A World Without Mangroves?

AT A MEETING OF WORLD MANGROVE EXPERTS HELD LAST YEAR IN Australia, it was unanimously agreed that we face the prospect of a world deprived of the services offered by mangrove ecosystems, perhaps within the next 100 years.

Mangrove forests once covered more than 200,000 km2 of sheltered tropical and subtropical coastlines (1). They are disappearing worldwide by 1 to 2% per year, a rate greater than or equal to declines in adjacent coral reefs or tropical rainforests (2–5). Losses are occurring in almost every country that has mangroves, and rates continue to rise more rapidly in developing countries, where >90% of the world’s mangroves are located. The veracity and detail of the UN Food and Agriculture Organization data (2) on which these observations are based may be arguable, but mangrove losses during the last quarter century range consistently between 35 and 86%. As mangrove areas are becoming smaller or fragmented, their long-term survival is at great risk, and essential ecosystem services may be lost.

Where mangrove forests are cleared for aquaculture, urbanization, or coastal landfill or deteriorate due to indirect effects of pollution and upstream land use (3, 4), their species richness is expected to decline precipitously, because the number of mangrove plant species is directly correlated with forest size (6, 7). Examples from other ecosystems have shown that species extinctions can be followed by loss in functional diversity, particularly in species-poor systems like mangroves, which have low redundancy per se (8). Therefore, any further decline in mangrove area is likely to be followed by accelerated functional losses. Mangroves are already critically endangered or approaching extinction in 26 out of the 120 countries having mangroves (2, 9).

Deforestation of mangrove forests, which have extraordinarily high rates of primary productivity (3), reduces their dual capacity to be both an atmospheric CO$_2$ sink (10) and an essential source of oceanic carbon. The support that mangrove ecosystems provide for terrestrial as well as marine food webs would be lost, adversely affecting, for example, fisheries (11). The decline further imperils mangrove-dependent fauna with their complex habitat linkages, as well as physical benefits like the buffering of seagrass beds and coral reefs against the impacts of river-borne siltation, or protection of coastal communities from sea-level rise, storm surges, and tsunamis (12, 13). Human communities living in or near mangroves would lose access to sources of essential food, fibers, timber, chemicals, and medicines (14).

We are greatly concerned that the full implications of mangrove loss for humankind are not fully appreciated. Growing pressures of urban and industrial developments along coastlines, combined with climate change and sea-level rise, urge the need to conserve, protect, and restore tidal wetlands (11, 13). Effective governance structures, socioeconomic risk policies, and education strategies (15) are needed now to enable societies around the world to reverse the trend of mangrove loss and ensure that future generations enjoy the ecosystem services provided by such valuable natural ecosystems.

N. C. DUKE,1,4 I.-O. MEYNECKE,2 S. DITTMANN,3 A. M. ELLISON,4 K. ANGER,5 U. BERGER,4 S. CANNICCI,7 K. DIELE,9 K. C. EWEL,9 C. D. FIELD,10 N. KOEDAM,12 S. Y. LEE,2 C. MARCHAND,12 I. NORDHAUS,9 F. DAHDOUH-GUEBAS13 1Centre for Marine Studies, University of Queensland, St Lucia, Qld 4072, Australia. 2Australian Rivers Institute and School of Environment, PMB 50 GCMC, Griffith University, Qld 9776, Australia. 3School of Biological Sciences, Flinders University, GPO Box 2100, Adelaide, SA 5001, Australia. 4Harvard University, Harvard Forest, 324 North Main Street, Petersham, MA 01366, USA. 5Alfred-Wegener-Institut für Polar- und Meeresforschung, Karpfenesen, D-27498 Helgoland, Germany. 6Technical University Dresden, Institut für Waldwachstum und Forstliche Informatik, Postfach 1117 01735 Tharandt, Germany. 7Dipartimento di Biologia Animale e Genetica “Léo Pardi,” Università degli Studi di Firenze, Via Romana, 17, I-50125 Firenze, Italy. 8Center for Tropical Marine Ecology, Fahrenheistrasse 6, 28359 Bremen, Germany. 9U.S. Department of Agriculture Forest Service, 2126 NW 7th Lane, Gainesville, Fl 32603, USA. 10Faculty of Science (Gore Hill), University of Technology Sydnei, Sydney, NSW 2007, Australia. 11Laboratory of General Botany and Nature Management, Mangrove Management Group, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels, Belgium. 12LGPMC, EA 3325, University of New Caledonia, Noumea, New Caledonia, and UR 103, Institut de Recherche pour le Développement (IRD), Marseille, France. 13Biocomplexity Research Focus, c/o Laboratory of General Botany and Nature Management, Mangrove Management Group, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels, Belgium.
Letters to the Editor

