proceeding from these local correspondences be-
tween transport, pressure, and forcing, we show in
Fig. 10 the correlation of the bottom pressure, potential
energy, windstress, and windstress curl in the entire
Southern Ocean with the transport through Drake Pas-
sage for different wind scenarios. The upper row uses
NCEP forcing for 30 years; the middle and bottom rows
have the AR wind forcing. The middle correlations are
based on a record with 2,000 days sampling rate, and the
bottom correlations use a low-pass filter of 25 years.

Consistent with the discussion in Section 2 and ear-
lier studies, the highest correlations in the pressure
simulated by BARBI are found in the f/h tunnel near
the coast of Antarctica. They are negative and close to
−1. More to the north, the correlations become smaller,
but we notice that the excursions of high correlations
proceed above topographic feature that extend from
Antarctica to the north, especially at the Kerguelen
Plateau, the Pacific–Antarctic Ridge, and the region of
the Scotia Basin, east of Drake Passage. In congruence
to the findings of Vivier et al. (2005), the excursions of
high correlations are not symmetric on the ridges; they
are intensified on the eastern flanks. A marked differ-
ence between NCEP and AR forcing is the filament of
negative correlation reaching up the Argentine Basin.
Northward of the f/h tunnel region, the correlation is
positive, with values as high as 0.5 over large regions.
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Fig. 10 Upper row
correlation between transport
through Drake Passage and
various fields for model
version LN and NCEP winds.
From left to right with bottom
pressure, potential energy,
zonal windstress, and curl of
windstress. Middle row same
for the AR wind experiment.
These data are sampled with
time step 2,000 days. Lower
row same for the AR wind
experiment. These data are
low-pass filtered with cutting
period of 25 years. The f/h
contours are depicted in the
leftmost panels

The entire pattern of pressure correlations becomes
slightly more pronounced in the AR cases. This may
be due to a larger regional coherence of the AR forcing
data compared to NCEP.

Correlations with the other relevant fields in the
NCEP forcing are significantly lower (see the low cor-
respondence of transport and potential energy in Fig. 7
and the results in the panels of the upper row of Fig. 10).
The potential energy has a correlation level of about 0.2
maximum with positive and negative values oriented
at the gradient of the topography as suggested by the
driving of barotropic vorticity via the JEBAR torque.
A quite patchy picture results this way. Correlations
with the zonal windstress reflect the SAM pattern, a
belt with positive values of about 0.4 maximum in the
strong wind area, and correlations with the wind curl
are much lower and apparently have some modulation
by the large-scale ocean ridge systems.

The correlation patterns change quite significantly
when the experiment with AR forcing is considered.
At first, not surprisingly, the transport–wind correla-
tions increase and clearly show the circumpolar SAM
pattern with coefficients close to one. There is a slight
decrease in the maximum values from the 2,000-day
sampling case to the 25-year low-pass case. In contrast,
the transport–potential energy correlation increases
steadily from NCEP to the more and more low-pass

versions with AR winds. Moderately high negative
values occur in the tunnel area, being congruent with
the P-pattern but less significant. Positive values are
found more to the north, spread over the entire model
domain, and not at all structured by the SAM pattern or
the f/h pattern. In the extremely filtered case (lowest
row), the correlations are highest, 0.7 maximum. The
highest values are found in large areas in the western
Pacific (west of the Pacific Ridge), south of Australia
(north of the Southeast Indian Ridge), on the eastern
flank of the Midatlantic Ridge, and on the ridge sys-
tem south of Africa. These areas have been identified
by Vivier et al. (2005) as ‘resonant regions’. In these
regions, closed f/h contours are found (see Fig. 1).

