Estimación del crecimiento de la almeja amarilla *Mesoidea mactroides* (Bivalvia: Mesoideidae) por marcación fluorescente

Mauro L. Lepore¹, Marko Herrmann¹,² & Pablo E. Penchaszadeh¹

Introducción:
La tasa de crecimiento es uno de los parámetros básicos que describe la dinámica poblacional. Numerosos métodos han sido utilizados para determinarla, siendo comúnmente muy difícil detectar incrementos en el micro-crecimiento de las valvas a escala menor que la décima de micrón. Estudios previos sobre crecimiento de *Mesoidea mactroides* en distintos puntos de su distribución se basaron en el desplazamiento de la talla de cohortes a través del tiempo y en marcas de crecimiento. Este trabajo pretende determinar la tasa de crecimiento in situ del bivalvo *M. mactroides* que habita la playa arenosa intermareal de Santa Teresita (Fig. 2) (S36°32', W66°41') Provincia de Buenos Aires (Argentina).

Materiales y Métodos:
Se recolectaron 551 *M. mactroides* (Fig. 3) (6.08 a 62.93 mm) en Santa Teresita en Febrero de 2007. 416 individuos fueron sumergidos en solución de calceina (50 mg/L por 3 h) (Fig. 4). El resto (135 individuos), fue asignado al grupo control. Todos los animales fueron mantenidos in situ en jaulas experimentales internamente recubiertas con una red de 1 mm de trama tomando muestras semanalmente (6 semanas) (Fig. 5). Las valvas vacías de los animales sacrificados en cada muestreo se limpiaron y secaron a temperatura ambiente. Para la detección de las marcas, las valvas (previamente embebidas en resina) fueron cortadas transversalmente a lo largo del eje de mayor crecimiento, usando una sierra de diamantes (Fig. 6). Los micro cortes fueron pulidos con polvos de carburo de silicio (SiC) y finalmente con suspensión de aluminio de 1 μm (Al₂O₃) (Brot). Usando luz azul (460–490 nm) en un microscopio de fluorescencia (Zeiss Axiol imager Z1) (Fig. 7) se detectaron las marcas (Fig. 8a y 8c), y se efectuaron estimaciones de crecimiento midiendo la distancia entre las marcas de tinción por calceina y el borde de la valva. Complementariamente, se montaron con resina los micro cortes en portaobjetos, se cortaron y pulieron hasta un espesor de 1 mm y se observaron en microscopio electrónico de barrido a fin de identificar a nivel micro estructural las líneas de crecimiento desarrolladas durante el experimento (Fig. 8b y 8c).

Resultados y Discusión:
La calceina incorporada emite luz verde fluorescente bajo luz azul, que fue claramente distinguiible de la auto fluorescencia en el 93% de las valvas, permitiendo así tomar medidas del crecimiento individual, a diferencia de las estimaciones de crecimiento colectivo provistas por otros métodos. Las máximas tasas de crecimiento fueron registradas en juveniles (ej. L = 35.89 mm + 92.64 μm, 14 días). Dado que aquí se exponen sólo resultados preliminares, no se presentarán las fórmulas de la relación entre L y crecimiento hasta tanto se haya procesado mayor cantidad de muestras. En contraste con lo sabido para otras especies de bivalvos, el crecimiento observado en *M. mactroides* ocurrió más claramente en el grosor que en el largo de la valva, haciendo necesario optimizar los métodos aquí empleados para explicar eficientemente su crecimiento. La marcación con calceina no afecta la supervivencia de *M. mactroides*, pudiéndose considerar como un marcador no letal útil para experimentos in situ con bivalvos.

¹ Lab. Invertebrados, Departamento de Biología, Facultad de Ciencias Exactas, Naturales, Universidad de Buenos Aires, Argentina
² ADHearing, Institute for Polar and Marine Research (APM), nombre de la institución
³ maurolepore@gmail.com; mmarko.herrmann@ ganz.de