Letter (~300 words) discuss material published in Science in the previous 3 months or issues of general interest. They can be submitted through the Web (www.submit2science.org) or by regular mail (1200 New York Ave., NW, Washington, DC 20005, USA). Letters are not acknowledged upon receipt, nor are authors generally consulted before publication. Whether published in full or in part, letters are subject to editing for clarity and space.

Isoprene concentrations incorrectly, resulting in a three-order-of-magnitude overestimation and hence a much greater calculated isoprene flux.

During SOFeX, we measured climate-relevant organic gases in the dynamic headspace of an equilibrator (2) in contact with seawater (1). We reported isoprene concentrations to be on average 560 pptv (parts per trillion by volume or picomoles mole−1 of air) inside of the SOFeX North Patch (NP), which is the mixing ratio that the air above the water would have if the headspace were static. To convert from mixing ratio of static headspace to seawater concentration, we use Henry’s Law:

$$C_g \times K_H = C_a \quad (Eq. 1)$$

where C_g is the mixing ratio of a gas in equilibrium with the dissolved gas in the aqueous phase, C_a. An average Henry’s law constant (K_H) for isoprene of 0.0130 M atm−1 was used (3). Therefore, the average seawater isoprene concentration in the NP was ~7.3 picomoles L−1 (pm). Listed in the authors’ Table 2 is an average isoprene concentration of 31.4 nanomoles L−1 (nM) in the NP. This leads me to believe that isoprene is not the reason for their observed extra cloud albedo.

OLIVER W. WINGENTER
New Mexico Institute of Mining and Technology, Socorro, NM 87801, USA.

References

Response

WE THANK WINGENTER FOR HIS LETTER. Indeed, we misinterpreted some of the data in Wingenter et al. (1). We were unaware that “concentration of dissolved gases measured in and around the fertilized patch” in (1) referred not to seawater con-

Supporting Undergraduate Research

THE FINDINGS OF THE EDUCATION FORUM “Benefits of undergraduate research experiences” by S. H. Russell and colleagues (27 References) were used by the Journal of Young Investigators (JYI; www.jyi.org), we have experienced first-hand several of the points that the authors raised.

We at JYI, however, believe that undergraduate research programs should place more emphasis on the art of scientific communication. The benefits include the opportunity to communicate undergraduate research work to a broader audience. Such an experience also develops skills necessary for the fluid but logical nature of scientific writing. These skills are otherwise missed when engaged in wet lab work or not developed fully when merely writing final lab reports. A culture of responsibility and integrity is also developed as student authors face rigorous demands of scientific review and editing (data integrity, plagiarism, etc.).

Most importantly, the undergraduate publication experience gives students an early introduction to the world of peer review, a cornerstone of science. For JYI, a student-led journal, this benefit is doubly advantageous. Not only do student authors benefit from peer review, our JYI student reviewers are also trained in the art of reviewing, a skill not given much emphasis in undergraduate research.

JYI has been at the forefront of such undergraduate peer review and publication for 10 years since its inception in 1997. From over 500 submissions, we have published 120 undergraduate research articles. Our highlights for the past year include 10 special issues devoted to publishing research articles of various universities’ Research Experiences for Undergraduates program, and participation in the recent 2007 AAAS Meeting, during which we hosted a workshop for science writing.

Our aim is to see science writing and communication play a central role in the undergraduate research experience.

FAHRAN ALI,* NAFISA M. JADAVJI,* WILLIE CHUIN HONG ONG,* KAUSHAL RAJ PANDEY,* ALEXANDER NIKOLICH PATANANAN,* HARSHA KIRAN PRABHALA,* CHRISTINE HONG-TING YANG*

1Department of Psychology, National University of Singapore, Singapore. 2Department of Neuroscience, Canadian Center for Behavioural Neuroscience, Lethbridge, AB T1K 3M4, Canada. 6Optical Materials and Systems Division, DSI Building, Data Storage Institute, 5 Engineering Drive 1, Singapore, 117608. 7Department of Medicine, Tribhuvan University, Kathmandu, POB No 1524, Nepal. 8Department of Microbiology, Immunology, and Molecular Genetics, University of California at Los Angeles, Los Angeles, CA 90095, USA. 9Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA. 10Department of Human Biology, Stanford University, Stanford, CA 94305, USA.