7 Regression and stochastic dynamical models
of the transport variability

Linear regression models confirm the ranking of
barotropic and baroclinic fields with respect to the
timescales of variability. Consider

Tr(t) = αA(t) + βB(t) + γ C(t) + ... (9)

where A, B, C, ... are observed properties (predictors),
e.g., bottom pressure or wind stress at a certain place
in the model domain, and α, β, γ , ...are the regression
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Table 3 Overview over the four different regression models and the absolute values of the resulting correlation coefficients (two
rightmost columns) between the transport T(t) of the BARBI simulation and the predictant Tr(t)

Model Ps 
E/ f τ x NCEP wind AR wind

A + 0.903 0.891
B + 0.204 0.979
C + 0.649 0.864
D + + + 0.924 0.995

A + indicates whether this variable was used in the regression model as predictor.

coefficients that are to be adapted to the data to obtain
an optimal value for the predictant Tr of the transport.
The regression coefficients are determined as least-
squares solution of the problem ||Tr(t) − T(t)|| = min
where T(t) is the BARBI transport. We studied various
regression models, differing in the data combination
for the predictors and the length of the BARBI model
integrations and the applied windstress forcing (see
Table 3).

The results of the regression model, applied to the
BARBI experiment with the NCEP wind and model
version LN, are displayed in the left block of panels
of Fig. 11. The sampling interval for the time series
is 3 days. The potential energy data are taken from
Drake Passage, the bottom pressure in the south, and
the wind stress is the zonal mean at the latitude of
Drake Passage. The figure shows anomalies (the mean
values are subtracted) of the BARBI transport (blue
curves) and the transport of the four regression models
(red curves). It is obvious that bottom pressure reflects
the transport very well (case A), whereas the local wind
stress in the Drake Passage has a marginal skill (case
C), and the difference of potential energy (case B) is
not at all suited to describe the variability of Drake

Passage transport on these short timescales. A slightly
higher skill can be seen if all three predictors are used
(case D). Longer timescales are considered in the right
block of panels of Fig. 11. Wind type AR is applied,
and the time series are low-pass filtered with a cutting
period of 50 years to eliminate the short-time variability
before the regression procedure is applied. Of all single
predictor data, the potential energy is clearly most
successful to model the transport. The regression on all
three data fields is perfect.

In summary, the regression models confirm that the
bottom pressure reflects the transport on shorter than
decadal timescales, whereas longer periods are better
captured in the baroclinic potential energy.

Apart from physically motivated preferences of the
applied data concerning the timescale of variability,
the previous regression models are purely statistical.
The final study of transport variability is based on the
dynamical model (8), interpreted now as a stochastic
model for the deviations of the quantities T, C and
F = τ x from the mean state. For the high-frequency
barotropic case, a similar approach is discussed in
Sura and Gille (2003) and in Weijer and Gille (2005).
Sura and Gille (2003) derived the linear Wearn–Baker
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Fig. 11 Time series of transport anomaly through Drake Passage for the short NCEP forcing (left) and long AR forcing (right)
experiments. Blue BARBI transport, red transport of the corresponding regression models for types A to D
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chastic model (black). Right phase between T and F (green) and
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stochastic model takes into account that the data have a finite
sampling δt, i.e., ω in Eq. 11 must be replaced by i(exp(−iω
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1)/
t

model (6) from a general stochastic nonlinear Itô-
equation, using wind and bottom pressure data. Weijer
and Gille (2005) applied Eq. 6 in the frequency domain,
using data from a wind-driven barotropic Southern
Ocean model. From the coherence of the Wearn–Baker
model, they estimate a barotropic timescale of 3 days,
which is much smaller than the spin-up scale discussed
in Section (4). Our more complete stochastic model (8)
yields a similar result.

We proceed by considering the behavior of the
model in the frequency domain. First T and C are
mutually eliminated,

T̈ + θ Ṫ + δT = mḞ + m̃F

C̈ + θĊ + δC = nḞ + ñF (10)

with θ = a + d, δ = ad − bc, m̃ = md − nb , and ñ =
na − mc, revealing that the barotropic and the
baroclinic variables are governed by the same temporal
response operator. The forcing, however, distinguishes
the variables. The Fourier transformation of Eq. 10
yields

T̂(ω) =
(

m̃(δ−ω2)+ω2mθ

(δ−ω2)2+ω2θ2
−iω

m(δ−ω2)−m̃θ

(δ−ω2)2+ω2θ2

)

