Hyperspectral remote sensing and analysis of intertidal zones: A contribution to monitor coastal biodiversity

Benjamin D. Hennig\(^{(1)}\), Christopher B. Cogan\(^{(2)}\), Inka Bartsch\(^{(2)}\)

GI_Forum Salzburg
July 4 2007

\(^{(1)}\) Department of Geography, University of Cologne
\(^{(2)}\) Alfred-Wegener Institute for Polar and Marine Research, Bremerhaven
Overview:
Hyperspectral remote sensing and analysis of intertidal zones

1. Introduction:
 Research goals and study area

2. Data and analysis approach

3. Results:
 Biotope classification and data accuracy

4. Perspectives of GIS-RS-based environmental monitoring
Study area
Hyperspectral remote sensing and analysis of intertidal zones
Benjamin D. Hennig
GI_Forum Salzburg, 4.07.2007
Biotopes in the study area

1. Introduction
2. Data analysis
3. Results
4. Perspectives

Hyperspectral remote sensing and analysis of intertidal zones
Benjamin D. Hennig
GI_Forum Salzburg, 4.07.2007

- Red algae area (Mastocarpus)
- Abrasion platform of the northern intertidal
- Musselbed with brown algae (Mytilus and Fucus)
- Green algae zone (Enteromorpha)
Working scheme

Data Collection
- Hyperspectral Aircraft Survey with ROSIS
- GPS-supported Groundtruthing

Pre-Processing
- Radiometric and Geometric Correction

Hyperspectral Image Analysis
- Spatial Data Reduction: Minimum Noise Fraction-Transformation
- Spectral Data Reduction: Pixel Purity Index
- Endmember Selection: n-Dimensional Visualizer
 Compilation of a Spectral Library
- Final Classification: Spectral Angle Mapper

Monitoring
- Integration of Remote Sensing Data in Geographical Information Systems
- Establishment of a standardised long-term observation system
Hyperspectral remote sensing and analysis of intertidal zones

Benjamin D. Hennig

GI_Forum
Salzburg, 4.07.2007

University of Cologne
Department of Geography

1. Introduction
2. Data analysis
3. Results
4. Perspectives

Hyperspectral remote sensing and analysis of intertidal zones

Benjamin D. Hennig

GI_Forum Salzburg, 4.07.2007

1. Introduction
2. Data analysis
3. Results
4. Perspectives

University of Cologne
Department of Geography

Hyperspectral remote sensing and analysis of intertidal zones

Benjamin D. Hennig

GI_Forum Salzburg, 4.07.2007
Biotope classification

Hyperspectral remote sensing and analysis of intertidal zones
Benjamin D. Hennig
GI_Forum Salzburg, 4.07.2007

University of Cologne
Department of Geography
Biotope classification

1. Introduction
2. Data analysis
3. Results
4. Perspectives

Hyperspectral remote sensing and analysis of intertidal zones

Benjamin D. Hennig
GI_Forum Salzburg, 4.07.2007

University of Cologne
Department of Geography
Thematic accuracy

<table>
<thead>
<tr>
<th>Classified Data</th>
<th>Reference Data</th>
<th>Total</th>
<th>User’s Accuracy %</th>
</tr>
</thead>
<tbody>
<tr>
<td>No Veget.</td>
<td>9</td>
<td>15</td>
<td>60</td>
</tr>
<tr>
<td>Brown Algae</td>
<td>19</td>
<td>32</td>
<td>59,4</td>
</tr>
<tr>
<td>Dense Brown Algae</td>
<td>38</td>
<td>42</td>
<td>90,5</td>
</tr>
<tr>
<td>Red Algae</td>
<td>24</td>
<td>26</td>
<td>92,3</td>
</tr>
<tr>
<td>Green Algae</td>
<td>18</td>
<td>18</td>
<td>100</td>
</tr>
<tr>
<td>Kelp</td>
<td>3</td>
<td>28</td>
<td>60,7</td>
</tr>
<tr>
<td>Vegetated Channels</td>
<td>17</td>
<td>24</td>
<td>83,3</td>
</tr>
<tr>
<td>Mussel bed</td>
<td>12</td>
<td>36</td>
<td>75</td>
</tr>
<tr>
<td>Barnacles</td>
<td>3</td>
<td>45</td>
<td>66,7</td>
</tr>
<tr>
<td>Total</td>
<td>12</td>
<td>266</td>
<td>76,4</td>
</tr>
</tbody>
</table>

Producer's accuracy %

- No Veget.: 75%
- Brown Algae: 100%
- Dense Brown Algae: 100%
- Red Algae: 64,9%
- Green Algae: 81,8%
- Kelp: 85%
- Vegetated Channels: 50%
- Mussel bed: 69,2%
- Barnacles: 76,9%

Overall Producer's accuracy %: 75,9%
Location accuracy

Red Feature Line of Mole Parts in 1-03 Displayed on Image 2-03

Offset: 18 m between the two images (not showing the Offset from the "real world" position)

Offset: 12-14 m

Offset: 17-18 m Varying within the image
Field work

1. Introduction
2. Data analysis
3. Results
4. Perspectives

Hyperspectral remote sensing and analysis of intertidal zones

Benjamin D. Hennig
GI_Forum Salzburg, 4.07.2007
Integrated GIS-RS-analysis approaches

Hyperspectral remote sensing and analysis of intertidal zones
Benjamin D. Hennig
GI_Forum Salzburg, 4.07.2007
The presented study has been performed at the Alfred-Wegener-Institute for Polar and Marine Research (AWI Bremerhaven) for a Diploma Thesis at the University of Cologne, Department of Geography.

Field work has been conducted with the support of the Biologische Anstalt Helgoland (BAH) and the Wadden Sea Station Sylt (List).

Benjamin D. Hennig, b.hennig@uni-koeln.de
Department of Geography, University of Cologne

Co-authors:
Christopher B. Cogan, Inka Bartsch
Alfred-Wegener Institute for Polar and Marine Research, Bremerhaven

Thanks for your attention!