Isoprene, Cloud Droplets, and Phytoplankton

THERE IS AN ERROR THAT MAY INVALIDATE the main conclusion of the Research Article “Phytoplankton and cloudiness in the Southern Ocean” by N. Meskhidze and A. Nenes (1 Dec. 2006, p. 1419). The authors report an increase in cloud reflectivity resulting from a 30% decrease in cloud droplet effective radius and a doubling of cloud droplet number concentration over a large phytoplankton bloom in the Southern Ocean, resulting in an extra 15 W m−2 of energy reflected back to space. They attribute these changes to enhanced isoprene produced in the bloom. Our measurements made during the Southern Ocean Iron Experiments (SOFeX) (1) were used by Meskhidze and Nenes to scale seawater isoprene values based on measured chlorophyll-a concentrations. Unfortunately, they converted our
concentrations but mixing ratios in the headspace of an equilibrator. When corrected, the values of C\textsubscript{b} in Table 2 should be reduced by about three orders of magnitude (see correction on page 43). This does not, however, alter our conclusions or isoprene secondary organic aerosol (SOA) hypothesis. The fact remains that reported isoprene air-sea fluxes and concentrations in the marine boundary layer (MBL) vary by orders of magnitude, with the average concentrations between 4 and 250 pptv and fluxes of 102 to 6 \times 103 molecules cm-2 s-1 (2–6). For the high end of measured isoprene levels in the Southern Ocean [which are attributed to enhanced phytoplankton productivity (5)], our simulations suggest that the amount of SOA is potentially enough to impact cloud droplet number concentrations. This large range may be from highly variable environmental conditions [i.e., photosynthetically active radiation (PAR), sea-surface temperature, wind speed, ocean mixed-layer depth, etc.] and phytoplankton speciation encountered during the experiments. Given the above and the uncertainty in isoprene-to-SOA yield, to state that “isoprene is not the reason for their observed extra cloud albedo” implies a level of understanding that currently does not exist.

We have shown a direct and strong link between phytoplankton and clouds. Given the identified potential of ocean-emitted isoprene (and other volatile organic compounds) on atmospheric oxidizing capacity and new-particle formation (4–7), the possibility of isoprene SOA contributing to the global CCN budget is real and worth exploring.

Table 2. Ocean chlorophyll a, fluxes, and atmospheric concentrations of isoprene

<table>
<thead>
<tr>
<th>[Chi a] (mg m-2)</th>
<th>Dissolved isoprene concentration (pM)</th>
<th>Isoprene flux (108 molecules cm-2 s-1)</th>
<th>Estimated MBL concentration (pg m-3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bloom</td>
<td>SOFeX</td>
<td>(C_a^0)</td>
<td>(F_A)</td>
</tr>
<tr>
<td>Average</td>
<td>3.0</td>
<td>2.4</td>
<td>30</td>
</tr>
<tr>
<td>Max</td>
<td>12.7</td>
<td>2.6</td>
<td>130 (>10)</td>
</tr>
<tr>
<td>Min</td>
<td>0.1</td>
<td>0.1</td>
<td><3</td>
</tr>
</tbody>
</table>

Reports: “The phosphothreonine lyase activity of a bacterial type III effector family” by H. Li et al. (16 Feb., p. 1000). A production error caused some of the data labels in Fig. 3C to be obscured. A corrected version appears below on the left.

Policy Forum: “Danger of deep-sea mining” by J. Halfar and R. M. Fujita (18 May, p. 987). The deep-sea mining activities were erroneously described as strip-mining operations. The correct term should be pit-mining operations, implying an absence of overburden, as stated later in the article.

Perspectives: “A promising mimic of hydrogenase activity” by T. B. Rauchfuss (27 April, p. 553). The Perspective states that the compound discovered by S. Ogo et al. (Science 316, 585 (2007)) catalyzes the hydrogenation of benzaldehyde to the corresponding alcohol. This statement referred to a preliminary result that was not presented in the published paper.