F̂(ω)

Ĉ(ω) =
(

ñ(δ−ω2)+ω2nθ

(δ−ω2)2+ω2θ2
−iω

n(δ−ω2)−ñθ

(δ−ω2)2+ω2θ2

)

F̂(ω)

(11)

where ω = 2πν is the angular frequency. Spectra and
cross-spectra of T, C and F are readily evaluated as
function of the basic parameters. The skill of the model
is exemplified in Fig. 12 for a reasonable choice of
parameters (a elaborate fit is not attempted) and a
model wind spectrum ∼ (ω2 + ω2

0)
−1 fitting the AR

windstress spectrum from Fig. 3 with 2π/ω0 = 500 days.
The stochastic model is clearly a reasonable description
of the variability, of course excepting the complicated
peak structure at intermediate frequencies, which has
been discussed above and attributed to resonant basin
modes. In fact, the stochastic model may serve as a
model of the background variability.

8 Summary

The relative short temporal range of ocean obser-
vations hinders the investigation of low-frequency
variability of the ACC transport, and it is not surprising
that most statements of the present investigation are
based on model results and a verification by direct
observations has yet to wait. We have analyzed simu-
lations of the Southern Ocean circulation, in particular
the resulting ACC transport variations, by a simple
wave model driven either by a wind product of ob-
served quality or by artificial but realistic wind data
over timescales of many centuries. We use the BARBI
model of Olbers and Eden (2003) truncated to two
modes with topographically modified barotropic and
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baroclinic Rossby waves being in center of the current
study.

Our main findings are:

• The ‘Southern Mode’ of variability with coherence
between ACC transport, Southern Ocean wind-
stress, and bottom pressure all around Antarctica
extends to periods well above decadal, with
baroclinic processes coming into play. Baroclinic
Rossby waves, not bound to f/h contours, spread
coherent signals across the entire Southern Ocean,
and the baroclinic potential energy—as manifesta-
tion of the baroclinic pressure—takes control of the
ACC transport.

• The spin-up to steady state and the variability in the
spectral window from daily to centennial periods
can be represented by a simple two-dimensional
linear response model, extending the Wearn–Baker
model to long periods. The response model can be
viewed as an example of Hasselmann’s stochastic
climate model (Hasselmann 1976), with the ACC
transport as fast variable, the baroclinic pressure
gradient across Drake Passage as the slow vari-
able, and the windstress as red noise forcing. The
timescales of the model differ drastically for the
fast variable (a few days; 2 days for our model) and
the slow variable (a few years; 1,000 days for our
model).

• Simulations with observed windstress fields from
NCEP have a higher variance of transport fluctu-
ations than those inferred from hydrographic data
or calculated from bottom pressure records. The
model follows the positive trend of the windstress
(about 25% over 30 years) by a disproportional
increase of the ACC transport (by 8% over 30
years).

• In an intermediate range between about 100 and
1,000 days, low-frequency broad peaks were found,
mainly in the spectrum of baroclinic potential en-
ergy, perturbing the coherence and phase relations
of the otherwise simple linear stochastic model
that therefore may serve to define the unperturbed
background variability. These peaks are likely as-
sociated with baroclinic topographic Rossby waves,
either resonantly excited in a local dissipative bal-
ance or even developed in a basin mode stage.

A few words of caution are appropriate. Some of the
findings, in particular with respect to behavior at very
low frequencies, depend on our artificial windstress. It
is constructed to reflect the SAM with its high spatial
coherence at low frequencies. Real winds might show
less coherency, and the resulting correlation patterns of
transport, wind, and pressure might degrade. A similar

effect could arise if higher baroclinic modes and/or
realistic eddies are admitted. With this in mind, we
value our results as a strawman against which more
complex models or more realistic forcing fields could
be tested.
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Appendices

1 The BARBI model

Our model is a two-mode version of the reduced
physics model BARBI ocean model (Olbers and Eden
2003) and can be summarized by the set of equations

∂U
∂t

+ f k × U = −h∇P − ∇E + τ + A∇2U (12)

∂ũ
∂t

+ f k × ũ = 1

3
h2 [∇E − τ ] (13)

∇ · U = 0 (14)

∂

∂t
E + hU · ∇ E

h2
− 1

2
N2∇ ·

[

ũ + 1

3
Uh2

]

= Q − D[E] + K∇2 E (15)

with ũ = u′
2, E = E1 in the notation of Olbers and Eden

(2003). Equation 12 is the vertically integrated balance
of momentum with a simplified viscous term,

U =
∫ 0

−h
u dz (16)

is the vertically integrated velocity, h is the ocean depth,
P is the bottom pressure, and ũ is the second vertical
moment of the baroclinic velocity u − U/h. The mass
balance (14) allows to represent U by the streamfunc-
tion of the volume transport, U = k × ∇ψ . Equation 15
is the balance of baroclinic potential energy

E = g
∫ 0

−h
zρ dz (17)

where ρ is a perturbation density about a mean
background stratification (and scaled by a constant
reference density) described by the Brunt–Väisälä
frequency N. The latter is taken constant in this study.
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Fig. 13 Dispersion relation and group velocity (speed). Left two
panels in each row show the +solution, right two panels show
the −solution. Upper row for flat bottom. Lower rows for ∇h =
(n, m) × 10−3 for nm = 10, 11 and nm = 01. The graphs show
only the functions in the halfplane with positive wavenumber
along f/h = const. The axes are scaled by Kmax = 2/λ. The
frequency is in cpd, the maximum for +solution is 0.5 cpd, for

−solution 0.05 cpd. The logarithmical of group velocity in m s−1

is displayed. The range for the +solution is 10−6 · · · 102m s−1, for
the −solution 10−7 · · · 10−1m s−1. The yellow cross is oriented
at ∇( f/h), the purple cross at ∇h (the dashed lined are along
the gradients, the full lines are along f/h = const and h = const,
respectively)

The potential energy balance has a prescribed source
function Q, and D[E] represents dissipation. We use a
damping form D = μE. The diffusive term in Eq. 15
together with the dissipation can be derived from
a Gent–McWilliams parameterization of the eddy-
induced density advection. This is outlined in Olbers
et al. (2006).

As a consequence of the rigid-lid approximation,
the bottom pressure is a diagnostic variable that is
determined by a Poisson equation,

∇ · h∇P=−∇2 E+ f∇2ψ+β
∂ψ

∂y
+∇ · (τ + A∇2U) (18)

This equation is used to compute P in BARBI.
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We like to point out that most terms in the above
balances result exactly by vertical integration of the
primitive equations. However, the BARBI system has
a closure to utilize U, E and ũ as a complete set of
state variables. The closure mainly concerns the baro-
clinic pressure term in Eq. 13. For details, we refer
to Olbers et al. (2006) and only mention here that
the Brunt–Väisälä frequency in Eq. 15 is an effective
one related to the true one N0 by N0 = π N/

√
6. The

relation ensures that the first baroclinic Rossby radius
λ = Nh/| f |/√6 of the above system equals the familiar
form λ = N0h/(| f |π).

The numerical implementation of BARBI is very
similar to MOM (most code fragments have actually
been taken from MOM), e.g., finite differences in space
and time are second order, an Arakawa B-grid is used,
coding is in FORTRAN 90. The topography is inter-
polated on the grid corresponding to a ‘partial cell’
implementation.

2 Waves

We look for a WKB solution with the ansatz ( fψ, E) ∼
R exp i(K · x − ωt) with wave vector K = (k, �) and
eigenvector R (polarization vector). A wave with R =
(1, 0)T is barotropic and with R = (0, 1)T baroclinic.
The gradients α = ∇h, β = (0, β), and γ = ∇( f/h) are
assumed constant in a WKB sense. Note that γ =
−( f/h2)α + β/h. The complete model with prognostic
baroclinic momentum balance (13) possesses the famil-
iar baroclinic gravity waves. For simplicity, we filter
gravity waves but not short baroclinic Rossby waves.
This is achieved by canceling the tendency term in Eq.
13. The wave problem is then given by the vorticity
balance and the linearized balance of potential energy.
We get

(1−R2∇2)
∂ fψ
∂t

+hR2 γ
¬ · ∇ fψ+ f

h
R2 α¬ · ∇E=0 (19)

(1 − λ2∇2)
∂ E
∂t

+ λ2

[

h γ
¬ − f

h
α¬

]

· ∇E

+ 2λ2 f
h

α¬ · ∇ fψ = 0 (20)

where a rotated vector notation is used: γ
¬ = (−γ y, γ x)

is the rotated vector of γ = (γ x, γ y) (anticlockwise by
π/2). We have introduced the term with the external
Rossby radius R = √

gh/ f 2 for completeness. Inserting
the wave ansatz yields
(

ω − ωR ωT

2ωA ω − 2ωA − ωC

)(
fψ
E

)

= 0 (21)

The frequencies ωT and ωA describe pure topographic
waves, ωR is a mixed barotropic topographic–planetary
wave, and ωC the flat-bottom baroclinic Rossby wave.
They are given by

ωT = − f R2

h

K · α¬
1 + K2 R2

ωA = − fλ2

h

K · α¬
1 + λ2 K2

ωR = hR2
K · γ

¬
1 + K2 R2

ωC = − βλ2k
1 + λ2 K2

Note that ωR = ωT + ωP and ωL = ωA + ωC where

ωP = − β R2k
1 + K2 R2

ωL = hλ2
K · γ

¬
1 + K2λ2

(22)

are associated with the flat-bottom barotropic planetary
wave and the mixed baroclinic mixed topographic–
planetary wave, respectively.

Barotropic case For λ = 0, we find E ≡ 0 and ω =
ωR as the only solution. This is the barotropic mixed
topographic–planetary Rossby wave. Note that the
group velocity of long waves, (KR)2 
 1, is along f/h
contours.

Flat bottom case In this study, the vorticity and po-
tential energy balance are decoupled, so that we find
ω1 = ωP and ω2 = ωC with eigenvectors R1 = (1, 0)T ,
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Fig. 14 Eigenvectors of the + and − modes. The left two panels are for the flat bottom case (associated with the upper row of Fig. 13),
the right two panels are for a topographic case (third row of Fig. 13)
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R2 = (0, 1)T . These are the familiar flat bottom
barotropic and first baroclinic modes (see first row of
Fig. 13 and left two panels of Fig. 14).

Topographic case The solutions of Eq. 21 for the
eigenfrequencies ωi(K) with corresponding eigenvec-
tors Ri(K) are real. One easily finds

ω±(K) = 1

2

[
ωA + ωL + ωR ±

√
(ωR − ωC)2 + 4ωA(ωL + ωT − ωP)

]

R±(K) =
(

fψ
E

)

±
= i

√
ω2

T + (ω± − ωR)2

(
ωT

ωR − ω±

)

(23)

Approximately, ω+ ≈ ωR and ω− ≈ ωL + ωA(ωP −
ωT)/ωR. All specific frequencies ωI, I = ACLPRT,
are asymmetric with respect to the wavevector, i.e.,
ωI(K) = −ωI(−K). We thus need the eigenfrequencies
and eigenvectors only on a halfplane because ω±(K) =
−ω∓(−K) and correspondingly for the eigenvectors,
R±(K) = (R∓(−K))∗. It appears sensible to choose the
halfplane K · (k × γ ) > 0 (i.e., positive component of
the wavevector along the f/h contours, implying k < 0
for flat bottom). This choice is established in Fig. 13,
which shows dispersion relations and group velocities
for a few cases of gradients of topography. Figure 14
clearly demonstrates the mixed character of planetary–
topographic wave modes: For non-zero topographic
slopes, the modes are neither barotropic nor baroclinic
but ‘mixed’. A particular detailed discussion of this
feature is found in Hallberg (1997) who used a two-
layer quasigeostrophic model.

A few properties of these solutions are worth men-
tioning for use in the main body of the paper:

• Even for moderate slopes, the topographic β can be
much larger than the planetary one, and the periods
of topographic waves are much smaller than those
of flat bottom waves. The maximum period of the
baroclinic topographic mode (−wave) is about 100
days (see lower three rows of Fig. 13) compared to
about 600 days for flat bottom.

• The +waves propagate most rapidly for wavevec-
tors along f/h = const. For the −waves, this occurs
for wavevectors across f/h = const. The speeds
of topographic waves exceed those of flat bot-
tom waves considerably (a factor of 10 is eas-
ily achieved). Speeds for +wave exceeds typically
10 m s−1, and for the −wave, we find values as
large as 0.1 m s−1 (note that the scale in Fig. 13 is
logarithmic).

References

Aoki S (2002) Coherent sea level response to the antarctic oscil-
lation. Geophys Res Lett 29(20):1950, 0094–8276

Borowski D, Gerdes R, Olbers D (2002) Thermohaline and wind
forcing of a circumpolar channel with blocked geostrophic
contours. J Phys Oceanogr 32:2520–2540

Charney JG, DeVore JG (1979) Multiple flow equilibra in the
atmosphere and blocking. J Atmos Sci 36:1205–1216

Cunningham S, Pavic M (2007) Surface geostrophic currents
across the Antarctic Circumpolar Current in drake passage
from 1992 to 2004. Prog Oceanogr 73:296–310

Cunningham SA, Alderson SG, King BA, Brandon MA (2003)
Transport and variability of the Antarctic Circumpolar
Current in Drake Passage. J Geophys Res 108: nO. C5,
8084

Gent PR, Large WG, Bryan FO (2001) What sets the mean
transport through Drake Passage? J Geophys Res 106:
2693–2712

Gille ST (1999) Evaluating southern ocean response to wind forc-
ing. Physics And Chemistry Of The Earth Part A Solid Earth
Geodesy, 24(4):423–428, 1464–1895

Hall A, Visbeck M (2002) Synchronous variability in the southern
hemisphere atmosphere, sea ice, and ocean resulting from
the annular mode. J Clim 15(21):3043–3057

Hallberg R (1997) Localized coupling between surface- and
bottom-intensified flow over topography. J Phys Oceanogr
27:977–998

Hallberg R, Gnanadesikan A (2006) The role of eddies in de-
termining the structure and response of the wind-driven
southern hemisphere overturning: results from the Model-
ing Eddies in the Southern Ocean (MESO) project. J Phys
Oceanogr 36:2232–2252

Hasselmann K (1976) Stochastic climate models, part I: theory.
Tellus 28:473–485

Hughes CW, Meredith CP (2006) Coherent sea-level fluctuations
along the global continental slope. Philos Trans R Soc Lond
A 364(1841):885–901, Mathematical Physical And Engineer-
ing Sciences

Hughes CW, Meredith MP, Heywood K (1999) Wind driven
transport fluctuations through Drake Passage: a southern
mode. J Phys Oceanogr 29:1971–1992

Hughes CW, Woodworth PL, Meredith MP, Stepanov V,
Whitworth T, Pyne AR (2003) Coherence of antarctic sea
levels, southern hemisphere annular mode, and flow through
Drake Passage. Geophys Res Lett 30(9): 0094-8276 1464

Lettmann K (2006) Untersuchungen zur Variabilität im
Südlichen Ozean mit dem Ozeanzirkulationsmodel BARBI.
PhD thesis, University Bremen

Meredith MP, Woodworth PL, Hughes CW, Stepanov V (2004)
Changes in the ocean transport through Drake Passage dur-
ing the 1980s and 1990s, forced by changes in the south-
ern annular mode. Geophys Res Lett 31(21): 0094-8276
L21305

Meredith MP, Vassie JM, Heywood KJ, Spencer R (1996) On the
temporal variability of the transport through drake passage.
J Geophys Res 101:22485–22494



578 Ocean Dynamics (2007) 57:559–578

Olbers D, Eden C (2003) A simplified general circulation model
for a baroclinic ocean with topography. part I: theory, waves
and wind-driven circulations. J Phys Oceanogr 33:2719–2737

Olbers D, Völker C (1996) Steady states and variability in
oceanic zonal flows. In: Anderson DLT, Willebrand J
(eds) Decadal climate variability dynamics and predicition.
Springer, Berlin, pp 407–443

Olbers D, Borowski D, Völker C, Wolff J-O (2004) The dy-
namical balance, transport and circulation of the antarctic
circumpolar current. Antarct Sci 16(4):439–470

Olbers D, Lettmann K, Wolff J-O (2007) Wave-induced topo-
graphic formstress in baroclinic channel flow. Ocean Dyn
doi:10.1007/s10236-007-0109-2

Olbers D, Lettmann K, Timmermann R (2006) Six circum-
polar currents—on the forcing of the Antarctic Circum-
polar Current by wind and mixing. Ocean Dyn 57:12–31.
doi:10.1007/s10236-006-0087-9

Rhines P (1977) The dynamics of unsteady currents. In: Goldberg
E (ed) The sea, vol VI. Wiley, New York, pp 189–318

Rintoul SR, Hughes C, Olbers D (2001) The Antarctic Circum-
polar Current system. In: Siedler G, Church J, Gould J
(eds) Ocean circulation and climate. Academic, New York,
pp 271–302

Rintoul SR, Sokolov S, Church J (2002) A 6 year record of
baroclinic transport variability of the Antarctic circumpo-
lar current at 140 degrees E derived from expendable
bathythermograph and altimeter measurements. J Geophys
Res 107

Sura P, Gille ST (2003) Interpreting wind-driven southern ocean
variability in a stochastic framework. J Mar Res 61(3):313–
334, 0022-2402.

Tansley CE, Marshall DP (2001) On the dynamics of wind-
driven circumpolar currents. J Phys Oceanogr 31:3258–
3273

Thompson DWJ, Wallace JM (2000) Annular modes in the ex-
tratropical circulation. Part I: month-to-month variability. J
Climate 13(5):1000–1016, 0894–8755

Vivier F, Kelly KA, Harismendy M (2005) Causes of large-scale
sea level variations in the Southern Ocean: Analyses of
sea level and a barotropic model. J Geophys Res-Oceans,
110(C9):C09014

Völker C (1999) Momentum balance in zonal flows and reso-
nance of baroclinic Rossby waves. J Phys Oceanogr 29:
1666–1681

von Storch H, Zwiers FW (1999) Statistical analysis in climate
research. Cambrige Univ. Press

Wearn Jr RB, Baker Jr DJ (1980) Bottom pressure mea-
surements across the Antarctic circumpolar current and
their relation to the wind. Deep-Sea Res 27A:875–
888

Webb D, de Cuevas B, Coward A (1998) The first main run of the
occam global model. Southampton Oceanography Centre,
Internal Report SOC, UK (34)

Weijer W, Gille ST (2005) Adjustment of the southern ocean
to wind forcing on synoptic time scales. J Phy Oceanogr
35(11):2076–2089, 0022–3670

Whitworth III T, Peterson RG (1985) Volume transport of the
Antacrtic circumpolar current from bottom pressure mea-
surements. J Phys Oceanogr 15:810–816

Willebrand J, Philander SGH, Pacanowski RC (1980) The
oceanic response to large-scale atmospheric disturbances.
J Phys Oceanogr 10(3):411–429

http://dx.doi.org/10.1007/s10236-007-0109-2
http://dx.doi.org/10.1007/s10236-006-0087-9

	Barotropic and baroclinic processes in the transport variability of the Antarctic Circumpolar Current
	Abstract
	Introduction
	Processes and timescales in steady and fluctuating states of the ACC
	Model set-up and forcing functions
	Analysis of spin-up
	Variability and trends from 1975 to 2005
	Correlation patterns
	Regression and stochastic dynamical models of the transport variability
	Summary
	Appendices
	Waves
	References




<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 600
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents for journal articles and eBooks for online presentation. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice


