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Abstract

The ocean bottom topography influences the general ocean circulation through
a variety of processes. They can be of dynamical origin like topographic Rossby
waves and topographic steering of the circulation through the bottom pressure
torque, or of geometrical origin like sills and ridges that determine the pathways
and properties of water masses. A faithful representation of the bottom topog-
raphy and relevant physical processes is required in numerical ocean models.
The ability of a model to resolve the bottom topography is mainly determined
by the choice of vertical coordinates or vertical grids, which is one of the most
important aspects of the model design.

This work is focused on a systematic study of the performance of different
vertical grids in a set of numerical experiments performed with the Finite
Element Ocean circulation Model (FEOM). This model supports several types
of vertical discretization within a single numerical core, which allows the effects
of vertical discretization to be isolated from other numerical issues.

A new version of FEOM is developed during the course of this work. Its dis-
cretization is based on unstructured triangular meshes on the surface and pris-
matic elements in the volume. The model uses continuous linear representa-
tion for the horizontal velocity, surface elevation, temperature and salinity, and
solves the standard set of hydrostatic primitive equations. The characteristic-
based split (CBS) scheme is used to suppress computational pressure modes
and to stabilize momentum advection. With this split method the cost of
solving the dynamic equations is reduced by uncoupling velocity from surface
elevation. An algorithm for calculating pressure gradient forces is introduced
to reduce pressure gradient errors on σ or hybrid grids. Different advection
schemes are implemented and tested for tracer equations. The model as a
whole is built with the hope of providing an efficient and versatile numerical
tool for ocean sciences. It is capable of representing boundaries faithfully and
allows flexible local mesh refinement without nesting.

The grids explored in this work include: the full cell z-level grid, the σ
grid, the combined z + σ grid and the modified z grids with partly or fully
shaved bottom cells. Three numerical experiments are carried out to illustrate
the performance of these types of grids. The first one deals with a steadily
forced flow past an isolated seamount, the second one simulates topographic
waves over sloping bottom in a rotating stratified channel, while the third one
studies the dense water overflows in an idealized configuration. It is shown
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that representing the bottom with shaved cell grids improves representation
of ocean dynamics significantly compared to the full cell case. However, the
σ and z + σ grids are still better suited for representing bottom intensified
currents and bottom boundary layer physics, as they can provide necessary
vertical resolution in addition to continuous bottom representation. Taking
into account the issue of pressure gradient errors, z+σ grids are the promising
approach for realistic simulations.

Intercomparison of our results with those published in the literature val-
idates the performance of FEOM. With the development effort through the
current work, FEOM has become a versatile tool for general oceanographic
applications.
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Chapter 1

Introduction

The understanding of the general ocean circulation is important for monitoring
and predicting climatic changes. Both observations and numerical modelling
are required to gain it and to be able to judge the role of the ocean in the Earth
Climate System. The progress in numerical modelling of the ocean general
circulation over the last decades is overwhelming and today many groups are
able to simulate the general circulation of the world ocean at eddy resolving
scales.

Growing attention is being payed to proper modelling of physical processes
accompanying large-scale ocean dynamics in ocean general circulation models
(OGCM). This requires careful selection of numerical algorithms and research
into parameterizations of unresolved processes, and also involves the search for
techniques capable of representing the important solid earth boundary of the
ocean (including complex bottom topography and coastlines) in a physically
relevant way. Continuous representation of coastlines and bottom topography
is required in order to correctly set boundary conditions, as stepwise boundaries
can lead to numerical artifacts and affect the ocean circulation on large time
and spatial scales (Dupont et al., 2003; Adcroft and Marshall, 1998).

There are numerous situations where the bottom topography influences
the ocean dynamics. Perhaps the best known example is the Antarctic Cir-
cumpolar Current (ACC), where the bottom formstress plays a decisive role
in setting the momentum balance (Munk and Palmen, 1951; Hughes and Kill-
worth, 1995; MacCready and Rhines, 2001; Borowski et al., 2002; Olbers et al.,
2004, 2007). Other examples, to mention just a few, include the separation of
the boundary currents like the Gulf Stream (Özgökmen et al., 1997; Tansley
and Marshall, 2000), watermass transformation and thermohaline circulation
in marginal seas (Spall, 2004), overflow processes in which dense water masses
flow along and down slopes and get entrained by the ambient water (Price and
Baringer, 1994), barotropic and baroclinic Rossby waves which are modified by
topography can be important messengers in providing teleconnections in the
ocean (Hallberg and Rhines, 1996; Ivchenko et al., 2006). Recent sensitivity
studies by Losch and Heimbach (2007) show that scalar diagnostics such as
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the transport through the Drake Passage, the strength of the North Atlantic
meridional overturning circulation, the Deacon cell and the heat transport are
sensitive to moderate changes in bottom topography as much as to changes in
surface forcing in a coarse resolution model.

Numerical modellers have long recognized the role of bottom topography.
The model’s ability to accurately represent topography by modifying vertical
and/or horizontal discretization is one of the major concerns in model devel-
opment (Griffies et al., 2000a; Gorman et al., 2006). The current work has the
focus in this direction. It describes the recent further development of the Fi-
nite Element Ocean circulation Model (FEOM) and explores the performance
of several different vertical discretization supported by FEOM. Before formu-
lating the goals in more details, a brief review of relevant aspects of ocean
models is given below.

1.1 Vertical discretization in OGCMs

The three basic types of vertical discretization most commonly used in OGCMs
working on structured grids (finite difference (FD) and structured finite volume
(FV) models) are z-, σ- and isopycnal coordinates. Each of them has its own
advantages and disadvantages (Haidvogel and Beckmann, 1999; Willebrand
et al., 2001; Griffies, 2004). The choice of vertical coordinates or vertical grids
is one of the most important aspects in the design of an ocean circulation
model.

The first approach is to discretize the ocean into geopotential or z-levels.
Z-level ocean models have a long history of development since the pioneering
work of Bryan (1969) and Cox (1984). They are currently most widely used in
studies of ocean climate (Griffies et al., 2000a). They possess many attractive
advantages such as simple numerics, natural parameterization of the surface
mixing layer, and free of pressure gradient errors (to be explained later). How-
ever, standard z-level models with full cells represent the bottom topography
as “staircase” and thus have difficulties in resolving both steep and gentle
(with respect to the grid aspect ratio) bottom slopes with the currently afford-
able horizontal and vertical resolution (Adcroft et al., 1997; Pacanowski and
Gnanadesikan, 1998). Similarly, representing bottom boundary layer (BBL)
dynamics in z-level models is far from being straightforward (e.g., Beckmann
and Döscher, 1997; Winton et al., 1998; Ezer and Mellor, 2004).

Approaches to better represent bottom topography in the framework of z-
level models have been proposed by Maier-Reimer et al. (1993), Adcroft et al.
(1997) and Pacanowski and Gnanadesikan (1998). These methods employ
partial or shaved bottom cells as illustrated in Fig. 1.1, thus realizing a more
faithful representation of the bottom topography. However, even with these
methods, representing the bottom intensified flows still requires much effort in
z-level models.
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Figure 1.1: Comparing representations of the ocean bottom in z-level models.
Top: The full cell approach in which vertical size of cells does not change
within the layer. Middle: The partial cell approach introduced to the ocean
modelling by Maier-Reimer et al. (1993), Adcroft et al. (1997) and Pacanowski
and Gnanadesikan (1998), in which the vertical resolution of the bottom cells
can vary according to topographic features. Bottom: The shaved cell approach
of Adcroft et al. (1997), in which bottom cells are cut to fit the topography.
Both full and partial cells result in discontinuous representation of the bottom
topography, whereas the shaved cells allow for a continuous (piecewise linear)
bottom representation. The figure is reproduced from Griffies (2004).

The second type of vertical discretization is the so-called σ or terrain-
following coordinate (Blumberg and Mellor, 1987; Haidvogel et al., 1991),
which involves dividing the water column into a fixed number of vertical lay-
ers and then using a coordinate transformation of the water depth into an
interval of (0, 1). Although σ coordinate models were originally designed
mainly for coastal simulations, their applications have expanded to basin-scale
and climate-scale modelling (Ezer and Mellor, 1997, 2000; Ezer, 1999, 2001;
Haidvogel et al., 2000). Sigma models can accurately represent the bottom to-
pography and BBL, and their vertical resolution can easily be refined locally.
However, they suffer from pressure gradient errors (Haney, 1991; Beckmann
and Haidvogel, 1993; Mellor et al., 1994, 1998), especially in regions of steep
topography (see Greatbatch and Mellor, 1999; Ezer et al., 2002 for reviews of
developments in σ coordinate models).

The third type of vertical discretization is dealing with isopycnal coordi-
nates and involves dividing the water column into a stack of layers of con-
stant density (Bleck and Smith, 1990). Isopycnal coordinate models respect
adiabaticity of ocean dynamics in the interior of the ocean and provide a nat-
ural enhancement of resolution in regions where density gradients are tight.
However, implementing the full equation of state and parameterizations of the
surface boundary layer in realistic climate simulations adds complexity to such
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models.

The performance of models based on different types of vertical discretiza-
tion was studied under the framework of several projects coordinated between
different research groups, for example, DYNAMO (Willebrand et al., 2001),
DAMEE-NAB (Chassignet et al., 2000), and DOME (see www.rsmas.miami.

edu/personal/tamay/DOME/dome.html). The advantages and disadvantages
of the different types of vertical discretization were carefully assessed yet no
single approach was qualified as ideal for wide-ranging oceanic applications in
reality.

Each of the three vertical grids briefly described above can be optimal
only in certain parts of the ocean and for describing specific ocean dynamics.
The ocean surface boundary layer is well mixed in the vertical. A proper
parameterization of physical processes in this layer is necessary and can be
naturally realized in z-level grids. In the interior of the ocean the adiabatic
process dominates and isopycnal coordinates are well suited to describe it.
The bottom topography and BBL physics can be naturally and accurately
represented with σ grids.

Several generalized or hybrid models have been developed (Gerdes, 1993a;
Song and Haidvogel, 1994; Bleck, 2002; Mellor et al., 2002; Pietrzak et al.,
2002) in the course of continuous ocean model development. These models
try to combine benefits of different vertical discretization types within a single
framework, and allow grids which are optimally tailored in different parts of the
model domain. A brief introduction to the general-coordinate primitive equa-
tions and illustration of some features of particular coordinate formulations is
given in Appendix A.

1.2 Using unstructured meshes

An alternative to the FD method is the finite element (FE) method, which
allows a flexible unstructured discretization of the computational domain and
local mesh refinements without nesting. A faithful representation of coastlines
and bottom topography is natural with the FE method (for studies of the
influence of coastline representation see Adcroft and Marshall, 1998; Dupont
et al., 2003). FE formulation facilitates the use of hybrid vertical grids in one
model, so models based on the FE method can be flexible tools for studying
the effect of vertical grid discretization.

Since the early work of Fix (1975) on the use of the FE method in ocean
modeling, most of the applications of FE ocean models have been focused on
coastal and shelf regions (Lynch and Gray, 1979; Lynch et al., 1996; Platzman,
1981; Walters and Werner, 1989; Le Provost et al., 1995; Le Roux et al., 1998,
2000; Walters, 2005, 2006; Labeur and Pietrzak, 2005) and stationary-state
ocean inverse problems (Brasseur, 1991; Schlichtholz and Houssais, 1999; Do-
brindt and Schröter, 2003; Nechaev et al., 2003; Losch et al., 2005). Only a few
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FE ocean general circulation models that employ unstructured meshes have
been developed (Danilov et al., 2004; Ford et al., 2004a; White et al., 2007).
The model described in this work has grown up from earlier efforts presented
by Danilov et al. (2004, 2005).

Note that the FV method (e.g., Casulli and Walters, 2000; Chen et al.,
2003; Ham et al., 2005; Stuhne and Peltier, 2006; Fringer et al., 2006) and the
spectral element method (e.g., Haidvogel et al., 1997; Iskandarani et al., 2003)
also offer the possibility of using unstructured meshes. Both the FE and FV
methods are able to faithfully represent the geometry of the computational
domain. The FE method generally provides better accuracy on unstructured
grids, while the finite volume method is better suited to describe advectively
dominated processes and facilitates using a wide palette of flux limiters which
are an essential element of high-order advection schemes (see Zienkiewicz and
Taylor, 2000 and Blazek, 2001 for an introduction into FE and FV techniques).

1.3 Pressure gradient errors

Pressure gradient errors in FD σ coordinate ocean (also atmospheric) models
have been an issue of concern for a long time. The pressure gradient force in the
horizontal momentum equation should take the horizontal gradient of pressure
p along geopotential surfaces. It can be computed in the x, y, σ coordinates
via

1

ρ0

∇zp =
1

ρ0

∇σp +
gρ

ρ0

∇σz, (1.1)

where subscripts z and σ indicate that the gradient is taken along surfaces of
constant z or σ, ρ and ρ0 are density and its mean value, respectively. It turns
out that the two terms on the right-hand side (rhs) of the above expression are
almost compensating each other especially in the vicinity of steep topography.
Due to finite accuracy of their discretization, significant errors could exist in
the resulting pressure gradient forces.

Although the FE method features the attractiveness of natural treatment
of boundary conditions, its application to ocean modelling is still facing many
challenges (for a review see Pain et al., 2005). Formally, the FE method al-
lows working with meshes unstructured in all three dimensions. This implies
a full freedom in resolving the coastlines and bottom topography. In practice,
however, using meshes unstructured in all three directions does not prove to
be a good choice because of the associated problem of pressure gradient er-
rors. These errors appear when the vertical discretization is not following the
geopotential surfaces and the order of basis functions is not high enough to
accurately approximate pressure (or density).

Many approaches have been tried to reduce the pressure gradient errors.
The most commonly used remedies are removing a mean vertical density profile
and smoothing bottom topography. In FD models, approaches including high
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order differencing schemes (McCalpin, 1994; Chu and Fan, 1997), interpolation
to z-levels (Kliem and Pietrzak, 1999), and the cubic spline reconstruction
method (Shchepetkin and McWilliams, 2003) have been tested, and promising
results have been obtained. For a comparison of different schemes see Ezer
et al. (2002).

With the FE method, the question of how to deal with pressure gradient
errors depends on the type of grids and basis functions used. The combi-
nation of linear basis functions is quite often used in 3D ocean modelling in
order to obtain a computationally efficient model. Generally, pressure and den-
sity in realistic situations cannot be accurately interpolated with linear basis
functions. However, using vertically aligned grids provides some flexibility for
treating horizontal pressure gradient forces. The model of Lynch et al. (1996)
is formulated on such grids and employ σ grids in the vertical. The approach
to deal with pressure gradient errors in their model is to interpolate density
field to fixed z-level grids, compute gradients of density on these level surfaces
and then interpolate them back to σ grids. Ford et al. (2004a) used the idea
of interchanging the order of integration and differentiation and the technique
of discontinuous Galerkin method in the computation of pressure gradients in
order to reduce pressure gradient errors on unstructured grids.

FEOM uses meshes with vertically aligned nodes too. Such meshes are
unstructured only in the horizontal. Its early version (Danilov et al., 2004,
2005) employed tetrahedral elements within the z-level framework to resolve
topography. The generation of tetrahedra can be controlled to have grid points
at only two z-levels, this was done by putting nodes of surface grid to horizon-
tal locations defined by the intersection of the specified z-levels and bottom
topography. In this case, the pressure gradient errors are fully absent but this
can only be done at the expense of very high resolution across regions of steep
slopes (e.g., continental slopes).

A more general approach to deal with pressure gradient errors was desirable
in order to make possible the use of generalized vertical grids with FEOM.
The remedies commonly used in FD models, like removing a mean density
profile and smoothing bottom topography can be used. But to rely solely on
them is usually not enough in real oceanographic applications. This is because
vertical density profiles change from region to region, and smoothing bottom
topography could deteriorate the ocean dynamics. An approach using nonlocal
interpolation and FD method is suggested to tackle the problem of pressure
gradient errors in this work. It works with prismatic elements, and proves to
have errors at a level that does not exceed the errors of the FD σ models that
employ state-of-the-art techniques (see section 2.10).



1.4. VERTICAL GRIDS SUPPORTED BY FEOM 7

1.4 Vertical grids supported by FEOM

With an efficient scheme of suppressing pressure gradient errors, σ grids are
supported in FEOM. Additionally, other types of vertical discretizations be-
come possible as explained below.

Besides the full cell z-level (Fig. 1.2a) and σ (Fig. 1.2b) grids, FEOM
supports the z + σ grids (Fig. 1.2c) and z-level grids with shaved bottom
elements (Fig. 1.2d). A z +σ grid combines a few σ levels close to the bottom
with z-levels above them. The number of σ layers and level thicknesses can be
adjusted depending on the application. For the shaved cell approach used in
this work, we only permit one layer of deformed and shaved elements at the
bottom for a direct comparison with shaved or partial cell approaches used
in models formulated on structured grids. Using any number of layers with
shaved elements is supported.

Any two adjacent elements always share the same face on a FE grid, so only
the counterpart of the shaved cell approach shown in Fig. 1.1 can be realized,
while true partial cells are not possible. Instead, shaved cell grids can be of
two types in FEOM (Fig. 1.3). When the surface mesh is generated without
a proper account for bottom topography, full cell elements (and vertical walls)
might still be required in regions of steep slopes where the grid cell aspect ratio
(Δz/Δx) is less than the local bottom slope (Fig. 1.3a). Such a grid is termed
partly shaved cell grid. Clearly, the partly shaved cell grid follows closer the
real bottom topography than the full cell grid (cf. 1.3a and 1.4a).

If the generation of surface meshes is controlled by increasing the horizontal
resolution locally and adjusting the locations of surface nodes, the bottom
topography can be represented piecewise linearly, even in regions of steep slopes
(Fig. 1.3b). This is a fully shaved cell grid, or simply shaved cell grid. However,
a caveat should be mentioned that designing such a grid for a realistic ocean
topography may require introducing too small horizontal scales (for a fixed
set of vertical levels), which may entail additional numerical difficulties. So
in regions of steep slopes this approach is only applied when resolving small
scale topographic features is really necessary. In regions of gentle slopes both
modified z-level grids can accurately resolve the bottom topography and there
is no essential difference between them (cf. 1.3a,b).

In contrast, Fig. 1.4 demonstrates that the full cell approach has difficulty
in approximating both gentle and steep slopes, and the full cell grid misses the
topographic variations over the gentle slopes almost completely. Even if the
horizontal resolution is increased (with fixed vertical resolution) the full cell
representation does not improve significantly.

In the current implementation FEOM does not support isopycnal grids. In
principle, moving meshes to follow the isopycnal surfaces can be realized, but
in practice doing it is not always beneficial. This is not only because moving
meshes requires more CPU time, but also because using grids aligned with
isopycnals in the framework of z coordinates can lead to the problem of pressure
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(a) (b)

(c) (d)

Figure 1.2: Examples showing (a) full cell, (b) sigma, (c) z+σ, and (d) shaved
cell grids.

gradient errors as discussed above. A true isopycnal coordinate model based
on coordinate transformation does not suffer from the difficulty in dealing with
pressure gradients, at least in the case of linear equation of state. In FEOM
neutral physics is treated with the isoneutral diffusion based on the small slope
approximation (Gent and McWilliams, 1990; Griffies et al., 1998) and the skew
diffusion scheme of Griffies (1998) as commonly used in z coordinate models.
There is spurious diapycnal mixing associated with advection of temperature
and salinity in z- or σ coordinate models (Griffies et al., 2000b). To efficiently
reduce it without introducing too much computational load requires further
research in the future.
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Figure 1.3: Comparison between bottom topography representation for (a)
partly shaved cell and (b) fully shaved cell grids. The actual bottom is indi-
cated with thick solid line, and the discretized bottom is indicated with gray
color. Partly shaved bottom is obtained when the bottom slope exceeds the
grid aspect ratio (a). By increasing the horizontal resolution locally (two new
locations introduced instead the old one are shown by dash lines) and varying
location of surface nodes (dot-dash line) the more accurate representation of
topography is realized in (b).

Figure 1.4: Actual and discretized bottom topography for the full cell approach
using (a) low and (b) doubled horizontal resolution. Note that increasing
horizontal resolution cannot improve bottom representation significantly in
the full cell grid.

Remarks on numerics for realizing hybrid models

It is worth emphasizing that the philosophy of using σ grids in z-coordinate FE
models like FEOM or ICOM (Ford et al., 2004a) is different from that in tradi-
tional σ coordinate FD models. The traditional sigma coordinate introduced
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by Phillips (1957) for atmospheric modelling, which has later been adopted
and developed in ocean modelling, is based on coordinate transformations (see
Appendix A). The ocean or atmosphere is mapped to a regular rectangular
computational domain. Modified equations under coordinate transformations
are discretized and solved (for background materials see Haidvogel and Beck-
mann, 1999, and references therein).

The σ grids used in z coordinate FE models (see e.g., Ford et al., 2004a,b)
are only named so to emphasize their similarity to the spatial discretization
of traditional sigma models. Coordinate transformations are not necessarily
required in order to permit using σ or hybrid grids in FE models. Grid type
is set during the mesh generation stage while the model numerical core re-
mains untouched. This property stems from the mathematical basis of the
FE method. In the FE formulation, an equation for a given point is derived
from the sum of contributions from neighbouring elements, which can have
different shapes, thus allowing different vertical discretization. So FE models
using z coordinate can be considered as a kind of hybrid models. However,
since coordinate transform is not performed they are in reality only hybrid-grid

models.

Remarks on dissipation operators

The lateral property gradients are taken along the surface of constant vertical
coordinate, so σ coordinate FD models and z coordinate FE models using σ
grids have different basic expressions of dissipation operators. This is an impor-
tant issue in oceanographic applications. Lateral diffusion is naturally written
in terms of along-σ operators in σ coordinate FD models. In order to avoid
spurious diapycnal mixing, a transformation of along-σ diffusion to isoneutral
or horizontal directions is desirable in many applications (e.g., Beckmann and
Döscher, 1997).

In z coordinate FE models like FEOM, lateral diffusion is basically oriented
along the horizontal direction even if σ or hybrid grids are used. This can also
be suboptimal for some applications. Mixing is mainly going along isoneutral
surfaces in the interior of the ocean, so the transformation of horizontal diffu-
sion to be along the isoneutral direction, as used in structured z-level models, is
also desirable in FE models. Accordingly, options of transforming dissipation
to isoneutral and along-σ directions are introduced in FEOM.

1.5 Motivation and goals

The ability of a model to represent bottom topography on sigma, z + σ and
(partly) shaved cell grids is accompanied with the problem of pressure gradient
errors. The main question is which approach provides the best choice. One
issue here is that z + σ and (partly) shaved cell grids supported by FEOM
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have pressure gradient errors only within a small part of the computational
domain. Do they achieve the full functionality of σ grids? How do they
compare with FD structured grid models having a long history of development
and application in ocean modelling?

The focus of the current work is centered on a systematic study of the
performance of different types of grids with respect to simulations of a set
of phenomena of oceanographic relevance. We exploit the fact that different
grid types are supported by FEOM within the same numerical core. In this
way the effect of vertical discretization can be explored in an almost clean
form. The cases considered and described in more details below include an
impulsively started flow past a Gaussian seamount, topographic waves in a
rotating stratified channel, and dense water overflows.

An important task solved in this work is to provide FEOM with all the func-
tionality of hybrid vertical grids. Doing this involved writing a new version
of FEOM based on prismatic elements, implementing and testing the pressure
gradient force algorithm for reducing pressure gradient errors, providing sup-
port for rotated diffusion (Gent and McWilliams, 1990; Griffies et al., 1998)
and Gent-McWilliams (GM) parameterization (Griffies, 1998), and support
for the quadrature integration of contributions from irregular elements. The
total numerical approach of FEOM was put under scrutiny, and as a result,
a numerically much more efficient code has been developed, which deviates
substantially from the earlier version of FEOM. The characteristic-based split
(CBS) formulation is now used to solve the dynamic equations. Namely, the
split, or pressure projection, method is used to solve the momentum and ver-
tically integrated continuity equations, with the characteristic-Galerkin (CG)
method for the momentum advection. For tracer equations, three different
schemes are available. With all the functionality added, FEOM was trans-
formed to a versatile tool for ocean circulation modelling.

The set of problems considered in this work includes those that have be-
ing extensively studied and are sufficiently well documented, thus facilitat-
ing intercomparisons. The first set of experiments are based on the isolated
seamount geometry. Using this setup, the formation of Taylor cap on an iso-
lated seamount and the generation of internal lee waves over tall seamounts
were investigated by Chapman and Haidvogel (1992, 1993), who examined the
importance of parameters such as stratification and seamount height. The
semispectral primitive equation model SPEM (Haidvogel et al., 1991; Beck-
mann and Haidvogel, 1993) was used in these studies. That model uses second-
order finite differences in the horizontal and Chebyshev polynomials based on
σ coordinates in the vertical.

This seamount geometry was also used by Adcroft et al. (1997) to demon-
strate the improvement of simulation results by employing shaved cell method.
The MITgcm (Marshall et al., 1997) used in their work is based on the finite
volume method, and uses structured grids with z-level coordinates in the ver-
tical. The eddy formation and shedding process was found to be better dupli-
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cated when topography was represented with shaved cells than with full cells.
Ford et al. (2004b) took this experiment setup to validate their nonhydro-
static finite element model (ICOM, Ford et al., 2004a), where intercomparison
and examination of sensitivity to resolution were conducted. Their model em-
ploys hexahedral finite elements, and uses trilinear basis functions and a σ
type of discretization in the vertical. The collection of these work based on
the seamount geometry provides an excellent reference upon which an easy
intercomparison with results from the current work can be made.

The simulation of stratified topographic waves in a rotating channel is
taken as the second set of experiments. A similar model simulation has been
taken by Pacanowski and Gnanadesikan (1998) to explore the effect of partial
cell bottom representation on transient response using GFDL MOM. This is
an ideal problem to demonstrate the effect of bottom representation, because
there exist a linear analytical solution (Rhines, 1970), with which the dispersion
relation from numerical model can be compared. Different vertical grid types
(σ and shaved cell grids) which can easily represent a gentle slope accurately
are expected to resolve this topographic wave well.

The DOME experiments was designed to investigate the dynamics of den-
sity driven down-slope overflows. This idealized model configuration, pat-
terned mainly after the overflow in the Denmark Strait, set up a standard test
bed for model intercomparisons. The properties of dense plume and entrain-
ment have been studied with this configuration by Ezer and Mellor (2004); Ezer
(2005); Legg et al. (2006); Tseng and Dietrich (2006) using different vertical
grids in different ocean models, including the generalized-coordinate model
POM (Mellor et al., 2002), the z-coordinate model MITgcm (Marshall et al.,
1997), the isopycnal coordinate model HIM (Hallberg and Rhines, 1996), and
the z-coordinate version of DieCAST (Dietrich/Center for Air Sea Technology
ocean model, Dietrich, 1998). The DOME configuration is taken in the current
work to compare the performance of five different vertical grids supported by
FEOM.

The structure of the thesis is as follows. Chapter 2 describes the numerical
approach adopted by FEOM to solve the primitive equations. It presents a
relatively complete summary of what the current numerical core of FEOM is,
and also explains, among other issues, the treatment of irregular elements, the
implementation of the algorithm of computing pressure gradients, and the im-
plementation of rotated dissipation operators. It also describes performance of
different advection schemes existing in the current version of FEOM. Chapters
3 to 5 present intercomparison studies with problems outlined above. Their
common result is that z + σ grids are capable of producing results almost in-
distinguishable from pure σ grids. The partly and fully shaved cell approach
is also a good choice, yet to approach the quality of solutions on σ grids, finer
horizontal and vertical resolution is required, especially when BBL dynamics
is of essential importance. The final chapter summarizes the main findings
obtained for specific problems and concludes the work.



Chapter 2

Model numerics

This section presents the major numerical principles used in FEOM. Although
the basic strategy of solving primitive equations in FEOM has very much in
common with many ocean circulation models employing implicit free surface,
the FE discretization introduces many specific issues that are to be explored.
Mostly they are linked to the fact that FE discretization leads to systems of
linear equations that are to be solved at every time step. For the sake of
convenience, a list of symbols is given in Appendix B.

2.1 Governing equations

The hydrostatic primitive equations with the Boussinesq and traditional ap-
proximations are solved by splitting the dynamical and thermodynamical parts
in FEOM. The dynamical part includes the momentum equations and the ver-
tically integrated continuity equation:

∂tu + v · ∇3u + fk × u +
1

ρ0

∇p + g∇η = ∇ · Ah∇u + ∂zAv∂zu, (2.1)

∂tη + ∇ ·
∫ z=η

z=−H

udz = 0, (2.2)

∂zp = −gρ, (2.3)

where v ≡ (u, w) ≡ (u, v, w) represents velocity in the spherical coordinate
system, ρ and ρ0 are density and its mean value, respectively, p is the hy-
drostatic (or baroclinic) pressure obtained through integrating the hydrostatic
relation (2.3) from z = 0, η is the sea surface elevation, f is the Coriolis pa-
rameter, k is the vertical unit vector, the lateral and vertical viscosities are
denoted by Ah and Av, g stands for the gravitational acceleration, and ∇3 and
∇ stand for 3D and 2D gradient or divergence operators, respectively. The
upper limit of integration in (2.2) is set to 0 in the current version of FEOM,
which implies that it uses linear free surface approximation. Consistent with
this, the upper boundary of the computational domain is at z = 0, and surface

13
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boundary conditions in the momentum and tracer equations are formulated
there. Notice that the fresh water flux term is neglected in (2.2).

The physical domain can contain four types of boundaries ∂Ω = ∪4
i=1Γi,

where Γ1 : {z = 0} is the ocean surface, Γ2 : {z = −H} stands for the
ocean bottom, Γ3 denotes the vertical rigid walls, and Γ4 is the vertical open
boundary. The open boundary line, which is the 2D projection of the vertical
open boundary, is denoted by So.

The boundary conditions at the surface and the bottom are:

Av∂zu = τ, p = 0 on Γ1, (2.4)

Av∂zu + Ah∇H · ∇u = Cdu|u| on Γ2, (2.5)

where τ is the wind stress, and Cd is the bottom drag coefficient. On the
vertical rigid walls, the boundary condition of no normal flow

u · n = 0 on Γ3, (2.6)

is always applied. Here n stands for the 2D normal unit vector. With no-slip
boundary conditions, the tangential velocity on rigid walls is set to zero. For
free-slip boundary conditions, the tangential component of the viscous stress
is set to zero. Vertically integrated velocity in the direction normal to the
boundary is prescribed at the open boundary line So, and the viscous stress is
set to zero at the open boundary surface.

The vertical velocity is diagnosed via the continuity equation:

∂zw = −∇ · u, (2.7)

for which the kinematic boundary conditions at the surface and the bottom
are:

w = ∂tη + u · ∇η on Γ1, (2.8)

w = −∇H · u on Γ2. (2.9)

The second term on the rhs of (2.8) disappears under the approximation of
linear free surface. These kinematic boundary conditions are not independent.
For example, by combining (2.2) and (2.7) and enforcing the bottom kine-
matic boundary condition (2.9), one can get the surface kinematic boundary
condition (2.8).

In the thermodynamical part, the tracer equations are solved for potential
temperature T and salinity S, and density ρ is computed via the equation of
state (Jackett and McDougall, 1995):

∂tC + v · ∇3C −∇ · Kh∇C − ∂zKv∂zC = 0, (2.10)

ρ = ρ(T, S, p), (2.11)
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where C can be T or S, and Kh and Kv are lateral and vertical diffusivity,
respectively. When rotated diffusion is used, diffusion is written in a more
general form in terms of the diffusivity tensor.

The boundary conditions for tracers are:

Kv∂zC = −q on Γ1, (2.12)

(∇C, ∂zC) · n3 = 0 on Γ2 ∪ Γ3, (2.13)

where q is the surface flux for T or S, and n3 is the 3D unit vector normal
to the respective surface. At the open boundary Γ4 tracers are restored to
climatological values.

2.2 Meshes and basis functions

2.2.1 Meshes

To solve the dynamic and thermodynamic equations given above, we will ap-
proximate continuous fields of variables by values at a finite set of discrete
points within the computational domain. These discrete points form finite ele-
ments. The mesh (or grid) is the set of nodes together with the rules of forming
elements. The main motivation for the use of the FE method is the usage of
unstructured meshes. Prismatic elements are used in the current model. First
a 2D unstructured triangular grid is generated on surface z = 0 and the model
domain is divided into vertical columns. Then the columns are cut into layers
to construct prismatic elements. In such a mesh, 3D nodes are always aligned
vertically below corresponding 2D surface nodes. This allows a convenient and
consistent realization of FE formulation of the hydrostatic primitive equations
and an efficient and accurate method to calculate pressure gradient forces (to
be discussed in details later).

The 2D triangular mesh can be generated with a variety of currently avail-
able free software packages, such as Triangle (Shewchuk, 1996) and Distmesh
(Persson and Strang, 2004). The latter is used in the current work. The mesh
quality, i.e. the extent to which the mesh triangles are close to equilateral
triangles, can be quite high in many cases by using these generators. Care
is required in order to provide smooth transition between subdomains with
different resolution. The degree to which bottom topography can be resolved
with shaved cells also depends on the surface mesh design.

Different vertical grids can be generated depending on how the model do-
main is cut in the vertical. If the domain is divided by geopotentially aligned
levels, z-level grids are implemented. If the domain is divided vertically into
an equal number of layers, σ grids are generated. Depending on applications,
uniform or nonuniform placement of levels can be used in sigma grids. To
create nonuniform σ layers in a convenient way, the transformation relation
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proposed by Song and Haidvogel (1994) is adopted in the 3D generator:

z(x, y) = hminσ + (h(x, y) − hmin) F (σ), (2.14)

where hmin is the minimum depth inside the model domain, and

F (σ) = (1 − θ2)
sinh(θ1σ)

sinh(θ1)
+

θ2

2

[
tanh[θ1(σ + 1/2)]

tanh(θ1/2)
− 1

]
,

where θ1 and θ2 are parameters controlling the vertical level stretching, and
−1 ≤ σ ≤ 0 is discretized uniformly into desired number of vertical layers. For
large θ1, the vertical layers crowd near the surface, and when θ2 approaches
1, resolution near to the bottom boundary is enhanced. Note once again that
there is no coordinate transformation in our model, and (2.14) is only used to
simplify the σ grid generation.

In the z+σ and (partly) shaved cell grids there could be degenerated prism
elements, which contain five or four nodes instead of six nodes of standard
prisms. This requires a technique which deals with degeneration, it will be
briefly described later.

2.2.2 Basis function expansions

In the FE formulation, variables are approximated as sums over a finite set of
basis functions. We employ the combination of piecewise linear basis functions
in two dimensions for surface elevation and in three dimensions for velocity and
tracers. Because continuous linear basis functions are used for both the hori-
zontal velocity and elevation (P1−P1 discretization), stabilization for pressure
modes is required. Details of the stabilization method are given further in
section 2.4.

The numerical approximations of velocity and tracers are represented using
a finite set of basis functions denoted by {Nj}:

u �
N∑

j=1

(uj, vj)Nj, C �
N∑

j=1

CjNj, (2.15)

and sea surface elevation is represented using 2D basis functions {Mj}:

η �
M∑

j=1

ηjMj. (2.16)

The basis functions Nj and Mj are equal to one at node j and go linearly to
zero at neighbouring nodes. They equal zero outside the stencil formed by
neighbor nodes. With adopted spatial discretization and basis functions, N
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and M are the total numbers of 3D and 2D mesh nodes, respectively. The
vectors representing nodal values are defined as:

ū = [u1, · · · , uj, · · · , uN, v1, · · · , vj, · · · , vN]T

C̄ = [C1, · · · , Cj, · · · , CN]T (2.17)

η̄ = [η1, · · · , ηj, · · · , ηM]T

The length of the velocity vector ū is 2N, as it combines u and v components
of the horizontal velocity, C̄ is a vector of length N, and η̄ is a vector of length
M.

Because 3D nodes are generated by dropping vertical lines starting from
the surface 2D nodes, the 2D basis functions {Mj} and the 3D basis functions
{Nj} have the following properties:

∑
j∈J

Nj = MJ ,
∑
j∈J

∂Nj

∂z
= 0, (2.18)

where j ∈ J means that the sum is over basis functions associated with 3D
nodes aligned vertically with 2D node J . This basic property is commonly
required in hydrostatic ocean models based on the FE method as in the early
version of FEOM (Danilov et al., 2004). The necessity to maintain this prop-
erty will be clarified in section 2.5.

2.2.3 Elements with variable numbers of nodes

The FE formulation involves the projection of governing equations on an ap-
propriate set of test functions, which implies taking integration over prisms
and triangles. Since prisms can be deformed or shaved in general cases, the
coordinate transformation technique is required to facilitate the integration,
which maps a given prismatic element into the standard prism as shown in Fig.
2.1. This standard prism is often called the parent domain. The coordinates
of a point in a prismatic element in the physical domain (Ω) are related to the
coordinates of a point in the parent domain with the mapping:

x(ξ) =
6∑

a=1

N e
a(ξ)xe

a, (2.19)

where xe
a, a = 1, ..., 6 denotes the locations of the six nodal points of the

prismatic element Ωe, ξ represents the coordinates in the parent domain, the
so-called natural coordinates, and N e

a is the basis function within the element
Ωe for its node a. They are the same basis functions as those used to interpolate
tracer and horizontal velocity fields, and they have been introduced as {Ni}
in equation (2.15) using global index instead of elemental notations. When
such interpolation functions are used, the element is termed isoparametric.
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Figure 2.1: Schematic explanation of coordinate transformation. The left
prism is the parent domain, and the right one is the element in physical coor-
dinates (x, y, z).

Using isoparametric elements generally helps to satisfy convergence conditions
(Hughes, 1987).

With the basic concept of mapping given above, the implementation of the
aforementioned technique of degeneration to prisms with coalesced nodes is to
be explained below. Fig. 2.2 shows an example of a degenerated prism. Nodes
3 and 6 are coalesced and xe

3 = xe
6. In this case the mapping defined in (2.19)

is

x =
6∑

a=1

N e
axe

a

= N e
1x

e
1 + N e

2x
e
2 + (N e

3 + N e
6 )xe

3 + N e
4x

e
4 + N e

5x
e
5 (2.20)

=
5∑

a=1

N e,new
a xe

a,

where

N e,new
a =

{
N e

a a = 1, 2, 4, 5
N e

a + N e
a+3 a = 3

(2.21)

which defines the new basis functions for the five node element in Fig. 2.2.

The integration over elements is performed in their parent domain. The
Jacobian of the mapping j = det(∂x/∂ξ) enters then into integrands due to
the coordinate transformation, and it is also required for computing derivatives
with respect to physical coordinates. The Jacobian determinant vanishes at
the coalesced nodes, but this does not create problems as appropriate quadra-
ture rules are used for computations. The quadrature points are always se-
lected where the coordinate mapping is not singular, and it can be shown that
convergence conditions are still satisfied (Hughes, 1987).
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Figure 2.2: The same as Fig. 2.1 but for the case when there are coalesced
nodes.

2.3 Solution method

2.3.1 Problems and strategy

The dynamical part

We obtain the discretized equations by the Galerkin method, which implies
that the test functions that are used to project the equations coincide with the
basis functions. It ensures that the residual of equations is orthogonal to any
of the basis functions, in this sense one gets optimal discretization. However,
solving the incompressible flow problem described by equations (2.1), (2.2) and
(2.3) with the standard Galerkin method has two major numerical problems.

The first one is associated with advection-dominated flows in which the cell
Reynolds number is high. In such cases dispersion errors in advective terms
may lead to spurious oscillations on the grid scale, which can severely degrade
solutions. This problem is common for FD models too, it is typically circum-
vented by using some high-order or upwind advection schemes. In the FE case,
it can be solved either by using different spaces for test and basis functions, the
so-called Petrov-Galerkin method, or by introducing some stabilization terms
in the FE formulation.

The second problem is that the basis functions for velocity and surface
elevation (pressure in the nonhydrostatic case) should meet the so-called LBB
condition (Ladyzhenskaya, 1969; Babuska, 1973; Brezzi, 1974), otherwise spu-
rious surface elevation modes can appear and lead to instability. In FD models
staggered grids (Arakawa, 1966) are usually used to avoid a problem of the sim-
ilar kind. The basis functions used in our model do not satisfy this condition,
so standard Galerkin method can not be applied directly to solve the system
of (2.1) and (2.2).

Different stabilization methods have been suggested to overcome these
problems in the FE community. In the tetrahedral version of FEOM (Danilov
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et al., 2004) the Galerkin least-squares (GLS) method (Codina and Soto, 1997)
has been used to resolve both difficulties. To achieve a more consistent and effi-
cient solution with the aforementioned two numerical difficulties also resolved,
the CBS scheme is employed in the current work (for reviews see Zienkiewicz
et al., 1999; Nithiarasu et al., 2006, and references therein).

This split method belongs to the family of projection methods, in which the
cost of solving the dynamical part is reduced by uncoupling the velocity from
the pressure (surface elevation in our hydrostatic case). The LBB condition
is circumvented by the classical splitting technique, and the advection is sta-
bilized by using discretization along the characteristics, i.e., the CG method.
Comparisons between the CBS method and subgrid scale (SGS) methods (Co-
dina and Zienkiewicz, 2002; Codina et al., 2006) show that these different
formulations display similar stabilization mechanisms provided the stabiliza-
tion parameter of the SGS methods is identified with the time step of the CBS
approach. Both explicit and implicit time stepping can be applied to the CBS
method, and the resulting discrete equations can be solved efficiently.

The thermodynamical part

In the ocean the evolution of temperature and salinity is mainly governed
by advection, indicated by large cell Peclet numbers. So the same numerical
problem as in solving momentum equations with large cell Reynolds numbers
is also encountered here, hence stabilization is required. The CG method
can also be employed to solve the tracer equations, resulting in mass matrix
(matrix of the time derivative operator) equations which can be efficiently
solved. An alternative advection scheme using the (explicit) flux-corrected
transport (FCT) method (Löhner et al., 1987) is also implemented in the
current model. This is motivated by some applications in which eliminating
overshoots is crucial. The GLS scheme implemented by Danilov et al. (2004)
is maintained as an optional scheme in the current model.

2.3.2 Characteristic Galerkin method

The CG method Zienkiewicz and Taylor (2000) will be briefly explained here,
leaving its implementation to the primitive equations to be described in the
next section. The basic idea is to discretize equations in time along character-
istics and apply FE discretization afterwards.

For simplicity the one dimensional advection equation

∂tφ + U∂xφ − Q = 0 (2.22)

will be used here to derive the CG formulation, and its extension to multidi-
mensional problems is straightforward. In equation (2.22), φ could denote one
of the velocity components or one tracer field, U is the one dimensional velocity,
and Q contains other terms that exist in momentum or tracer equations.
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Figure 2.3: Schematic explanation for the characteristic Galerkin procedure.

If the coordinate system is ‘advected’ with velocity U , that is, along the
characteristics of the problem described by equation (2.22), this equation can
be written as

∂φ

∂t
(x′(t), t) − Q(x′) = 0, (2.23)

where x′ denotes a moving coordinate in which the advection term disappears,
and Q represents averaged quantities along the characteristic. The time dis-
cretization of (2.23) along the characteristic (Fig. 2.3) gives

1

Δt

(
φn+1 − φn|(x−δ)

) ≈ θQn+1 + (1 − θ)Qn|(x−δ), (2.24)

where θ is equal to zero for explicit forms, and between zero and unity for
semi- and fully implicit forms.

Taking Taylor expansion one gets

φn|(x−δ) ≈ φn − δ
∂φn

∂x
+

δ2

2

∂2φn

∂x2
+ O(δ3), (2.25)

Q|(x−δ) ≈ Qn − δ
∂Qn

∂x
+ O(δ2), (2.26)

where δ is the distance traveled by the particle in the x direction (Fig. 2.3):

δ = ŪΔt. (2.27)

Different approximations can be applied to Ū , the average velocity along the
characteristic, which can lead to different stabilization terms, but the difference
is small (Zienkiewicz and Taylor, 2000). We take the approximation

Ū =
Un+1 + Un|x−δ

2
, (2.28)

where the last term can be approximated using the Taylor expansion:

Un|(x−δ) ≈ Un − ΔtUn ∂Un

∂x
+ O(Δt2). (2.29)
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Substituting (2.25)-(2.29) into (2.24), and taking θ = 0.5, we have

φn+1 − φn

Δt
= −Un+1/2 ∂φn

∂x
+

Δt

2
Un ∂Un

∂x

∂φn

∂x
+

Δt

2
Un+1/2Un+1/2 ∂2φn

∂x2

+Qn+1/2 − Δt

2
Un+1/2 ∂Qn

∂x
, (2.30)

where

Un+1/2 =
Un+1 + Un

2
, and Qn+1/2 =

Qn+1 + Qn

2
. (2.31)

Note that (2.30) is second order accurate and higher-order terms have been
neglected. To get the explicit scheme with respect to U a further approximation

Un+1/2 = Un + O(Δt) (2.32)

will be taken in second order terms, leading to the final form of the CG for-
mulation

φn+1 − φn

Δt
= −Un ∂φn

∂x
+ Qn+θ +

Δt

2
Un ∂

∂x

[
Un ∂

∂x
φn − Qn+θ

]
. (2.33)

Here the Q term is written with the superscript θ to indicate that different tem-
poral forms could be required by different terms in the momentum equation.
For example, the surface elevation term often requires the fully implicit form
to damp fast gravity waves. The overall temporal accuracy of the equation
depends on the temporal form of Q.

This semi-discrete form (2.33) for tracer equations can be solved directly
after applying standard Galerkin method (hence the name of CG method in a
whole), but for the momentum equation the projection method will be firstly
employed before taking spatial discretization in order to stabilize pressure
modes. The solution of momentum and tracer equations is described in details
in the following sections.

The CG method is identical to the second-order Taylor Galerkin approach
for scalar variables (also for each velocity component) with respect to the final
formulation, but the former has sound mathematical justification according to
Zienkiewicz and Taylor (2000). Both methods are based on taking temporal
discretization using Taylor expansion before applying spatial discretization.

With this method the leading-order error in an advection equation is second
order and generates numerical dispersion, and the permissible time step is
limited by |μ| ≤ 1/

√
3 in the one dimensional case, where μ = UΔt/Δx is the

Courant number (Durran, 1999).
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2.4 Solving for velocity and sea surface eleva-

tion

2.4.1 Solution procedure

After employing the CG procedure to the momentum equation (2.1), the semi-
discrete equation is:

un+1 − un

Δt
= −(v · ∇3u)n + Qn+θ +

Δt

2
vn · ∇3

[
(v · ∇3u)n − Qn+θ

]
, (2.34)

where Q represents the terms except for the time derivative and advection
terms in (2.1). Different values of θ could be applied to different constituents
of Q, giving explicit, semi-implicit or implicit forms.

Viscous terms are computed explicitly at time level n, the Coriolis force and
the hydrostatic pressure are taken at time level n + 1/2, and surface elevation
is taken at time level n + 1. The hydrostatic pressure is updated via (2.3)
after tracer equations are solved, so is automatically half time step staggered
(at n + 1/2) from the new velocity field. The second order Adams-Bashforth
scheme is applied to the Coriolis force. Using implicit surface elevation together
with implicit barotropic flow divergence (in equation (2.2)) helps to damp
fast waves which are not resolved. With fully implicit surface elevation the
temporal accuracy of the method is degraded to the first order. The second
order accuracy can be easily recovered by using the Crank-Nickolson temporal
form for the elevation and the divergence at no cost when it is required for
some particular purposes.

Explicit Coriolis force and vertical viscosity can limit permissible time steps
in some situations, so the method to employ (semi-) implicit Coriolis and
vertical viscosity terms is also introduced in the current model. For an easy
explanation we leave their implementation to be discussed in section 2.4.4.

Writing out all the terms in Qn+θ one gets

un+1 − un

Δt
+ g∇ηn+1 =

−(v · ∇3u)n − fk × un+1/2 − 1

ρ0

∇pn+1/2

+∇ · Ah∇un + ∂zAv∂zu
n (2.35)

+
Δt

2
vn · ∇3

[
(v · ∇3u)n + fk × un+1/2 +

1

ρ0

∇pn+1/2 + g∇ηn

]
,

where terms containing third order derivatives are neglected as we are working
with linear basis functions. The Coriolis force is computed with the approxi-
mation:

un+1/2 = (3/2 + εAB)un − (1/2 + εAB)un−1, (2.36)

where εAB is a small but finite value used to stabilize the second-order Adams-
Bashforth method.
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The next step is to employ the projection method. First, an auxiliary
velocity u∗ is introduced such that

u∗ − un

Δt
= −γg∇ηn + R, (2.37)

where R represents the rhs of (2.35), and γ is a tunable parameter with a
range between (0, 1). A term with the contribution from surface elevation at
time level n has been introduced to the rhs of (2.37), it does not exist in (2.35).
This equation can be easily solved after applying Galerkin discretization, as
the rhs is explicitly computed.

The correct velocity is determined using the equation

un+1 − u∗

Δt
= −g∇(ηn+1 − γηn), (2.38)

which is derived by subtracting (2.37) from (2.35). Here ηn+1 is the still un-
known elevation at the new time step.

Before taking this correction step the surface elevation ηn+1 should be de-
termined. The temporal discretization of equation (2.2) is

ηn+1 − ηn

Δt
= −∇ ·

∫ 0

−H

un+1dz, (2.39)

where the divergence of the barotropic flow is treated implicitly. Substituting
(2.38) into (2.39) one gets the equation for computing the surface elevation:

ηn+1 − ηn

Δt
− Δtg∇ ·

∫ 0

−H

∇(ηn+1 − γηn)dz = −∇ ·
∫ 0

−H

u∗dz. (2.40)

Note that the surface elevation is treated fully implicitly. The partial con-
tribution from surface elevation at time level n in (2.37) is only introduced
to decrease the temporal ‘distance’ between un+1 and u∗, thus controlling
the strength of stabilization for the pressure mode. When γ is set to 1 the
stabilization effects will be fully eliminated, and γ = 0 gives the strongest sta-
bilization for a fixed time step. The next section will further explain the role
of the parameter γ together with the justification of the stabilization mecha-
nism of the splitting method. Here we only emphasize that taking the pressure
splitting procedure before taking spatial discretization is essential for having
stabilization effects (Zienkiewicz and Taylor, 2000).

The procedure to solve the dynamical governing equations can be summa-
rized as: first, solve (2.37) to obtain the auxiliary velocity u∗; then solve (2.40)
to obtain ηn+1; the last step, solve (2.38) to obtain the correct velocity un+1.
In this respect, the procedure is very similar to FD models which use implicit
free surface, for instance, MITgcm.
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The auxiliary and full velocity share the same numerical approximation:

u∗ �
N∑

j=1

(u∗
j , v∗

j )Nj

ū∗ =
[
u∗

1, · · · , u∗
j , · · · , u∗

N, v∗
1, · · · , v∗

j , · · · , v∗
N

]T
,

(2.41)

where the length of the velocity vector ū∗ is 2N. For compactness of notation
all the nodal value vectors will be represented without overlines below, and
this will not cause confusion, as it is clear that they are referred to vectors in
fully discrete equations.

2.4.2 Matrix form of equations

To solve the semi-discrete equations (2.37), (2.40) and (2.38) the standard
Galerkin FE procedure is used. Approximations (2.15), (2.16) and (2.41) are
substituted into these equations. Equations (2.37) and (2.38) are weighted
by test functions {Ni} and integrated over the model domain Ω, and (2.40)
is weighted by test functions {Mi} and integrated over the surface Γ1. The
matrix form of the first step is

MuΔu∗ =

−Δt
(
N(vn)un + Lun+1/2 + Kun + Cpn+1/2 + γgGηn

)
+Δt

(
Sτ n+1 − B(un)un

)
(2.42)

−Δt2

2

(
Ns(v

n)un + Ls(v
n)un+1/2 + Cs(v

n)pn+1/2 + gGs(u
n)ηn

)
,

where Δu∗ = u∗ − un, and the viscous and stabilization terms have been in-
tegrated by parts. The left-hand side (lhs) denotes the time derivative term.
The first row on the rhs represents the advection, Coriolis force, viscous, hy-
drostatic pressure and surface pressure terms. The second row on the rhs gives
the boundary integration arising from integrating by parts the viscous term.
The last row is the stabilization contribution after integration by parts. The
associated boundary contributions from stabilization terms are neglected, as
the residual on the boundaries is negligible.

The mass matrix Mu is given by

Mu ≡
(

M ′ 0
0 M ′

)
, where M ′

ij =

∫
Ω

NiNjdΩ, for 1 ≤ i, j ≤ N. (2.43)

The advection term results in matrix N:

N(ṽ) ≡
(

N ′(ṽ) 0
0 N ′(ṽ)

)
, (2.44)

N ′
ij(ṽ) =

∫
Ω

Niṽ · ∇3NjdΩ, for 1 ≤ i, j ≤ N. (2.45)
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The matrix in the Coriolis term is given by

L ≡ f

(
0 −L′

L′ 0

)
, where L′ = M ′. (2.46)

The matrix in the viscous term is

K ≡
(

K ′ 0
0 K ′

)
, (2.47)

K ′
ij =

∫
Ω

(Ah∇Ni · ∇Nj + Av∂zNi∂zNj)dΩ, for 1 ≤ i, j ≤ N. (2.48)

The boundary integral on rigid walls is zero, and on the surface and at the
bottom it gives the terms with matrices S and B respectively:

S ≡
(

S ′ 0
0 S ′

)
, B(ũ) ≡

(
B′(ũ) 0

0 B′(ũ)

)
, (2.49)

S ′
ij =

∫
Γ1

NiMjdΓ1, B′
ij(ũ) =

∫
Γ2

Cd|ũ|NiNj dΓ2, (2.50)

where the surface integration is taken on proper boundary surfaces, and only
associated matrix entries are non-zero. Note that each component of the sur-
face wind stress has been approximated in the same way as for the surface
elevation (2.16), so totally τ is of length 2M. The contribution from the sur-
face elevation is γgGηn, where

G ≡
(

G1

G2

)
, (2.51)

Gq
ij =

∫
Ω

Ni
∂Mj

∂xq

dΩ, for 1 ≤ i ≤ N; 1 ≤ j ≤ M; q = 1, 2. (2.52)

The matrices with subscript s in the last row of (2.42) correspond to terms
for stabilizing advection. Their matrix structures are similar to their coun-
terparts in the first row of the rhs, so only their matrix entries are shown
here:

N ′
s,ij(ṽ) =

∫
Ω

ṽ · ∇3Ni ṽ · ∇3NjdΩ, for 1 ≤ i, j ≤ N, (2.53)

L′
s,ij(ṽ) =

∫
Ω

ṽ · ∇3Ni NjdΩ, for 1 ≤ i, j ≤ N, (2.54)

Gq
s,ij(ũ) =

∫
Ω

ũ · ∇Ni
∂Mj

∂xq

dΩ, for 1 ≤ i ≤ N; 1 ≤ j ≤ M; q = 1, 2. (2.55)

The discretization form for the hydrostatic pressure will be discussed separately
in section 2.10.
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The discrete form of the second step (2.40) is

(Mη + Δt2H)Δη = Δt
(
GTu∗ − Δt(1 − γ)Hηn − OηU

⊥
OB

)
, (2.56)

where Δη = ηn+1 − ηn. The last term on the rhs of (2.56) contains the open
boundary contribution, which appears after taking integration by parts the
divergence terms in (2.40). U⊥

OB is a vector of length M, with entries on open
boundaries filled with specified vertically integrated normal velocity (positive
is out of the domain) and zero elsewhere. The matrix for the time stepping
term is

Mη ≡ (
M ′

η

)
, M ′

η,ij =

∫
Γ1

MiMj dΓ1, for 1 ≤ i, j ≤ M. (2.57)

The matrix H is

H ≡ (H ′) , H ′
ij = g

∫
Ω

∇Mi · ∇Mj dΩ, for 1 ≤ i, j ≤ M. (2.58)

The matrix of the open boundary term contains the line integral:

Oη ≡ (
O′

η

)
, O′

η,ij =

∫
So

MiMj dSo, for i, j on So, (2.59)

where matrix entries that are not on open boundaries are filled with zero.
The final matrix form of the correction step (2.38) is

MuΔu = MuΔu∗ − ΔtgG(ηn+1 − γηn), (2.60)

where Δu = un+1 − un. To summarize, the procedure of solution for the
horizontal velocity and elevation consists of three steps. One begins with the
prediction step to solve for u∗, then finds elevation ηn+1, and finally corrects
the velocity field un+1 so that it satisfies the vertically integrated continuity
equation at the end of each time step.

2.4.3 Circumventing the LBB restrictions

To see how the restrictions on the choice of the basis function pairs for velocity
and pressure is lifted by the split method, we can simply examine the equation
(2.42), (2.56), and (2.60) in steady-state conditions. For simplicity we only
keep the viscosity term and surface elevation term in the momentum equation,
then the three steps of the splitting method are:

Δu∗ = −ΔtM−1
u [Kun + γgGηn − f1], (2.61)

Δη = (Mη + Δt2H)−1Δt[GTun + GTΔu∗ − Δt(1 − γ)Hηn − f2], (2.62)

Δu = Δu∗ − ΔtgM−1
u G(Δη + (1 − γ)ηn), (2.63)

where f1 and f2 are used to represent the boundary forcing in the momentum
equation and surface elevation equation, respectively. In steady state Δη =
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0, and Δu = 0. Substituting (2.61) into (2.63) and dropping the superscript
n one gets

Ku + gGη = f1, (2.64)

and combining (2.62) and (2.63) one gets

GTu + Δt(1 − γ)[gGTM−1
u G − H]η = f2. (2.65)

Finally, we get a system for u and η which can be written in the form(
K gG
GT Δt(1 − γ)[GTM−1G − H]

){
u
η

}
=

{
f1
f2

}
. (2.66)

This system is always positive definite for γ ∈ [0, 1) and leads to a non-singular
solution for any combination of basis functions {Nj} and {Mj}. The reason
for which the LBB condition is circumvented is that the non-zero lower-right
block matrix entry in (2.66) is introduced by the splitting procedure. This
matrix block is equivalent to the difference between the so-called fourth-order
and second-order approximations of the Laplacian operators. A FD analog in
one dimension is the difference between five point and three point Laplacian
operators which is equivalent to biharmonic friction.

The procedure to justify the stabilization mechanism employed here is es-
sentially that of Codina et al. (1998) but modified to the hydrostatic case.
Another viewpoint (Rannacher, 1992) was taken by Codina and Zienkiewicz
(2002) and Codina et al. (2006) who identified the similarity between stabi-
lization mechanisms from the CBS method and different SGS methods. The
difference between the two viewpoints is that the approach adopted here is to
analyze the problem for the end-of-step velocity, while Rannacher (1992) ex-
plains the stabilization in terms of the intermediate velocity. For details about
how to employ the second viewpoint one can refer to Codina et al. (2006).

The γ factor in (2.66) can be regarded as a coefficient to combine the two
splitting methods described in Zienkiewicz and Taylor (2000). When γ = 0 the
‘split A’ is recovered which provides the largest stabilization to the pressure
modes for a fixed temporal/spatial discretization, and γ = 1 recovers ‘split
B’ which has no stabilization effects on pressure modes. Introducing the γ
parameter gives freedom in adjusting the stabilization strength in practice.
The value of γ should be adjusted so that the spurious pressure modes can be
filtered out but the numerical diffusion is as small as possible. A value very
close to unity is found sufficient to stabilize pressure in many applications.

We are working with the fully implicit scheme for the surface elevation
and divergence of the vertically integrated flow in most applications, so the
situation for the semi-implicit form is not discussed above. But following the
procedure presented above it can also be shown that only the temporal form of
the divergence of the vertically integrated velocity in the vertically integrated
continuity equation influences stabilization.
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2.4.4 Implicit temporal form

One wants to use large time steps when the model resolution is coarse. Explicit
treatment of the Coriolis force can be a limiting factor in this case, especially
in polar regions where the Coriolis parameter is large. In many oceanographic
applications the explicit form of vertical viscosity can be the limiting factor for
time step through the criteria AvΔt/Δz2 ≤ 2, especially in surface and bottom
boundary layers where fine vertical resolution is often used. In this section
modifications to the solution procedure described above will be introduced,
which permit implicit or semi-implicit treatment to the Coriolis force and
vertical viscosity.

We employ the general θ method on the Coriolis force (implying that it is
estimated as a weighted sum over steps n + 1 and n) and the implicit form
on the viscosity term, so that the semi-discrete momentum equation (2.35)
becomes

un+1 − un

Δt
+ fθk × (un+1 − un) + g∇ηn+1 − ∂zAv∂zu

n+1 =

−(v · ∇3u)n − fk × un − 1

ρ0

∇pn+1/2 + ∇ · Ah∇un (2.67)

+
Δt

2
vn · ∇3

[
(v · ∇3u)n + fk × un +

1

ρ0

∇pn+1/2 + g∇ηn

]
,

where θ = 1 or 0.5 gives a fully implicit or semi-implicit schemes for the
Coriolis force, respectively. Both of them, and the vertical viscosity as well,
are unconditionally stable.

The first step of the CBS procedure given by (2.37) in this case is

u∗ − un

Δt
+ fθk × (u∗ − un) − ∂zAv∂zu

∗ = −γg∇ηn + R, (2.68)

where R represents the rhs of (2.67).
The correction step similar to (2.38) is

un+1 − u∗

Δt
+ fθk × (un+1 − u∗) = −g∇(ηn+1 − γηn), (2.69)

which now contains the Coriolis term on the lhs. In the above expression,
the vertical viscosity contribution has been neglected, which is a necessary
approximation for proceeding the split method. If the implicit vertical viscosity
contribution were maintained in (2.69), we would not be able to obtain the
algebraic expression of un+1 in terms of ηn+1, which is required to get the
equation for surface elevation. This approximation, also used in MITgcm,
corresponds to the requirement that the implicit vertical viscosity should not
alter the barotropic flow, that is, it can only redistribute momentum in the
vertical. This requirement is enforced in the strong statement.
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Then un+1 ≡ (un+1, vn+1) can be expressed analytically from (2.69). Sub-
stituting it into (2.39) one gets the equation for ηn+1:

ηn+1 − ηn

Δt
− g∇ ·

∫ 0

−H

(α∇ + β∇s)(η
n+1 − γηn)dz = −∇ ·

∫ 0

−H

u∗dz, (2.70)

where ∇s = (∂y,−∂x) is the skewed gradient operator, α = 1/(dΔt) and
β = fθ/d with d = f 2θ2 + 1/Δt2.

Solving (2.68) and (2.69) with iterative solvers could be difficult if θfΔt
exceeds one because the Coriolis term corresponds to the antisymmetric part of
the operator. For this reason we invert the operator (1/Δt+fθk×) analytically
before taking spatial FE discretization. It does not involve any approximations
and results in

Δu∗ = α

(
Vx + Rx

Vy + Ry

)
+ β

(
Vy + Ry

−Vx − Rx

)
− γg (α∇ + β∇s) ηn, (2.71)

Δu = Δu∗ − g (α∇ + β∇s)
(
ηn+1 − γηn

)
, (2.72)

where Vx ≡ ∂zAv∂zu
∗, Vy ≡ ∂zAv∂zv

∗.
With this manipulation, the final matrix of the operator on the lhs (called

stiffness matrix) from discretizing (2.72) is simply the mass matrix, while vis-
cous terms will make the stiffness matrix from discretizing (2.71) nonsymmet-
ric. The contribution from the viscous terms is small in most places (with the
exception in the mixed layer), so the final matrix problem is better suited to
iterative solvers than taking the original form.

The final Galerkin formulation of (2.71) is given by

(Mu + Ki
V )Δu∗ =

− (
Ni(vn) + Li + Ki

V + Ki
H

)
un

− (
Cipn+1/2 + γgGiηn

)
+ Siτn+1 − Bi(un)un (2.73)

−Δt

2

(
Ni

s(v
n)un + Li

s(v
n)un + Ci

s(v
n)pn+1/2 + gGi

s(u
n)ηn

)
,

where superscript i is used for matrices that are different from those in (2.42)
due to implicit time stepping. The difference comes from the β terms in (2.71).
For example, different to (2.44), the matrix of the advection term is

Ni(ṽ) ≡
(

αN ′(ṽ) βN ′(ṽ)
−βN ′(ṽ) αN ′(ṽ)

)
. (2.74)

Matrices Li, Si, Bi, Ni
s, Li

s have similar changes to their matrix structures,
and for simplicity are not presented here. The matrix for the surface elevation
term is

Gi ≡
(

αG1 + βG2

αG2 − βG1

)
, (2.75)
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and the two matrices for viscosity are

Ki
V ≡

(
αK ′

V βK ′
V

−βK ′
V αK ′

V

)
, Ki

H ≡
(

αK ′
H βK ′

H

−βK ′
H αK ′

H

)
, (2.76)

where

K ′
V,ij =

∫
Ω

Av∂zNi∂zNj dΩ, for 1 ≤ i, j ≤ N, (2.77)

K ′
H,ij =

∫
Ω

Ah∇Ni · ∇Nj dΩ, for 1 ≤ i, j ≤ N. (2.78)

The weak statement for the surface elevation equation (2.70) is

1

Δt

∫
Γ1

Mi

(
ηn+1 − ηn

)
dΓ1 =

+

∫
Ω

∇Mi ·
(
u∗ − g (α∇ + β∇s)

(
ηn+1 − γηn

))
dΩ

−
∫

So

MiU
⊥
OB dSo. (2.79)

Its matrix form can be written as

(Mη + ΔtHi)Δη = Δt
(
GTu∗ − (1 − γ)Hiηn − OηU

⊥
OB

)
, (2.80)

where matrix Hi ≡ (
(H i)′

)
, to which the matrix entry is

(H i)′ij = g

∫
Ω

(α∇Mi · ∇Mj + β∇Mi · ∇sMj) dΩ,

for 1 ≤ i, j ≤ M. (2.81)

The matrix form of the last correction step (2.72) is

MuΔu = MuΔu∗ − gGi(ηn+1 − γηn). (2.82)

The procedure of solution remains the same as in the case of the explicit
temporal form, namely one first solves for u∗, then for elevation ηn+1, and
finally does the correction step to recover velocity field un+1 to satisfy the
vertically integrated continuity equation.

2.4.5 Boundary conditions on rigid walls

When no-slip boundary conditions are employed, the two components of the
horizontal velocity on rigid walls can simply be set to zero and no extra efforts
are required. But when free-slip boundary conditions are used, only the ve-
locity component normal to the boundaries should be set to zero. Therefore,
applying free-slip boundary conditions requires to transform the x and y (zonal
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and meridional) momentum equations to the tangential and normal (with re-
spect to the boundaries) momentum equations when rigid wall boundaries are
not aligned with the coordinate system.

Let Mu = R be the discrete momentum equation to be solved. To trans-
form this equation to the tangential and normal equation on rigid walls, we
simply pre-multiply the mass matrix and the rhs vector with a rotation matrix
R and then post-multiply the mass matrix by its transpose RT:(

RMRT
)
urot = RR, (2.83)

where urot ≡ (ut,un)T coincide with the tangential and normal directions,
R has a size of 2N × 2N. After taking this transformation, the no-normal-
flow boundary condition can be easily applied. Once urot is solved, it can be
converted to velocity along x and y directions for each boundary node i by(

ui
x

ui
y

)
=

( −ni
y ni

x

ni
x ni

y

)(
ui

t

ui
n

)
, (2.84)

where ni ≡ (ni
x, n

i
y) is the outward pointing unit normal vector at node i. The

2 × 2 orthogonal nodal rotation matrix for node i enters the whole rotation
matrix R and RT in the following way:

Rii = −ni
y, Ri,i+N = ni

x, Ri+N,i = ni
x, Ri+N,i+N = ni

y. (2.85)

Except for rows associated with boundary nodes, there is only a unity on the
diagonal of matrix R.

The mass consistent normal vector (Engelman et al., 1982) can be calcu-
lated by

ni =
1

ni

∫
Γ1

∇MidΓ1, where ni =

∣∣∣∣
∫

Γ1

∇MidΓ1

∣∣∣∣ . (2.86)

The integration is simply necessary on the surface mesh because only vertical

closed boundaries are treated as rigid walls.

2.5 Updating vertical velocity

After the horizontal velocity and surface elevation are solved at every time
step, the vertical velocity w can be diagnosed via (2.7). The solution of vertical
velocity is realized by introducing a new variable, as described in Danilov et al.
(2004). The original problem involves first order derivatives, which leads to
difficulties when using iterative solvers. To facilitate using them, a potential
Φ is introduced:

∂z∂zΦ = −∇ · un+1, where ∂zΦ = w. (2.87)

Now the problem with Φ as the variable is the second order one (with two
boundary conditions (2.8) and (2.9)), and its discrete equation involves a sym-
metric matrix which is much better suited to iterative solvers. In the following
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discussion we only consider the situation when the implicit form (section 2.4.4)
is used to solve for the horizontal velocity and surface elevation. The result
can easily be extended to the explicit case.

Since the two boundary conditions are both of the von Neumann type the
solvability conditions should be satisfied by the rhs of the discrete continuity
equation. To satisfy the solvability, two conditions should be met: first, the
vertically integrated continuity equation (elevation equation) and the conti-
nuity equation should be projected on consistent sets of test functions, that
is, they should satisfy relation (2.18); second, the velocity expression (2.72)
should be substituted into (2.87) before applying Galerkin discretization to it.
These points will be clarified later in this section.

Substituting (2.72) into (2.87) leads to

∂z∂zΦ = −∇ · u∗ + g∇ · (α∇ + β∇s)
(
ηn+1 − γηn

)
. (2.88)

The potential Φ is approximated as

Φ �
N∑

j=1

ΦjNj

Φ̄ = [Φ1, · · · , Φj, · · · , ΦN]T .

(2.89)

With the convention used before, the vector Φ̄ will be represented without the
overline later for brevity.

Weighting (2.88) by {Nj} and integrating it by parts over the domain one
gets

∫
Ω

∂zNi∂zΦ
n+1 dΩ = −

∫
Ω

∇Ni ·
(
u∗ − g (α∇ + β∇s)

(
ηn+1 − γηn

))
dΩ

+
1

Δt

∫
Γ1

Ni(η
n+1 − ηn) dΓ1 +

∫
Γ4

Niu
⊥
OB dΓ4, (2.90)

where the boundary conditions (2.8) and (2.9) have been enforced. The open
boundary velocity u⊥

OB is simply taken as velocity at open boundary nodes.
It satisfies the same transport conditions as those imposed when solving for
elevation. Substituting (2.89) into (2.90) leads to the matrix form:

MΦΦn+1 = −DΦu∗ + EΦ(ηn+1 − γηn) + SΦ(ηn+1 − ηn) + OΦu⊥
OB, (2.91)
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where

MΦ ≡ (M ′
Φ) , M ′

Φ,ij =

∫
Ω

∂zNi∂zNj dΩ, for 1 ≤ i, j ≤ N, (2.92)

DΦ ≡ (
D1

Φ D2
Φ

)
, Dq

Φ,ij =

∫
Ω

∂Ni

∂xq

Nj dΩ, for i ≤ i, j ≤ N; q=1,2, (2.93)

EΦ ≡ (E ′
Φ) , E ′

Φ,ij =

∫
Ω

g∇Ni · (α∇ + β∇s)Mj dΩ, (2.94)

for 1 ≤ i ≤ N, 1 ≤ j ≤ M,

SΦ ≡ (S ′
Φ) , S ′

Φ,ij =
1

Δt

∫
Γ1

NiMj dΓ1, for i, j on Γ1, (2.95)

OΦ ≡ (O′
Φ) , O′

Φ,ij =

∫
Γ4

NiNj dΓ4, for i, j on Γ4. (2.96)

The solvability condition for (2.91) requires that the sums of its right-
hand side over nodes aligned vertically be zero. If the solution for ηn+1 were
exact, this requirement would hold automatically. Indeed, by summing up the
equations in (2.90) that are associated with 3D nodes under a 2D node I, and
applying the relation (2.18), one gets

0 = −
∫

Ω

∇MI ·
(
u∗ − g (α∇ + β∇s)

(
ηn+1 − γηn

))
dΩ

+
1

Δt

∫
Γ1

MI(η
n+1 − ηn) dΓ1 +

∫
Γ4

MIu
⊥
OB dΓ4, (2.97)

which means that the solvability requirement is satisfied. As a result of con-
sistent discretization, equation (2.97) exactly recovers the discretized elevation
equation (2.79) because

∫
Γ4

MIu
⊥
OBdΓ4 =

∫
So

MIU
⊥
OBdSo is also enforced.

Now it is also clear why (2.88) instead of (2.87) should be used to de-
termine the vertical velocity: using (2.87) will not lead to consistent discrete
formulation for the continuity equation and the elevation equation.

Small errors can be present up to solver precision, so before solving (2.91)
its rhs is still summed over vertically aligned nodes and the residual is removed.

2.6 Solving tracer equations

2.6.1 Numerical advection schemes

Characteristic Galerkin scheme

The tracer evolution equation (2.10) can be solved with the CG method. The
semi-discrete equation is

Cn+1 − Cn

Δt
= −(v · ∇3C)n + ∇ · Kh∇Cn + ∂zKv∂zC

n

+
Δt

2
vn · ∇3(v · ∇3C)n, (2.98)
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which is an explicit scheme. Using the approximation (2.15) the matrix form
of (2.98) is given by

M′ΔC = −Δt(N′Cn + K′Cn) − Δt2

2
N′

sC
n + ΔtS′q, (2.99)

where q is the flux of tracer C on the surface (2.12) when the von Neumann
boundary condition is employed. It is linked to the heat flux for the temper-
ature equation and the freshwater flux for the salinity equation. The flux is
approximated here as

∑
qjMj. Note that the flux qj usually consists of two

contributions, one due to climatological fluxes and the other due to restoring
of surface temperature and salinity to climatological values. The entries to the
matrices in (2.99) are the same as defined before for the momentum equation,
except that the viscosity should be replaced with diffusivity in the diffusion
term.

Flux-corrected transport scheme

In many cases it is desirable that the advection scheme preserves monotonicity
to eliminate over- and undershoots. The FCT scheme based on explicit time
stepping can produce promising results with respect to both stabilization ef-
fects and computation efficiency (for a review on the history and development
of FCT schemes see Kuzmin et al., 2005). A variation to FCT, the pointwise-
corrected transport (PCT) scheme (Kuzmin, 2000) has been adopted by Kliem
(2004) into QUODDY (Lynch et al., 1996) and appears to be very useful. Al-
though PCT is less expensive than FCT, it does not prevent the formation
of local extremes entirely (Kliem, 2004). The classical FCT scheme following
Löhner et al. (1987) is adopted in the current model, since it works well for
transient problems and provides a compromise between the CPU cost and qual-
ity (Kuzmin, personal communication). It should be noted that the spectrum
of advection schemes possible with the FE method is very limited compared
to the FD method, there is a variety of schemes that can be conveniently used
in FD ocean models.

A brief summary for the implementation of the FCT scheme in the current
model is given below. The procedure can be formulated as a sequence of the
following operations:

1. Solve (2.99), which in this case is called a high-order scheme.

2. Perform mass matrix lumping (replace it with a diagonal matrix whose
entries are row sums of the original matrix) on the left-hand side and
add a discrete diffusion operator to the rhs of the high-order scheme to
transform it into a low-order non-oscillatory scheme. Solve the modified
equations to get the low-order solution.

3. Compute the antidiffusive flux contributed from each element to its
nodes.
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4. Limit the antidiffusive flux to guarantee local extremum diminishing. A
limiting factor for each element is calculated at this stage.

5. Update the solution by adding limited antidiffusive fluxes to the low-
order solution.

The FCT procedure starts from solving the CG formulation (2.99). For
simplicity we rewrite it in a compact form as

MΔC = R, (2.100)

where M denotes the mass matrix and R the sum of the rhs of (2.99).
In the first step (2.100) is solved to get the high-order solution:

MCΔCH = R, (2.101)

where MC is used to emphasize that the consistent mass matrix is used, and
ΔCH represents the increment of tracer solved by inverting the consistent mass
matrix.

To obtain a low-order method, one lumps the mass matrix and adds a mass
diffusion term into (2.100):

MLΔCL = R + ε(MC − ML)Cn, (2.102)

where ML is the lumped mass matrix, ε is an experimentally chosen parameter,
which controls the amount of added diffusion. The excess in diffusion will be
removed where possible, when antidiffusive fluxes are added back.

Rewriting the high-order equation (2.101) as

MLΔCH = R + (ML − MC)ΔCH , (2.103)

and subtracting (2.102) from it we get the difference between the high-order
and low-order solutions:

ΔCH − ΔCL = M−1
L (ML − MC)(ΔCH + εCn). (2.104)

It is the antidiffusive flux that makes the high-order solution different from the
low-order one. The antidiffusive flux contributed from the individual element
e to its node i can be denoted as

Fe,i = (M−1
L )i

∑
j

[
(ML − MC)e,ij (ΔCH + εCn)j

]
, (2.105)

where i and j are local indices of nodes of element e. Note that the matrix
entries are only the components from the considered element.

The next step is to limit the antidiffusive fluxes in each element. This
involves the following steps:
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(a) Find for every node i the admissible solution range by taking the maxi-
mum and minimum over all neighbor nodes of node i

C+
i = max{CL

k }, C−
i = min{CL

k }, k ∈ Nn,i, (2.106)

where Nn,i is the set of neighbor nodes of node i, and for simplicity max-
imum and minimum are denoted with ‘+’ and ‘-’, respectively. Löhner
et al. (1987) take the admissible range from two fields, both the new
low-order solution CL and the solution from the last time step Cn. But
Kuzmin and Turek (2002) pointed out that this could produce numeri-
cal ripples if advection is due to variable velocity field, so only the new
low-order solution is used here to get the maximum and minimum values.

(b) Compute the admissible increment for node i

Q±
i = C±

i − CL
i . (2.107)

(c) Compute the sum of all positive/negative antidiffusive element contribu-
tions to node i

P±
i =

∑
e

max
min

{0, Fe,i}, (2.108)

where the sum is over all elements that contribute to node i.

(d) Compute the nodal bounds for limiting factors:

R±
i =

{
min{1, Q±

i /P±
i } if P±

i 
= 0
0 if P±

i = 0
(2.109)

(e) Compute the limiting factors by

αe = min
i
{R+

i ( if Fe,i ≥ 0), R−
i ( if Fe,i < 0)}, (2.110)

where the minimum is sought for over nodes of element e.

After the limiting factors are calculated, the final solution for time level
n + 1 can be updated for each node i as

Cn+1
i = CL

i +
∑

e

αeFe,i, (2.111)

where the sum is over all elements that contribute to node i. Note that the
FCT method in the FE implementation is more expensive compared to the
FD implementation because of increased number of neighboring elements.
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Figure 2.4: Initial fields of the cosine cone (left) and cylindrical (right) distri-
bution used in the advection scheme tests.

Galerkin least-square method

Besides the CG method and FCT method, the GLS method employed in
Danilov et al. (2004) is also implemented in the current model. It is semi-
implicit and second-order in time. The details of its implementation will not
be repeated here. Testing the performance of different schemes is to be de-
scribed in the next subsection.

2.6.2 Testing advection schemes

The advection schemes are tested in a 2D domain. The pure advection equation
is solved, that is, there is no explicit diffusion applied in these tests. The model
domain is circular with a radius of 10 km, and the coordinate origin is at the
circle center. The velocity field is specified to make one rotation in 24 h:

u(x, y) =
2π

86400 sec
k × (x, y)T. (2.112)

Two different initial fields are used (Fig. 2.4). The first is a cosine cone
distribution with the maximum concentration of unity at the center, and the
second a cylindrical distribution with the concentration of unity. The radius
of both the cone and the cylinder is 2.5 km and their center is located at (5
km, 0 km). Initial concentration outside of the cone and cylinder is zero. Such
standard configurations are often used to test advection schemes (e.g., Kliem,
2004).

Two different resolutions are used in the simulations. The coarse resolution
is 250 m with 4834 nodes and 9439 elements, and the fine resolution is 125 m
with 19343 nodes and 38242 elements. The mesh elements are of high quality
(quite close to equilateral triangles). The resolution used in the current work
is defined as the height of the triangle. The time step is 150 s for the coarse
resolution case, and 60 s for the fine resolution case.
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All the simulations are performed for 24 h (one rotation), so the analyt-
ical solution is identical to the initial fields. The results are summarized in
Table 2.1, in which Cmax and Cmin are the maximum and minimum concentra-
tion after the simulations, and RMS is the root mean square of the difference
between the simulated concentration and the analytical solution. The con-
centration fields are shown in Figs. 2.5 and 2.6. In the FCT scheme, the ε
parameter in (2.102) is set to 0.5, which is found sufficient to give smooth
low-order solution and to fully eliminate overshoots and undershoots. The
stabilization coefficient for the GLS method is chosen following the analysis in
the appendix of Danilov et al. (2004).

For each scheme the RMS errors decrease with an increase in resolution.
Both the CG and GLS schemes produce overshoots and/or undershoots. The
CG scheme gives the largest range of tracer concentration associated with
largest overshoots and undershoots, while the GLS scheme has slightly larger
RMS errors. A wake can be observed in the CG solutions when resolution is
coarse or the gradient of fields is sharp, yet it is not clearly observed in the
GLS solutions. The FCT solutions are free of small-scale noise and under-
/overshoots.

The CG scheme works well in the case of rotating cones (Fig. 2.5a,b), pro-
ducing a maximum concentration very close to the analytical solution. Some
noise upstream of the cone exists because this scheme’s leading error (second-
order) is in form of dispersion. But explicit dissipation used in practical ap-
plications can suppress it, as it is weak in such situations. So the CG scheme
can be used when the field is relatively smooth.

Dispersion errors are not clearly observed both up- and downstream the
cone in the GLS runs (Fig. 2.5c,d). Using smaller stabilization coefficient in
the GLS scheme can reduce the implicit diffusion effects, but noise as observed
in the CG solutions will appear (not shown). The GLS method allows larger
time steps than the other two schemes, as it is semi-implicit.

Noise is fully eliminated in the FCT scheme simulations (Fig. 2.5e,f),
but the cone maximum is slightly reduced, especially at the coarse resolution.
Although the FCT scheme is more diffusive at coarse resolution, its advantage
of being monotonic is beneficial when limiting overshoots and undershoots is
crucial. One more advantage is that it can work stably even without any
explicit diffusion. Its permissible largest time step is found to be about 50%
more than that of the CG scheme.

The case of rotating cylinder serves to compare the performance of different
advection schemes when the tracer field is not smooth. It is clearly observed
that the FCT scheme gives much better results than others. Not only are the
extrema limited, but also the cylindrical shape is well represented in the FCT
simulations. The CG solution clearly has both overshoots above the cylinder
and a wake. Adding extra diffusion does not help to improve the solution in
this case, because it will diffuse the solution field too much to give a cone-
shaped distribution. The GLS scheme also produces large overshoots around
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Table 2.1: Summary of the advection test cases.

Δx(m) Δt(s) Scheme Cmax Cmin RMS

cone 250 150 CG 0.996 -0.027 0.006
FCT 0.928 0.000 0.006
GLS 0.996 -0.026 0.007

125 60 CG 0.999 -0.015 0.002
FCT 0.973 0.000 0.002
GLS 1.000 -0.014 0.003

cylinder 250 150 CG 1.125 -0.166 0.060
FCT 0.999 0.000 0.059
GLS 1.116 -0.073 0.064

125 60 CG 1.146 -0.157 0.045
FCT 1.000 0.000 0.044
GLS 1.096 -0.073 0.050

CG, characteristic Galerkin method; FCT, flux-corrected transport scheme;
GLS, Galerkin least-square method.

the edge of the cylinder, but dispersive noise up- and downstream the cylinder
is eliminated. It can be concluded that only the FCT scheme can accurately
represent fields with sharp gradients. By comparison with the results shown
in figure 5 of Kliem (2004), the FCT scheme has less implicit diffusion than
the PCT scheme.

The FCT and GLS schemes require similar CPU time, about 3 times that
required by the CG scheme (comparison based on one-processor runs). But
the GLS scheme is semi-implicit and allows to use larger time steps. Implicit
FCT scheme is not implemented in the current model, and studies on it are
left for future work. A scheme which can be recommended for any situation
does not exist, since one has to consider both accuracy and efficiency. Which
scheme to choose depends on applications and research interest.

2.6.3 Tracer conservation

The property of global tracer conservation can be seen by integrating the tracer
equation (2.10) over volume:∫

Ω

∂tC dΩ = −
∫

∂Ω

(vC) · n3 dΓ +

∫
Ω

C∇3 · v dΩ −
∫

Γ1

q dΓ, (2.113)

where integration by parts and the divergence theorem have been applied to
the advection term, thus leading to the first two integrals on the rhs. The
divergence theorem and the boundary conditions for tracers (2.12) and (2.13)
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(a) (b)

(c) (d)

(e) (f)

Figure 2.5: Tracer concentration after one rotation in case of cosine cone dis-
tribution for (a)(b) CG, (c)(d) GLS, (e)(f) FCT schemes. The left show the
results at 250 m resolution, and the right at 125 m resolution. All these schemes
represent smooth tracer fields well. Weak dispersion errors can be observed
in the CG solutions. The FCT scheme has slightly larger implicit diffusion,
especially at coarse resolution.

have been applied to the diffusion term, thus leading to the last integral.
Enforcing the boundary conditions (2.6), (2.8) and (2.9) and introducing the
continuity equation (2.7) to the above expression one gets∫

Ω

∂tC dΩ = −
∫

Γ1

C∂tη dΓ −
∫

Γ1

q dΓ, (2.114)
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Figure 2.6: Same as in Fig. 2.5 but for cases of cylinder distribution. Both
the CG and GLS solutions are featured with large overshoots around the edge
of the cylinder, but the CG solutions also show clear dispersion errors. The
FCT scheme is suitable for simulating tracer fields with sharp gradients.

provided that there is no open boundary. The Reynolds transport theorem
leads the first integral in the above expression to

∫
Ω

∂tC dΩ =
d

dt

∫
Ω

C dΩ −
∫

Γ1

C∂tη dΓ, (2.115)
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where the boundary condition w = ∂tη is used. Then one can rewrite (2.114)
as

d

dt

∫
Ω

C dΩ = −
∫

Γ1

q dΓ. (2.116)

So tracers are conserved provided that no tracer flux is supplied.

It is important to ensure that the discrete tracer equation (2.99) maintains
the property of global tracer conservation, especially when simulations are to
run over climatic timescales. Setting the test function Ni = 1 in (2.99) one
obtains ∫

Ω

ΔC dΩ = −Δt

∫
Ω

(u · ∇ + w∂z)C dΩ, (2.117)

where the diffusion and stabilization terms vanish because they contain deriva-
tives of Ni. The global tracer conservation can be guaranteed if the rhs integral
in (2.117) vanishes. This is ensured by a consistent discretization for tracer
and continuity equations.

Consistent discretization means: first, the test functions used in (2.90) and
the basis functions interpolating C in (2.117) are the same ({Ni}); second,
the velocities used to advect tracers in (2.117) are represented in the same
way as they appear in the continuity equation (2.90). Under such conditions,
combining (2.90) and (2.117) leads the rhs of (2.117) to be the surface integral
of wC plus the integral of the tracer flux through the open boundary. This is
the conservation law for a linear free surface model. The remaining advective
tracer flux through the ocean surface is the consequence of considering the
surface at z = 0 as the upper boundary. It disappears when the rigid lid
approximation is used, or if the change in the volume of the upper layer is
taken into account (nonlinear free surface).

As shown above, the stabilization terms in the tracer equation do not af-
fect the global tracer conservation property. It is the same when the GLS
stabilization method is used (Danilov et al., 2004) because the stabilization
term contains spatial derivatives of test functions. The FCT method does not
violate the tracer conservation either (Kuzmin et al., 2005).

Remark

To avoid using virtual salinity flux, moving the surface boundary to follow
the elevation η instead of fixing it to z = 0 is one useful strategy. The arbi-
trary Lagrangian Eulerian (ALE) formulation can be used to realize moving
model boundaries (see e.g., Farhat et al., 2001; Formaggia and Nobile, 2004;
Nithiarasu, 2005; Badia and Codina, 2006, also see White et al., 2007 for an
example of its application in ocean modelling). But the ALE formulation in-
volves re-computing Jacobians at every time step and requires more CPU time
when mesh geometry is updated.
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2.7 Full time-stepping algorithm

The full time-stepping algorithm is shown in Fig. 2.7. The dynamics and ther-
modynamics are staggered in time with a half time step. First, density and
hydrostatic pressure gradients are diagnosed from potential temperature and
salinity at time level n. Then, the dynamic variables u, v, and η are stepped
forward from time level n − 1/2 to time level n + 1/2 using the pressure pro-
jection (split) method. The vertical velocity is diagnosed from the horizontal
velocity. The last step is updating tracer fields from time level n to time level
n + 1 using the velocity field at time level n + 1/2. This algorithm allows in-
ternal gravity waves to leapfrog in time, thus giving more stability. If surface
forcing is applied, forcing data are read before each iteration step.

(n+1)Δ tΔ t(n+1/2)n Δ t(n−1/2)Δ t

u, v, η(n−1/2)

(n+1/2)η

(n+1/2)u, v

(n+1/2)w

T, S
n

u, v*

∇p

T, S
(n+1)

time

ρ

Figure 2.7: Schematic explanation of the overall time-stepping algorithm. The
prognostic processes are indicated with thick solid arrow-lines, and the diagnos-
tic processes are indicated with thin solid arrow-lines. The dash arrow-lines
present the connection between the dynamical and thermodynamical parts,
which are staggered in time.

2.8 Solution of linear equation systems

The stiffness matrix in the momentum equations (2.42), (2.60) and tracer
equation (2.99) in the case of explicit temporal forms reduces to only the mass
matrix. It can efficiently be inverted with an iterative procedure using the
lumped matrix as a pre-conditioner. Taking the tracer equation (2.100) as an
example, the solution can be approximated as M−1

L R in the first step. Then
the iterative procedure can be started by substituting it to the rhs of (2.103).
This solution process has been widely used (e.g., Löhner et al., 1987) because
it converges very rapidly. The iteration number can be determined by checking
the error norms, and a few iterations are usually sufficient.

When (semi-) implicit Coriolis and vertical viscous terms are employed, the
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final stiffness matrix after diagonalization in equation (2.73) contains contri-
bution from the vertical viscosity. Since the asymmetric component is usually
small in most regions of the ocean, this matrix problem is well suited to iter-
ative solvers.

To solve the surface elevation equation (2.56) the standard iterative solver
is used (Frickenhaus et al., 2005). This equation can be efficiently solved
because its stiffness matrix is symmetric and has only a dimension of surface
node number M.

2.9 Isoneutral diffusion and GM skew flux

As mentioned in the introduction, neutral physics is not naturally represented
in z coordinate models. So explicit treatment of neutral physics is required
in FEOM. This section is devoted to the implementation of the isoneutral
diffusion and GM skew flux.

Redi (1982) applied a straightforward rotation to the diffusion tensor to
allow z-level models to use physically realistic isoneutral diffusive fluxes. The
diffusion tensor based on the small slope approximation was given by Gent and
McWilliams (1990). Gent and McWilliams (1990) and Gent et al. (1995) sug-
gested a closure to represent the adiabatic stirring effects from ocean mesoscale
eddies. The stirring, which acts to reduce the isoneutral slopes and available
potential energy, can be parameterized by a divergence-free advective flux
(Gent et al., 1995), or by a skew flux (Griffies, 1998). The Redi diffusive flux
and GM skew flux contribute to the symmetric and antisymmetric components
of the SGS tracer transport operator, respectively. Some practical issues asso-
ciated with the implementation of the Redi/GM closures based on applications
in MOM are discussed by Griffies et al. (1998) and Griffies (1998).

2.9.1 Isoneutral diffusion

Fluid particles moving along neutral directions do not experience buoyancy
forces. Therefore, neutral directions are preferred and mesoscale eddies tend
to mix tracers along them. Analysis (e.g., Ledwell et al., 1993; Kunze and
Sanford, 1996) indicates that on large scales the dianeutral to neutral mixing
can be at the level of 10−8 in the interior of the ocean. This anisotropy can be
represented by ε, the ratio of the dianeutral to neutral diffusivities

ε = KD/KI ≈ 10−8, (2.118)

where KD and KI are the dianeutral and isoneutral diffusivities, respectively.

We rewrite the tracer equation (2.10) as

∂tC + v · ∇3C + ∇ · F = 0, (2.119)
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where the SGS Redi diffusive flux F is given by

F = −KRedi∇3C. (2.120)

The Redi diffusion tensor (Redi, 1982) is given by

KRedi =
KI

1 + S2

⎛
⎝ 1 + S2

y + εS2
x (ε − 1)SxSy (1 − ε)Sx

(ε − 1)SxSy 1 + S2
x + εS2

y (1 − ε)Sy

(1 − ε)Sx (1 − ε)Sy ε + S2

⎞
⎠ , (2.121)

where Sx and Sy are the x and y components of S, respectively, and S2 =
S2

x + S2
y .

The neutral slope is defined as

S ≡ ∇ρz

= −
(∇ρ

ρ,z

)

= −
(−α′∇T + β′∇S

−α′T,z + β′S,z

)
, (2.122)

where ∇ρ represents the lateral gradient taken along the neutral direction, and
α′ and β′ are thermal expansion and saline contraction coefficients. The nodal
values of α′ and β′ can be calculated at each time level following the method
given by McDougall (1987). The isoneutral slopes S are then calculated on
elements.

In the bulk of the ocean the neutral slopes |S| usually are less than 1/100,
thus a small slope assumption to the diffusion tensor (2.121) is usually adopted.
Under the small slope assumption, |S| << 1, the following approximation for
(2.121) is valid (Gent and McWilliams, 1990):

KRedi = KI

⎛
⎝ 1 0 Sx

0 1 Sy

Sx Sy ε + S2

⎞
⎠ . (2.123)

The horizontal and vertical components of the mixing flux under the small
slope approximation are then given by

F(h) = −KI∇ρC, (2.124)

F (z) = −KIS · ∇ρC − KDC,z, (2.125)

where

∇ρ = ∇ + S∂z (2.126)
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2.9.2 GM scheme

The GM scheme parameterizes the advective flux due to bolus velocity, v∗,
in addition to the model’s resolved scale velocity. The advective bolus flux
suggested by Gent and McWilliams (1990) and Gent et al. (1995) is in the
form of v∗C, where

v∗ = −∂z(κS) + ẑ∇ · (κS), (2.127)

which is non-divergent. Here κ stands for the skew diffusivity. Deriving the
bolus flux is based on an assumption: the mesoscale eddies, which modify
isopycnals so as to locally provide adiabatic sink of available potential energy,
also act on all tracers in the same fashion.

Discretization of bolus velocities involves derivatives of κ and S, which can
potentially lead to discretization errors. Griffies (1998) suggested a skew flux
form by separating the bolus flux as follows

v∗C =

⎛
⎝ −∂z(κSx)C

−∂z(κSy)C
(∂x(κSx) + ∂y(κSy))C

⎞
⎠ (2.128)

=

⎛
⎝ −∂z(κSxC)

−∂z(κSyC)
∂x(κSxC) + ∂y(κSyC)

⎞
⎠ +

⎛
⎝ κSxC,z

κSyC,z

−κSxC,x − κSyC,y

⎞
⎠

The first term is divergence-free and has no effect on the tracer field. So it is
only necessary to keep the second term, leading to the skew flux:

Fskew = κ (SC,z − ẑS · ∇C)

= −KGM∇3C, (2.129)

where

KGM = κ

⎛
⎝ 0 0 −Sx

0 0 −Sy

Sx Sy 0

⎞
⎠ (2.130)

The combination of GM skew flux (2.129) and diffusive mixing (2.124),
(2.125) leads to the full SGS flux:

F = −
⎛
⎝ KI 0 (KI − κ)Sx

0 KI (KI − κ)Sy

(KI + κ)Sx (KI + κ)Sy KD + KIS
2

⎞
⎠

⎛
⎝ C,x

C,y

C,z

⎞
⎠ , (2.131)

which gives the following flux components

F(h) = −KI∇C − (KI − κ)SC,z (2.132)

F (z) = −(KD + KIS
2)C,z − (KI + κ)S · ∇C. (2.133)

Note that the diffusion part remains exactly symmetric while the GM part
is exactly antisymmetric. In the case when KI = κ, the tensor entries (1,3)
and (2,3) of the tensor in (2.131) are simply zero. As a key practical result of
Griffies (1998), applying skew flux scheme does not introduce extra cost to the
existing Redi scheme, while the advective flux form (2.127) does.
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2.9.3 Tapering

The small slope approximation to isoneutral slope is typically used in z model
simulations. The tensor in (2.131), however, is not bounded as the neutral
slopes increase. Hence, numerical instability will be incurred when the slopes
are very steep. Such a situation typically occurs in the mixed layer, where
isopycnals are nearly vertical. The possibility of infinite slopes makes even
an implicit scheme numerically sensitive. In addition to numerical reasons for
tapering neutral physics schemes, there are also kinematic reason for applying
tapering near boundaries, as discussed in details by Griffies (2004). The study
by Gnanadesikan et al. (2007) suggests that not only the diffusivity associated
with the neutral physics closure, but also the details of tapering schemes can
influence simulation results in a climate model.

The slope clipping scheme of Cox (1987) has shown to be inappropriate
because of substantial spurious diffusion. The quadratic tapering scheme pro-
posed by Gerdes et al. (1991) is the first method aiming to preserve the neutral
orientation of the flux regardless of the slopes. More details of the work dis-
cussed here are studied by Griffies (2004). The following schemes have been
implemented in FEOM.

Scheme I: DM95

The tapering scheme used by Danabasoglu and McWilliams (1995) is similar
to that of Gerdes et al. (1991) but uses a hyperbolic tangent tapering function

f1(S) = 1 + tanh(
Smax − |S|

Sd

), (2.134)

where Sd = 0.001 is the scale of the width of the transition region, and Smax =
0.01 is the cut-off slope. This tapering function f1 is inserted in front of the
whole GM/Redi tensor in (2.131) with only the KD term unaffected. So the
diagonal neutral part in tensor element (3,3) can also be exponentially tapered
to zero.

Scheme II: Large97

Based on the DM95 tapering scheme, Large et al. (1997) suggested to use a
function of depth d additional to f1:

f2(S) =

(
1 + sin π(

d

λ1|S| − 1/2)

)
/2 (2.135)

where the first baroclinic Rossby radius is given by λ1 = c1/f , with f the Cori-
olis parameter and c1 = 2 m/s an approximate first baroclinic gravity wave
speed. To handle the singularity at the equator, Large et al. (1997) restrict λ1

to the range 15 km ≤ λ1 ≤ 100 km. This tapering was originally introduced
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to fix some spurious interaction with the mixed-layer KPP parameterization.
Based on discussions by Treguier et al. (1997); Held and Schneider (1999); Mc-
Dougall and McIntosh (2001), Griffies (2004) addressed the kinematic reason
for adopting this tapering function: undulating density surfaces can outcrop
or incrop, at which point their effects on transport are truncated.

Scheme III: Griffies’ proposals

Motivated by the studies of Treguier et al. (1997); Held and Schneider (1999);
Send and Marshall (1995); Visbeck et al. (1996); Haine and Marshall (1998),
Griffies (2004) proposed that it is appropriate to maintain a nontrivial param-
eterized horizontal advective and diffusive transport near boundaries and/or
in steep neutral slope regions. For the diffusive flux, no taper is applied to the
diagonal diffusive terms, the tensor elements (1,1) and (2,2) in (2.131), thus
maintaining a nontrivial downgradient horizontal component to the flux. In
regions where isoneutral slopes are steep, the resulting tracer diffusion is ori-
ented in a horizontal-vertical manner. For the GM flux, a nontrivial GM flux
in steep neutral slope regions is maintained through a linear tapering scheme
(Treguier et al., 1997; Greatbatch and Li, 2000). That is, if a grid point is
within the surface boundary layer, defined as the near surface region where
isoneutral slopes are steeper than Smax, let κS linearly move from its satu-
rated value (κS)max at the base of the boundary layer, to zero at the top of
the surface grid cell. More practical tests are required for this tapering scheme.

2.9.4 Numerical implementation

Substituting (2.132) and (2.133) into (2.119) and taking the CG method lead
to the matrix equation as given by (2.99), with the matrix K′ now defined as

K ′
ij =

∫
Ω

( KI∇Ni · ∇Nj + (KI − κ)∂zNiS · ∇Nj (2.136)

+ (KD + KIS
2)∂zNi∂zNj + (KI + κ)S · ∇Ni∂zNj ) dΩ,

where one of the tapering schemes listed above should be applied at the appro-
priate place. Because of the intrinsic property of the FE method (variational
formulation), the implementation of isoneutral diffusion in a FE model does
not require extra efforts to ensure down-gradient diffusive fluxes as required in
a FD model (for example, the functional formalism discussed by Griffies et al.,
1998). But using the last expression in (2.122) to compute the neutral slope
in order to ensure the balance of the active tracer isoneutral diffusive fluxes is
generally required (Griffies et al., 1998).

Remark

It is worth mentioning that along-σ diffusivity/viscosity is similarly realized
using the rotation tensor (2.121) with the isoneutral slope replaced by the slope
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of σ grids. In reality the slope of σ grids can be large, therefore the small-slope
approximation should not be applied in this case.

2.10 Calculating pressure gradient forces

2.10.1 An interpolation method

As mentioned previously, the problem of pressure gradient errors is common
in FE models employing meshes that deviate from z-levels. One approach
to reduce the pressure gradient errors in FE models is to use basis functions
with which the hydrostatic relation (2.3) can be exactly approximated. This
approach means that the order of basis functions for pressure and velocity
should be higher than that used by us, which can lead to a more complicated
and less efficient model scheme. Therefore, the method discussed here is based
on linear basis functions used in our model.

The equations for ∂p/∂x and ∂p/∂y can be obtained by differencing (2.3):

∂

∂z

(
∂p

∂x

)
= −g

∂ρ

∂x
,

∂

∂z

(
∂p

∂y

)
= −g

∂ρ

∂y
. (2.137)

The required baroclinic pressure force in the momentum equation is calculated
by integrating (2.137) down from z = 0:

1

ρ0

∂p

∂x
=

g

ρ0

∫ 0

z

∂ρ

∂x
dz′,

1

ρ0

∂p

∂y
=

g

ρ0

∫ 0

z

∂ρ

∂y
dz′, (2.138)

where the boundary conditions ∂p/∂x = 0 and ∂p/∂y = 0 at z = 0 are em-
ployed. Here the sequence of integration and differentiation is exchanged. This
method, often referred as density Jacobian, results in more accurate schemes
than first solving p and then taking horizontal derivatives (Song, 1998; Song
and Wright, 1998), and is now widely used in σ coordinate ocean models. It
is easy to see its advantage: the error of pressure gradient vanishes if density
ρ is a linear function of z and the first order polynomial is used as the basis
function for density. When the density is not the linear function of z, which is
usually the case in realistic oceanographic applications, using first order basis
function will still cause pressure gradient errors. To overcome this problem,
we will use a pressure gradient force scheme based on nonlocal cubic spline
interpolation and the FD method.

Although in the horizontal direction there are no definite aligning direc-
tions of grid nodes due to unstructured surface meshes, the grid nodes are
aligned vertically in our model. Therefore, the one dimensional high order in-
terpolation can easily be taken in the vertical direction, whereas a much more
complicated scheme would be required for a fully unstructured grid. Note that
interpolation methods can be more flexibly applied in FD models which use
structured surface grids. An example is the method proposed by Shchepetkin
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Z
c

Figure 2.8: Explanation of calculating pressure gradient forces. Only one
vertical face of a prism element is shown, indicated with solid lines.

and McWilliams (2003), which employs the cubic spline interpolation method
under the framework of the pseudo flux form of the density Jacobian.

The nonlocal interpolation method is explained in Fig. 2.8. Along each
vertical edge of the prism, the density is interpolated (cubic spline interpola-
tion) to the common level zc, which is chosen to be at the midlevel of the prism.
When the applied horizontal resolution is not very fine and the bottom slope is
very steep, one may need to extrapolate the density for the bottom elements,
linear extrapolation is used in such cases. Then the three interpolated density
values on the three vertical edges of a prism are differenced horizontally. This
density gradient is considered as an elementwise constant value. Finally, the
pressure gradient forces can be calculated with (2.138) using the FD method.

For each grid node the pressure gradient force is calculated separately in
all prisms sharing it as a vertex. Therefore, a set of discontinuous piecewise-
linear basis functions {Qk} is required to project the pressure gradient forces.
Within elements these functions take the same spatial form as the continuous
functions {Ni}. However, whereas functions {Ni} are continuous and non-zero
in all prisms that have node i as one of their vertices, the discontinuous basis
functions {Qk} are defined such that they are non-zero inside only one prism.
For each continuous basis function Ni, the number of associated discontinuous
functions is the number of prisms that have node i as one of their vertices.
The total number of discontinuous functions is denoted by Q.

Using {Qk}, the hydrostatic pressure gradient forces can be approximated
as (

1

ρ0

∂p

∂x
,

1

ρ0

∂p

∂y

)T

=

Q∑
k

Qk(Pxk,Pyk)
T , (2.139)

where Px and Py are the x and y components of pressure gradient forces
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computed through equation (2.138), respectively. Each of them has a length
of Q. Then the hydrostatic pressure gradient term in the discrete momentum
equation (2.42) takes the form CP, where P ≡ (Px, Py)T , and

C ≡
(

C ′ 0
0 C ′

)
, C ′

ik =

∫
Ω

NiQkdΩ, for 1 ≤ i ≤ N, 1 ≤ k ≤ Q. (2.140)

A reference method for comparisons

To see the improvement in calculating pressure gradients with respect to ac-
curacy provided by the suggested method, a comparison between it and a
reference method is to be taken in the next section. As such the discontinu-
ous Galerkin method used by Ford et al. (2004a) in their hydrostatic pressure
solver is selected here. The discontinuous Galerkin representation of (2.137) is∫

E

[Qk∂zP − QkD] dΩE +

∫
{ΓE :k·n>0}

Qkk · n(Pin − P) dΓE = 0, (2.141)

where P ≡ 1/ρ0(∂p/∂x, ∂p/∂y)T , D ≡ g/ρ0(∂ρ/∂x, ∂ρ/∂y)T , k denotes the
vertical unit vector as defined before. The second integration on the lhs rep-
resents the weakly imposed inflow boundary conditions (i.e., information from
neighboring elements flowing in). The surface integration is restricted to the
part on which k ·n > 0, which should be the upper face of each prism element
in FEOM. On these boundaries, the value from the neighboring prism, denoted
by Pin, is imposed. Substituting the discontinuous approximation (2.139) into
(2.141) one gets the discretized equation for pressure gradient forces.

2.10.2 Experiments on pressure gradient errors

We take the popular seamount problem setup similar to that used by Beckmann
and Haidvogel (1993) to compare the performance of the two pressure gradient
force calculation methods described above. The bottom topography of the
domain is defined as:

h(x, y) = H{1 − δexp[−(x2 + y2)/L2]} (2.142)

where H = 4500 m is the depth away from the seamount, L = 25 km repre-
sents the horizontal length scale of the seamount, and δ defines the fractional
height of the seamount. Two configurations, one with δ = 0.9 and another
with δ = 0.6 are used as ‘very steep’ and ‘moderately steep’ cases, respec-
tively. The origin of the (x, y) coordinates is at the center of the domain. The
model domain is 512× 512 km wide bounded with rigid walls. An f -plane ap-
proximation is made with Coriolis frequency 10−4 s−1. The initial temperature
profile is defined by

T (z) = 5 + 15 exp(z/1000 m), (2.143)
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and salinity is set to 35 psu. The initial density depends only on the vertical
coordinate z and the flow is initially quiescent, so any motion developed with
time should be considered as due to numerical errors. In order to estimate the
performance of the pressure gradient force calculation methods, a background
density profile is not subtracted here, although the background subtraction
method is a practical choice in real applications. The model was run for 5
days with a time step of 10 minutes. It was found that analyzing simulation
results over longer time intervals does not change the qualitative conclusions
drawn below.
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Figure 2.9: Time histories of maximum velocity (top) and kinetic energy (bot-
tom) for the reference method (left) and nonlocal interpolation method (right)
in the very steep seamount case (δ = 0.9). Solutions for four different resolu-
tion combinations are shown. The kinetic energy is shown with a logarithmic
scale.

Comparison between different methods

In the first set of experiments, solutions with different horizontal and vertical
resolutions are obtained using the σ grid. Two horizontal resolutions (8 km
and 3 km) and two vertical resolutions (12 and 24 equally spaced levels) are
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Figure 2.10: Same as Fig. 2.9 but for the moderately steep seamount case
(δ = 0.6). The kinetic energy is shown with a logarithmic scale. Notice that
the limits of the vertical coordinate in velocity plots are not the same.

used. Both horizontal viscosity and diffusivity are set to 100 m2 s−1. Vertical
viscosity and diffusivity are set to zero.

The time histories of maximum velocity and kinetic energy for the very
steep and moderately steep cases are shown in Fig. 2.9 and Fig. 2.10, re-
spectively. In both the very steep and moderately steep cases, the nonlocal
interpolation method shows improved accuracy to the reference method at dif-
ferent resolutions with respect to both maximum velocity and kinetic energy.
In the very steep case, the maximum velocity from the reference method is
about 150% of that from the nonlocal interpolation method at the lowest reso-
lution and more than 200% at the highest resolution. The kinetic energy from
the reference method is about one order of magnitude higher than that from
the nonlocal interpolation method at different resolutions.

The pressure gradient errors are reduced for both approaches when the
seamount is lower. In the moderately steep case the nonlocal interpolation
method shows much higher accuracy than the reference method. In this case,
the maximum velocity from the reference method is about eight times higher
than that from the nonlocal interpolation method at both the highest and
lowest resolution, and kinetic energy is about two orders of magnitude higher
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Figure 2.11: Sensitivity of maximum velocity (left) and kinetic energy (right)
to horizontal viscosity and diffusivity. The solid lines show the relations at
fixed diffusivity to viscosity ratios, and the dash lines show the the relations
at fixed diffusivity values.

at different resolutions. By comparison between these two methods, it is clearly
seen that the accuracy is dramatically improved when the nonlocal cubic spline
interpolation method is employed.

Comparing our results with those of Ezer et al. (2002) shows that using
the interpolation method one generally obtains model accuracy at the level of
up-to-date approaches used with FD models. Note again that this interpo-
lation method is only possible on grids in which 3D nodes are generated by
dropping vertical lines from surface nodes down to the bottom. For a fully
3D unstructured grid more complicated schemes are required. The reference
method (Ford et al., 2004a) used here can also be applied on fully unstructured
grids, although its accuracy is lower than the nonlocal interpolation method
as illustrated above.

Sensitivity to resolution and dissipation

The sensitivity of errors to resolution when using the nonlocal interpolation
method can also be seen in Figs. 2.9 and 2.10. Although in both seamount
configurations the errors decrease with increased resolution, horizontal and
vertical resolutions play different roles in different situations. In the very steep
case, the accuracy is more sensitive to horizontal resolution, whereas in the
moderately steep case it is more sensitive to vertical resolution. Doubling
the vertical resolution only slightly increases the accuracy in the former case,
whereas in the latter case it reduces the errors by about 40% and one order of
magnitude with respect to maximum velocity and kinetic energy, respectively.
Increasing the horizontal resolution from 8 km to 3 km reduces the maximum
velocity to about one fifth and the kinetic energy by one order of magnitude in
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Figure 2.12: Time histories of kinetic energy for different grids in the very steep
seamount case. Viscosity is 100 m2 s−1 and diffusivity is 25 m2 s−1. Horizontal
resolution is 3 km. Cases with 12 vertical levels are plotted with solid lines
and cases with 24 vertical level with dotted lines.

the former case, whereas it keeps the accuracy almost unchanged in the latter
case. In both cases, increasing horizontal and vertical resolution together can
most efficiently increase model accuracy.

The sensitivity of spurious velocity and kinetic energy to the value of the
horizontal viscosity and diffusivity is displayed in Fig. 2.11. The solutions
are taken after five days simulations on a σ-grid with horizontal resolution of
8 km and twelve active levels in the vertical. Only a range of viscosity and
diffusivity commonly used at this resolution is studied. For each fixed viscosity
an increase in horizontal diffusivity results in an increase in numerical errors
with respect to both erroneous velocity and kinetic energy. When the ratio of
horizontal diffusivity to viscosity is fixed, maximum spurious velocity decreases
when viscosity is increased, whereas kinetic energy increases. However, at
fixed diffusivity an increase in horizontal viscosity leads to a decrease in both
maximum velocity and kinetic energy. And at lower viscosity a relatively
stronger sensitivity is observed. The opposite effects of horizontal viscosity
and diffusivity on accuracy in this range of values are consistent with the
finding by Mellor et al. (1998).

Errors on different grids

Pressure gradient errors are a long standing problem in σ grid models and
cannot be eliminated with the up-to-date techniques as demonstrated above
and in previous studies (Ezer et al., 2002; Shchepetkin and McWilliams, 2003).
With the recently improved techniques the errors can only be reduced to some
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level which can be acceptable in some specific applications.
There are pressure gradient errors in all layers on a σ grid. Compared to

the pure σ grid, the z + σ grid has only sources of pressure gradient errors in
elements where σ levels are used. The (partly) shaved cell grid has pressure
gradient errors only within the bottom shaved elements. This is similar to the
situation with partial cell grid in GFDL MOM (Pacanowski and Gnanadesikan,
1998). Fig. 2.12 shows time histories of kinetic energy on different grids. The
less sigma levels are used, the smaller the spurious kinetic energy. On the
partly shaved cell grid the kinetic energy is one order of magnitude smaller
than on the σ grid. The partly shaved cell grid shows very strong sensitivity
to vertical resolution.

Although the spurious kinetic energy is dramatically reduced with less σ
layers used, the erroneous maximum velocity does not necessarily so. This is
because errors from the calculation of density gradients are not reduced in the
individual elements of employed σ or shaved layers.

The comparison between the performance of different grids with respect to
pressure gradient errors provides some basic ideas that we should keep in mind
when we choose vertical grids in real applications.

Remark

In the above tests the CG advection scheme is used. As illustrated in section
2.6.2 different schemes can have different accuracy in approximating solution
fields. The implicit diffusion and/or the property of monotonicity associated
with a specific scheme can influence the quantitative results given above. The
CG scheme is less able to constrain maximum/minimum among the schemes
available in FEOM and was therefore selected.

2.11 Summary

The main principles of the FEOM code which works with prismatic elements
are presented. The implementation of the CBS method in the dynamical part
is explained. This method provides stabilization for advection and surface
elevation modes, resulting in robust code performance. A key element in this
method is the presence of tunable parameter γ. It controls the strength of
stabilization of pressure modes and allows to keep the numerical dissipation of
the algorithm on a relatively low level.

The space of functions selected for tracer fields defines the possible selection
of advection schemes. We described the CG method and its FCT variant.
Comparison of the advection schemes shows that the FCT scheme is generally
more robust. The implementation of the rotated Redi diffusivity tensor and
GM skew flux is also described.

One important feature of the code is its support for different vertical dis-
cretization. It is based on two issues. The first one is the nonlocal interpolation
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algorithm to compute pressure gradient forces. It is shown that the algorithm
leads to relatively small errors comparable to those of FD σ models. The
second one is to treat irregular elements especially when there are coalesced
nodes.

The essential part of the new version FEOM, including the support for
different vertical discretization and the selection and design of numerical algo-
rithms, was implemented and tested by the author.



Chapter 3

Flow over an isolated seamount

A flow past a seamount in a rotating channel represents a standard test bed for
studying the performance of models with respect to their skill in representing
the topography. Eddy formation and shedding observed under some particular
conditions (Chapman and Haidvogel, 1992) is the consequence of topography-
induced dynamics. Internal lee waves can be generated by the seamount in
some situation (Chapman and Haidvogel, 1993). By simulating these processes
the performance of different vertical discretization is studied here.

3.1 Background

When a flow is applied to a rotating channel with a seamount at the cen-
ter, eddy formation, eddy trapping and eddy shedding can be observed under
some particular conditions (Chapman and Haidvogel, 1992). Under some set of
physical parameters two eddies form over the seamount when a flow is impul-
sively started. One of them is swept downstream as a cyclonic vortex, leaving
another trapped over the seamount to form a Taylor cap.

Besides the influence of background stratification, seamount height and
the inflow strength in terms of the Rossby number, the impact of internal lee
waves on Taylor caps was also studied by Chapman and Haidvogel (1992). The
conditions influencing the generation of internal lee waves were further investi-
gated in Chapman and Haidvogel (1993). When the speed of background flow
is not sufficient to support internal lee waves away from the seamount, large-
amplitude lee waves can still form owing to a large local acceleration of the
flow by nonlinear advection of momentum in the existence of the seamount.
These waves are trapped over the flank of the seamount where the local accel-
eration occurs, weaken in the downstream direction, and can finally be quickly
dissipated by subgrid scale mixing.

The seamount configuration was taken by Adcroft et al. (1997) in studying
the performance of their shaved cell algorithm. The eddy formation and shed-
ding processes were better reproduced when topography was represented with
shaved cells than with full cells. Ford et al. (2004b) employed this experimental

59
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setup as a validation for their nonhydrostatic FE model (ICOM, Ford et al.,
2004a). They carried out model intercomparisons and examined the model
sensitivity to resolution. The collection of works based on the seamount ge-
ometry provides a reference, upon which a qualitative intercomparison with
results from the current work can be made.

It is desirable for ocean models to be capable of faithfully simulating phys-
ical processes induced by seamount topography. One of the climate relevant
phenomena that could be tightly related with the impact of seamount topog-
raphy is the formation of Weddell Polynya. Although consensus has not yet
been reached concerning the dominant mechanism responsible for observed ice
thinning in the vicinity of the Maud Rise, many studies indicate that topog-
raphy induced effects play an important role. The study of Holland (2001a,b)
suggests that the cyclonic eddy shed off the Maud Rise be the dynamical origin
of the formation of Weddell Polynya. Beckmann et al. (2001) argued that the
tidal amplification owing to the seamount can lead to polynya formation.

Besides the task of studying the performance of several types of vertical
discretization available in FEOM, our goal in this and subsequent sections is
also to demonstrate the model’s overall skill.

3.2 Model setup

A Gaussian seamount was placed at the center of a zonally re-entrant channel
of width and length equal to 512 km. The bottom topography of the domain
is defined by equation (2.142), with H = 4500 m and L = 25 km. The
(x, y) coordinates are referenced to the center of the domain. Two different
seamount fractional height δ are used. It is 0.9 in the simulation of eddy
formation and shedding by impulsively applied barotropic flow, and 0.5 in the
simulation of internal lee waves. An f -plane approximation is made with the
Coriolis parameter equal to 10−4 s−1. The applied flow is characterized by two
nondimensional numbers, the Rossby number

Ro ≡ U

fL
, (3.1)

and the Burger number

Bu ≡ NH

fL
, (3.2)

where U is the initial barotropic (uniform) flow velocity and N the buoyancy
frequency. The initial temperature field is linearly stratified (constant N)
and the linear equation of state is used. The periodic boundary condition is
augmented by a narrow restoring zone of 50 km with a restoring timescale of
1 h. The sponge zone is far enough from the seamount and does not influence
the physics around the seamount. Yet it supplies sufficient force to balance
the decelerating form drag exerted by the seamount.
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The horizontal resolution of the meshes is 3 km above the seamount, and
then increases to about 8 km at the boundary. There are twelve equally spaced
vertical layers in the σ grid. In the z-level grids, twelve active levels in the
vertical are used, the level thickness of which is 375 m except in the bottom-
most shaved elements when they are used. Two σ layers are employed when
generating the z + σ grid, in which the thickness of the σ layers is set close to
that in the σ grid with slight adjustment when needed. The surface mesh in
the fully shaved cell grid is adjusted to enable a fully piecewise linear smooth
bottom representation, but the resolution is maintained as close as possible
to that in other grids. The resolution used in this set of simulations was cho-
sen such that the physical process can be properly simulated according to the
sensitivity study of Ford et al. (2004b).

Diffusivity and viscosity are 25 m2 s−1 and 100 m2 s−1, respectively. The
current work and the study of Ford et al. (2004b) applied the Laplacian dissipa-
tion, whereas in most other references the fourth order operator for horizontal
mixing has been used. The advection scheme used here, the Characteristic
Galerkin method, is different from that used in other studies too. Due to all
the differences in numerics, it is only possible to make qualitative compari-
son between different models. The purpose of this work is to investigate the
effect of vertical grids, so the influence of physical parameters as studied by
Chapman and Haidvogel (1992, 1993) is not addressed here.

3.3 Eddy formation and shedding

Burger number Bu = 1.5 and Rossby number Ro = 0.1 are used in the first set
of experiments following the studies cited above. When a barotropic flow is
impulsively applied to this domain, an anticyclonic and a cyclonic eddies are
formed, the latter of which is to be shed off the seamount in the downstream
direction as time proceeds. A simulation with the sigma grid is made first
as a reference experiment. The density field at the depth of 4000 m and
the vertically integrated relative vorticity ζ̂/f in the σ grid simulation are
presented in Fig. 3.1 and Fig. 3.2, respectively.

The process of eddy formation, shedding and advection is well modeled
in the σ grid. There is a positive density anomaly around the seamount and
a negative density anomaly downstream, the former is associated with the
anticyclonic eddy, and the latter is associated with the cyclonic vorticity. The
eddy shedding can be seen clearly from the fourth day. As the cyclonic eddy is
advected downstream, a tail of cyclonic vorticity between the seamount and the
cyclonic eddy is formed. There is a good qualitative agreement to the results
by Ford et al. (2004b) with respect to these features. There is quantitative
difference in the magnitude of relative vorticity from the results in Adcroft
et al. (1997). This can be partly attributed to the difference in numerics (i.e.,
the dissipation and advection schemes) between FEOM and MITgcm. It thus
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emphasizes the necessity of using a model with the same numerics to isolate
the effect of topography representation.

Figure 3.1: Density anomaly at the depth of 4000 m after 2, 4, 6, 8, 10,
and 12 days in the σ grid simulation. The region of model domain shown is
−64 km ≤ x ≤ 256 km, −128 km ≤ y ≤ 96 km.

The density and relative vorticity fields from the z + σ, full cell, partly
shaved cell, and fully shaved cell grid simulations are shown in Figs. 3.3
and 3.4, respectively. All these approaches manage to model the process of
eddy formation, shedding and advection to some extent. Among these four
approaches, the full cell z-level simulation has the most significant difference
to the sigma simulation, while the others differ from the σ simulation only in
some details.

The full cell z-level solution features a lot of small scale noise in the vicinity
of the seamount in both the density and relative vorticity fields due to the
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Figure 3.2: Nondimensional vertically integrated relative vorticity ζ̂/f after 2,
4, 6, 8, 10, and 12 days in the σ grid simulation. Contour interval is 100. The
domain shown is the same as in Fig. 3.1.

discontinuities in representing the bathymetry. This can be a more serious issue
because unstructured triangular surface meshes are used and hence multiple
zig-zag features are created in the three dimensional view. The downstream
advection of the cyclonic eddy with time is weaker than on the other grids,
and a stronger downstream stretching of the anticyclonic eddy is simulated.
The artificial wide cyclonic vorticity positioned off the northeastern flank of
the seamount in the full cell z-level simulation in Adcroft et al. (1997) is
not observed here. Instead, there are only some small cyclonic eddy spots
at the inflow side. Another simulation on the full cell grid with increased
horizontal resolution indicates that the model performance is not improved at
all (not shown). The explanation for this is that the model topography does
not converge to the Gaussian seamount at fixed vertical resolution, see Fig.
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Figure 3.3: Density anomaly at the depth of 4000 m after 4 (left) and 10
(right) days in the (top to bottom) z + σ, full cell, partly shaved cell, and
fully shaved cell grid simulations. The domain and colorbar are the same as
in Fig. 3.1. The full cell case shows the strongest deviation from other types
of grids. Except for the full cell grid, all other grids represent the process of
eddy formation and shedding properly.
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Figure 3.4: Nondimensional vertically integrated relative vorticity ζ̂/f after 4
(left) and 10 (right) days in the (top to bottom) z + σ, full cell, partly shaved
cell, and fully shaved cell simulations. Contour interval is 100. The domain
shown is the same as in Fig. 3.1. The z + σ results agree well with the σ
results even in a quantitative sense. The full cell grid produces a lot of small-
scale perturbations above the seamount, and the shape of both the cyclonic
and anticyclonic vortices is clearly different from those on other grids. The
(negative and positive) magnitude of the relative vorticity is similar on the
partly and fully shaved cell grids, and is larger than on the σ and z + σ grids
by about 100.
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1.4 and the discussion in Adcroft et al. (1997).

The z + σ grid solution follows the σ simulations in almost all details
quantitatively. The major visible difference is the slightly larger downstream
side extension of the anticyclonic eddy. The partly shaved cell grid reproduces
a very similar solution. By comparison with the full cell z-level approach,
the model performance is considerably improved in this case. However, there
are still some slightly unsmooth features in the relative vorticity field above
the seamount due to preserved stepwise representation in some regions of very
steep topography. There is about a value of one contour interval difference in
the magnitude of the anticyclonic and the tail of cyclonic vorticity between the
partly shaved cell grid and sigma grid. This can be attributed to the difference
in their local vertical resolution in the vicinity of the seamount.

The model performance can further be improved when we adjust surface
triangle meshes to fully eliminate stepwise representation of the topography.
Small scale noise is absent in this case, yet the magnitude of the anticyclonic
vorticity and the tail part of the cyclonic vorticity is quite similar to that of
the partly shaved cell solution. This is because they have similar local vertical
resolution, which is different from in the σ and z + σ cases.

In order to look at the details of the effects of vertical grids, we take the
density field at the depth of 400 m. The density anomaly at this depth due to
the steering effect of the topography at the initial transient response stage is
only in the vicinity of the seamount, therefore, the difference between different
vertical discretization can be demonstrated more clearly. The Burger number
Bu = 1.0 is now used in this set of experiments to match prior studies. Fig. 3.5
shows the density field at the depth of 400 m after 1 and 2 days simulation. The
vortex pair on the seamount is well modeled. By comparison with the solution
fields of Chapman and Haidvogel (1992) and Ford et al. (2004b), there is a
quite good qualitative agreement between different models. Quantitatively, the
range of values of density at this depth also agrees with previous studies. The
density anomaly ranges between −0.0071 and 0.0305 kg m−3 in the current
simulation, which is quite close to the range of 0.0350 kg m−3 in the study of
Ford et al. (2004b). Comparing with the solution fields in Ford et al. (2004b),
the difference caused by hydrostatic approximation adopted in our model is not
obvious in this experiment configuration. It can be concluded that the current
simulation with σ grid agrees with previous studies despite the differences in
numerics and dissipation parameters.

Fig. 3.5 also shows the simulation with the z + σ grid. It produces most
features of the sigma results, because the local resolution in the vicinity of
the seamount top is the same in both types of grids. There is only a small
shift in the range of density distribution, which is −0.0068 to 0.0324 kg m−3

in the z + σ simulation. The density fields from other approaches are shown
in Fig. 3.6. The full cell z-level grid is the least successful in resembling the
sigma simulation, due to its discontinuous representation of the topography.
Although it also manages to model the double eddy feature, the range of the
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z + σ
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Figure 3.5: Density anomaly at the depth of 400 m after 1 (left) and 2 (right)
days in the σ grid (top) and z + σ (bottom) simulation. The region of the
model domain shown here is −96 km ≤ x ≤ 96 km, −96 km ≤ y ≤ 96 km.
The solutions on the pure σ grid and on the z +σ grid are very similar to each
other.

density anomaly, from −0.0072 to 0.0127 kg m−3, is much smaller than that
in the σ simulation. The results from partly and fully shaved cell grids are
quite similar to each other in a quantitative sense. Their density anomalies
range from −0.0078 to 0.0245 kg m−3 and from −0.0072 to 0.0247 kg m−3,
respectively. Both approaches lead to more reasonable values than the full cell
approach.

When looking at the details of eddy patterns, the improvement to the
partly shaved cell grid by employing fully shaved cell grid is clear: the small
scale noise presented in the partly shaved cell solution disappears because there
is no more discontinuities in the presentation of bathymetry. The remaining
quantitative difference between the σ approach and the shaved cell approach
is mainly due to the difference in the local vertical resolution.
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Figure 3.6: Density anomaly at the depth of 400 m after 1 (left) and 2 (right)
days in the (top to bottom) full cell, partly shaved cell, and fully shaved cell
simulations. The domain shown is the same as in Fig. 3.5. The full cell grid
produces a much smaller positive density anomaly. Results on the full cell grid
deviate from the σ solution more than on other grids. The solutions on the
partly and fully shaved cell grids resemble those on the σ grid, but magnitudes
are slightly smaller. Small-scale noise on the partly shaved cell grid is still
present.
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3.4 Internal lee waves

To further demonstrate the effects of vertical grids, the internal lee waves are
simulated with the Gaussian seamount configuration. We investigate to what
an extent the lee waves can be influenced by the choice of vertical grids. For
sufficiently small seamount and sufficiently large Fround numbers,

Fr ≡ Ro

Bu
, (3.3)

a significant field of stationary internal lee waves can be found downstream
the seamount when the flow is in a steady state (Chapman and Haidvogel,
1993). In the current work we take the fractional seamount height δ = 0.5, the
Rossby number Ro = 0.2, and the Burger number Bu = 1.0. Hydrostatic ap-
proximation is adequate in this configuration bearing in mind that the vertical
length scale is less than one tenth of the horizontal scale.

Fig. 3.7 shows the density field after 24 days in the zonal section across
the seamount center. Fig. 3.8 shows the zonal and horizontal sections of
the density anomaly and vertical velocity. Well defined patterns of trapped
stationary internal waves in the region downstream of the seamount can be
observed in these sections. The solution agrees qualitatively with results of
previous studies by Chapman and Haidvogel (1993) and Ford et al. (2004b).
The internal waves trapped to the seamount are enhanced in the region where
local acceleration of current takes place. These well modeled features on the
σ grid provide the benchmark for comparison with other grid solutions.

Figs. 3.9 and 3.10 show the solution fields after 24 days from runs on other
grids. Except for the full cell grid, all other approaches manage to simulate
the internal lee waves. The full cell simulation gives completely different so-
lutions without internal lee wave structures, which are dominated instead by
small scale noise caused by artificial ridges in the topographic representation.
The smaller vertical velocity and density anomaly is mainly due to dissipation,
which works more efficiently on small scales induced by artificial ridges. The
z+σ solution resembles most of the σ solution, only possessing small quantita-
tive difference in magnitude. Both the modified z-level approaches (partly and
fully shaved cell grids) represent internal lee waves in a qualitative agreement
with sigma solutions, but show about 30% of difference in the magnitude of
vertical velocity to the σ and z + σ solutions. This is caused by the difference
in local resolution where the strongest wave energy locates. Compared with
the fully shaved cell approach, the partly shaved cell grid solution has some
small scale noise at the upstream side of the seamount, which can be observed
in both the zonal and horizontal sections of the vertical velocity fields.
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Figure 3.7: Density field in the along-stream section passing through the
seamount center in the σ run. The zonal range of −100 km ≤ x ≤ 100 km is
shown.

Figure 3.8: Density anomaly (top) and vertical velocity (bottom) fields in
the along-stream section passing through the seamount center (left) and in a
horizontal section at the depth of 1125 m (right) in the σ run. In the left panel
the same zonal range as in Fig. 3.7 is shown, and in the right panel the domain
is −64 km ≤ x ≤ 64 km, −64 km ≤ y ≤ 64 km.
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Figure 3.9: Density anomaly (left) and vertical velocity (right) fields in the
along-stream section passing through the seamount center in the (top to bot-
tom) z + σ, full cell, partly shaved cell, and fully shaved cell simulations.
Domain shown is the same as in Fig. 3.7. The full cell grid can not repre-
sent the internal lee waves, instead it produces spurious fields associated with
the discontinuous topography representation. Other grids reproduce lee waves
properly. Note that noise due to partly discontinuous bottom representation
on the partly shaved cell grid can be observed in the vertical velocity field at
the upstream side of the seamount.
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Figure 3.10: Density anomaly (left) and vertical velocity (right) fields at the
depth of 1125 m in the (top to bottom) z + σ, full cell, partly shaved cell, and
fully shaved cell simulations. Domain shown is the same as in Fig. 3.8. The
solution on the full cell grid is dominated by grid noise. Vertical velocities on
the partly and fully shaved cell grids are similar, yet they are slightly larger
than those on the σ and z + σ grids.
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3.5 Summary

In this chapter the performance of different vertical grids has been studied via
simulations of steadily forced flow past an isolated seamount. The process of
eddy formation and shedding, and the characteristics of trapped internal lee
waves as well, are faithfully simulated on the σ and z + σ grids. Their results
agree well with those obtained in cited studies. The (partly) shaved cell grids
can also represent these physical processes well. Their difference to the σ grid
simulation is mainly due to the local difference in resolution. The solutions
on full cell grids are characterized by grid noise caused by artificial ridges
in full cell discretization. Note that employing biharmonic dissipation may
help smooth grid noise induced by discontinuous bottom representation with
relatively less dissipation effect. But the results in Adcroft et al. (1997) imply
that the major part of impact of the nonrobust topography representation
could not be eliminated by simply using higher order dissipation.

The partly shaved cell grids are shown to resolve topography related pro-
cesses much better than full cell grids. But their solutions still contain some
small scale noise above artificial ridges, which could exist in regions where the
aspect ratio of the grid cell (Δz/Δx) is smaller than the local slope of the
topography. FE models can flexibly employ unstructured meshes with vary-
ing resolution in the horizontal and/or vertical, so fully shaved cell grids can
also be realized for steep slopes. Then the model performance can be further
improved. However, realizing such grids in regions of very steep slopes can in-
troduce too small horizontal scales which could lead to numerical difficulties,
so this approach usually is only applied when these steep slopes are research
interest relevant.
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Chapter 4

Stratified topographic waves in
a channel

Although reproducing the particular small-slope topographic waves studied by
Rhines (1970) requires only solving linearized equations, it is a tough problem
for traditional z-level ocean models, as it is sensitive to the way the bottom
topography is taken into account. Simulating topographic waves was taken
by Pacanowski and Gnanadesikan (1998) to test their partial cell algorithm.
Here we use the same setup to demonstrate that the shaved cell algorithm
in FEOM performs well in reproducing the dispersion relation of topographic
waves propagating in the presence of a gentle slope.

4.1 Background

The linearized hydrostatic Boussinesq equations are given by

∂u

∂t
− fv = − 1

ρ0

∂pf

∂x
(4.1)

∂v

∂t
+ fu = − 1

ρ0

∂pf

∂y
(4.2)

∂pf

∂z
= −ρg (4.3)

∂ρ

∂t
=

ρ0

g
wN2 (4.4)

∂u

∂x
+

∂v

∂y
+

∂w

∂z
= 0. (4.5)

Here pf is the total pressure including the surface pressure part, N is the
buoyancy frequency. Based on these equations topographic waves in a rotating

75
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Figure 4.1: A north-south section showing the bottom representation and grid
points in the topographic wave simulation. 2D nodes could be unstructured,
so the grid shown here is idealized to indicate the difference in bottom repre-
sentation between these two grids.

stratified fluid in a channel were studied by Rhines (1970). The solution in
terms of propagating waves in the limit of low frequency is given by

ρ = A sin(kxx − ωt) sin(kyy) sinh(λz) (4.6)

where kx and ky are zonal and meridional wavenumbers, respectively, x, y, and
z are zonal, meridional and depth coordinates, and

λ = (k2
x + k2

y)
1/2 · N

f
, (4.7)

ω =
kxN

2 tan α

fλ tanh(λH)
, (4.8)

where f is the Coriolis parameter, tanα is the topographic slope, and H is the
depth of the slope. The phase speed in x-direction is then given by c = ω/kx.
The analytical dispersion relation given above provides the benchmark against
which numerical simulations can be easily compared.

4.2 Model setup

The model configuration similar to that used by Pacanowski and Gnanadesikan
(1998) is employed in the current work. The zonally reentrant channel of 10◦

lon × 10◦ lat on an f -plane at 45◦N is selected. The channel is 4500 m deep
at the south and 3500 m deep at the north with a constant gentle slope of 100
m deg−1. The initial background stratification is linear with depth, with the
buoyancy frequency N = 0.003 s−1. The linear equation of state is used, and
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temperature is the only active tracer. The horizontal viscosity and diffusivity
is 103 m2 s−1, the vertical diffusivity is 10−4 m2 s−1, and the vertical viscosity
is 2× 10−3 m2 s−1. No-slip boundary conditions at rigid walls and free-slip for
the bottom are used. The vertical resolution is 500 m equally spaced except
in shaved cells, and the horizontal resolution is 1◦.

With this resolution there are two artificial topographic ridges in the full cell
stepwise discretization (Fig. 4.1). However, this slope can be truly represented
using the shaved cell approach. A north-south section showing grid points and
model topography is given in Fig. 4.1. In this configuration, the aspect ratio
of the grid cell is about five times the slope of the topography, so the fully
shaved cell representation can be naturally realized.

In the next section we compare simulations on the full cell and shaved cell
grids and confront our results with those of Pacanowski and Gnanadesikan
(1998). A noticeable difference between the shaved cell and σ approaches in
this experiment is not anticipated, because the local vertical resolution above
the topography on the shaved cell grid is sufficient for the current problem.

4.3 Model results

An initial temperature perturbation of the form

T = 0.25 sin(kxx) sin(kyy) sinh(λz) (4.9)

was employed to initialize topographic waves at a wavelength equal to the zonal
domain length. So the wavenumbers are set as kx = 2π/Lx, and ky = π/Lx,
where Lx and Ly are zonal and meridional domain length, respectively. The
model was integrated for 100 days.
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Figure 4.2: Streamfunction [Sv] after 100 days of integration for full cell (left)
and shaved cell (right) runs.
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Figure 4.3: Vertical velocity [cm day−1] at the depth of 3500 m after 100 days
of integration for full cell (left) and shaved cell (right) runs.

Fig. 4.2 shows the streamfunctions after 100 days integration for the two
cases: one with the full cell z-level grid and the other with the shaved cell
grid. The shaved cell case produces a wavelike pattern like the initial pertur-
bation. By contrast, the structure of the streamfunction in the full cell case
deviates from it and the streamfunction has a reduced amplitude. Vertical
velocity fields at the depth of 3500 m are displayed in Fig. 4.3. The full
cell solution shows a clear double maximum structure corresponding to the
Kelvin waves propagating along the two artificial ridges, similar to the finding
of Pacanowski and Gnanadesikan (1998). They argued that it is those small
scale features above the artificial ridges in the full cell run that lead to more
efficient dissipation and thus smaller streamfunction magnitude.

The vertical structure of the zonal velocity anomaly (time mean from last
50 days removed) shown in Fig. 4.4 indicates the significant baroclinic dif-
ferences between two cases which is similar to the results by Pacanowski and
Gnanadesikan (1998). The vertical topographic trapping is much stronger in
the full cell simulation than in the shaved cell case. The shaved cell solution
shows a wider meridional scale, whereas the full cell z-level solution shows
smaller scales with maximum at the bottom.

The wave propagation indicated by streamfunction anomaly (time mean
from last 50 days removed) is shown in Fig. 4.5 in the Hovmöller diagram.
The phase speed of the wave in the full cell z-level case is 106 cm s−1, which
corresponds to a basin crossing time of about 9 days. The phase speed of the
waves in the shaved cell case is about 41 cms−1, and the basin crossing time
is 22 days. The theoretical phase speed is 42 cms−1 based on the linearized
analytical solution. This demonstrates that the simulation with the shaved
cell grid can resolve the dispersion relation quite well, while the full cell z-level
approach gives results dominated by numerical effects.
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Figure 4.4: Zonal velocity anomaly [cm s−1] in a meridional section after 100
days of integration for full cell (left) and shaved cell (right) runs.
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Figure 4.5: Streamfunction anomaly [Sv] as the function of longitude and time
for full cell (left) and shaved cell (right) runs. Phase speed of the topographic
wave can be estimated from this relationship.

The full dispersion relation of this topographic wave can be constructed
from solutions with more wavelengths employed. In the next set of exper-
iments, an initial temperature perturbation with a spectrum containing 15
zonal wavelengths was applied and evolved for 100 days in a zonally reentrant
channel of 100◦ long. The wave frequencies were extracted through Fourier
transformation and plotted versus wavenumbers in Fig. 4.6. The shaved cell
approach accurately approximates the analytic dispersion relation in regions
of both low and high wavenumbers, whereas the result from the full cell z-level
simulation deviates far from the analytical solution and the group velocity
from the dispersion relation at high wavenumber is opposite to the theoretical
value. Another experiment conducted on a σ grid (Fig. 4.6) shows that σ grid
simulation can also accurately resolve the topographic wave dispersion relation
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Figure 4.6: Dispersion relation for topographic waves for analytic (solid line),
shaved cell (crosses), full cell (open circles), and σ grid (squares).

as expected.

4.4 Summary

Comparison between the performance of shaved cell and full cell grids was
undertaken through simulating a topographic wave propagating over a gentle
slope. The full cell grid misses the gentle slope of the bottom topography and
results in unphysical dispersion relation. The vertical velocity field in this case
is characterized with artificial wave modes related to the stepwise topography
representation. Simulations with full cell grids are not robust, also because
the topography representation does not improve even with increased horizon-
tal resolution, as shown in Fig. 1.4. Both the horizontal and vertical resolution
should be increased for full cell grids to perform better. The shaved cell grid
accurately represents the topography and well reproduces the analytical dis-
persion relation.



Chapter 5

Simulating overflows

Overflows play an important role in the world ocean, as they determine the
formation of deep waters, such as Mediterranean Overflow Water, North At-
lantic Deep Water and Antarctic Bottom Water (Price and Baringer, 1994).
Properly representing overflows in ocean general circulation models still faces
challenges (Griffies et al., 2000a). The model’s vertical discretization and bot-
tom representation is one of the most important issues (Willebrand et al.,
2001). Different vertical grids are employed to simulate overflows in an ideal-
ized configuration. Their performance is explored.

5.1 Background

Overflows are density driven currents flowing down topography. The over-
flow dynamics is an important part in the thermohaline circulation of the
world ocean because it is the primary source of the deep water in the world
ocean’s basins. An accurate representation of overflows is of vital importance
for OGCM, but it still faces challenges (Griffies et al., 2000a). The model’s
vertical discretization and bottom representation is one of the most important
issues (Willebrand et al., 2001).

There exists increasing evidence that ocean models using z-level grids have
difficulties in simulating overflows at relatively coarse resolution mainly be-
cause of the step-like representation of the bottom topography (Gerdes, 1993b;
Beckmann and Döscher, 1997; Winton et al., 1998). When dense water flows
down passing discrete “stairs”, excessive vertical mixing generally causes arti-
ficial dilution and entrainment (Winton et al., 1998). In order to overcome this
difficulty, modifying z-level models by adding a BBL model has been tried to
better resolve overflows (Beckmann and Döscher, 1997; Campin and Goosse,
1999; Killworth and Edwards, 1999; Song and Chao, 2000).

Both σ and isopycnal coordinate models can represent flows over topogra-
phy more accurately, and are able to concentrate vertical resolution in regions
of overflow dynamics. For this reason they were extensively used for numerical
studies of overflows. The Denmark Strait Overflow (DSO) has been simulated
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using σ grid models (Jungclaus et al., 2001; Käse et al., 2003); the Mediter-
ranean outflow has been simulated using both σ grid models (Jungclaus and
Mellor, 2000) and isopycnal models (Papadakis et al., 2003). The study of
Penduff et al. (2002) suggests that simply smoothing the topography in a z-
level model leads to results qualitatively resembling those from a σ grid model.
But as to be shown in this work z-level grids have difficulty in representing
overflows even on a uniform slope. On the other hand, smoothing topography
is indeed a useful practical strategy (also in σ models), but care is generally
required, otherwise it can severely deteriorate accuracy.

The DOME project (Dynamics of Overflow Mixing and Entrainment, see
www.rsmas.miami.edu/personal/tamay/DOME/dome.html) established an
idealized model configuration to study the dynamics of overflows. This model
configuration is mainly patterned after the overflow in the Denmark Strait.
Overflow plume features and accompanying diapycnal mixing, entrainment
and BBL dynamics have been studied with this configuration by Ezer and
Mellor (2004); Legg et al. (2006); Tseng and Dietrich (2006) using different
models and different vertical grids. Although the DOME setup is quite ideal-
ized, basic overflow properties derived from model simulations in these studies
have been found similar to some observed features of the DSO.

Once more we exploit the ability of FEOM to work with different vertical
grids using the same numerical kernel, and explore the influence of vertical
discretization, resolution and also partly subgrid approximations on overflow
characteristics in the DOME setup. The vertical grid types considered by us
are σ, the combination of z and σ which includes several bottom following
layers and z-levels above them, the z-level grid and two modification of it, the
partly shaved cell and fully shaved cell grids. The latter two allow an accurate
bottom representation while using z-levels except the very last layer, and is in
effect similar to the shaved and partial cell approaches of structured models.
Studying the influence of grid types on overflow simulations with hybrid grid
models has the advantage of isolating (as far as possible) the effect of grid
types from the model physics and numerics. The work by Ezer and Mellor
(2004) using the FD model POM was also intended in this direction.

Our result is that σ and z+σ setups provide the smallest plume dilution and
plume thickness and largest downslope plume penetration provided horizontal
diffusivity is replaced by along-σ diffusivity. Their plume properties start to
converge at coarser horizontal resolution than on other grids. Using horizontal
diffusivity adds diapycnal mixing and can degrade the σ grid results. Partly
shaved cell grids approach the σ grid results at finer horizontal resolution and
with larger number of vertical levels.
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5.2 Experimental setup

5.2.1 the DOME setup

The model domain includes a basin of 1100 - 1600 km (longitude) by 600 km
(latitude) and an attached embayment of 100 km by 200 km (Fig. 5.1a).
The depth at the northern boundary of the basin is 600 m, sloping down
to the maximum depth of 3600 m to the south with a uniform slope of 1%.
The embayment is 600 m deep. The eastern and southern boundaries are
closed, and the western boundary is open using the outflow condition with
damping applied within a narrow sponge zone. Free-slip and no-flux boundary
conditions are applied at closed walls.

Figure 5.1: (left) Top view of the model domain and bottom topography in
the DOME experiments. (right) Side view of a cross-section at x = 0 and the
initial stratification.

The inflow from the northern open boundary of the embayment is pre-
scribed following Legg et al. (2006) to have 5 Sv of geostrophically balanced
dense water, the thickness of which is 300 m at the western wall of the em-
bayment and exponentially decays to zero near the eastern wall. The linear
equation of state (only with potential temperature) is used. The initial ambi-
ent stratification (Fig. 5.1b) is linear with N = 2.3 × 10−3 s−1, corresponding
to a density difference of 2 kg m−3 between domain surface and bottom, which
is also the density anomaly of the dense inflow. To facilitate the analysis of
the overflow, a passive tracer with concentration c = 1 was injected into the
inflow water. The initial value of c is zero everywhere in the domain.

5.2.2 Numerical experiments

Laplacian dissipation and quadratic bottom drag with Cd = 0.002 are em-
ployed. An f -plane approximation with the Coriolis parameter f = 10−4 s−1
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is used. The physical parameters, including the bottom drag coefficient, back-
ground stratification, the topographic slope, the Coriolis parameter, and the
inflow velocity and width, can influence the results of overflow simulations sig-
nificantly (Jiang and Garwood, 1996; Legg et al., 2006). Our objective in the
current work is to examine the performance of different vertical grids, so we
have only chosen a combination of parameters commonly used in the studies
of other authors.

Four different resolutions are used for each vertical grid (Table 5.1). On
the σ grid, 36 evenly distributed vertical layers are used. On the full cell and
partly shaved cell grids, vertical resolutions of 100 m, 50 m, and 25 m are used
for different horizontal resolution cases. The fully shaved cell grids are realized
by generating surface grid nodes following isobaths and using proper (lower)
vertical resolutions. So in fully shaved cell grids the vertical resolutions are 100
m and 50 m for the 10 km and 5 km horizontal resolution cases, respectively,
which is coarser than in their full cell and partly shaved cell counterparts. To
save CPU time, the resolution varies in space and the resolution referred to
above is that in regions where plume dynamics happens.

Experiments using a z + σ grid, combining 6 σ layers and z levels above
them, show results almost identical to the σ grid simulations. It is simply
because the σ layers at the bottom in the z + σ grid are able to resolve the
overflow plume equally well as a pure σ grid. So the z + σ experiments are
not separately discussed here, and the properties found in the σ grid runs can
be generalized to the z + σ simulations. Note, however, that the z + σ grid
has more advantages in basin scale and climate scale applications because of
reduced pressure gradient errors.

In the reference runs (gray parts in Table 5.1), lateral diffusivity of KH =
10 m2 s−1 is used. Lateral viscosity is set to AH = 5 KH in all simulations.
To study the sensitivity to lateral diffusivity/viscosity, simulations with KH =
100 m2 s−1 using resolution of 10 km are taken for each grid. The lateral
dissipation is oriented in the along-σ direction on the σ grids. Two runs
(Si2hor and Si2Hhor) with geopotentially oriented lateral diffusivity/viscosity
are done to illustrate the effects of the orientation of sub-grid operators on σ
grids.

With currently affordable resolution for climate scale simulations, the pro-
cesses responsible for entrainment accompanying overflows are not resolved,
and hence must be parameterized. In simulations under the framework of
DOME setup, Tseng and Dietrich (2006) employed the Richardson-number-
dependent scheme (Pacanowski and Philander, 1981) using the z coordinate
model DieCAST, whereas Ezer and Mellor (2004) and Ezer (2005) used the tur-
bulence closure scheme of Mellor and Yamada (1982) in the generalized model
POM. The isopycnal coordinate models currently tend to employ the empirical
gravity current entrainment parameterization (Legg et al., 2006) as described
by Hallberg (2000). The simulation employing non-hydrostatic physics (MIT-
gcm) without mixing parameterizations by Legg et al. (2006) shows that the
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Table 5.1: Parameters in different runs with the DOME configuration.

Horizontal Vertical Lateral Maximum vertical
Experiments resolution resolution diffusivity mixing coefficient

Δx (km) Δz (m) KH (m2 s−1) Av0 (m2 s−1)

Si1 20 36 layers 10 0.05
Si2 10 36 layers 10 0.05
Si3 5 36 layers 10 0.05
Si4 2.5 36 layers 10 0.05
Si2H 10 36 layers 100 0.05
Si2V 10 36 layers 10 0.2
Si2hor 10 36 layers 10 (hor) 0.05
Si2Hhor 10 36 layers 100(hor) 0.05
FC1 20 100 10 0.05
FC2 10 50 10 0.05
FC3 5 25 10 0.05
FC4 2.5 25 10 0.05
FC2H 10 50 100 0.05
FC2V 10 50 10 0.2
PSC1 20 100 10 0.05
PSC2 10 50 10 0.05
PSC3 5 25 10 0.05
PSC4 2.5 25 10 0.05
PSC2H 10 50 100 0.05
PSC2V 10 50 10 0.2
FSC2 10 100 10 0.05
FSC3 5 50 10 0.05
FSC2H 10 50 100 0.05
FSC2V 10 50 10 0.2

Si, σ grid; FC, full cell grid;
PSC, partly shaved cell grid; FSC, fully shaved cell grid;
hor, cases with horizontally (geopotentially) oriented lateral dissipation.

processes responsible for mixing are captured at horizontal resolution of 500
m, but this resolution is still insufficient to fully resolve mixing processes.

In the current work, the modified Richardson-number-dependent scheme
(Pacanowski and Philander, 1981) is used. The parameterized vertical viscosity
Av and diffusivity Kv are computed as

Av =
Av0

(1 + αRi)n
+ Avb, (5.1)

Kv =
Av

1 + αRi
+ Kvb (5.2)
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where the local gradient Richardson number is

Ri =
N2

u,2z +v,2z
. (5.3)

The same formulas but with Ri set to zero are applied if stratification becomes
unstable. The background values Avb and Kvb are set to 2 × 10−5 m2 s−1

throughout the work. Constants n = 2 and α = 10 are used. Av0, which is
the limiting value of Av and Kv under the neutral and unstable conditions
Ri ≤ 0, is the prescribed maximum value of vertical mixing coefficients. In
different applications different controlling physical processes might require dif-
ferent values of Av0. Besides the standard value Av0 = 0.05 m2 s−1 used in
reference runs, experiments using Av0 = 0.2 m2 s−1 at the 10 km resolution
are carried out to demonstrate the influence of this parameter. The mixing
scheme also works to remove the static instability, so convective adjustment
is not employed in this work. Note that convective adjustment could still be
required in general applications.

The FCT advection scheme (Löhner et al., 1987) described above in Chap-
ter 2 is employed in the current work, which both prevents the appearance
of overshoots and introduces numerical diffusion where needed for stability.
Clearly, different implicit diffusion effects are associated with different advec-
tion schemes. Studying these effects is beyond the scope of the current work.
But it is worth mentioning that the reference runs with small lateral diffusiv-
ity provide solutions that do not show significant difference to those with zero
explicit lateral diffusion (not shown). These solutions are thus in the regime
where numerical diffusion exceeds explicit lateral diffusion.

5.3 Model results

5.3.1 General description

Fig. 5.2 shows snapshots of the tracer concentration c just above the bottom on
four different days in σ grid run Si3 at the 5 km resolution. The westward and
downslope propagation of the dense bottom plume with large scale eddies can
clearly be observed, as expected from previous studies (Jiang and Garwood,
1996; Cenedese et al., 2004; Ezer and Mellor, 2004; Legg et al., 2006). The
propagation of the dense plume is accompanied by bottom Ekman flows and
development of eddies. The large amplitude eddies have spatial scales of 50
to 100 km, and the Rossby radius of deformation at their locations is about
20 to 50 km, so these eddy structures can be resolved with a 5 km horizontal
scale. Most of the tracer dilution occurs to the east of x = −200 km. The
overflow water reaches the neutral buoyancy level when it penetrates downslope
to about y = −200 km. The spatial scale of eddies and the distance of the
downslope penetration of the dense plume are quite close to those shown in
snapshots in figure 5 of Ezer and Mellor (2004).
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(a) (b)

(c) (d)

Figure 5.2: Instantaneous bottom tracer concentration in the Si3 run after (a)
10, (b) 15, (c) 20 and (d) 30 days. Contour interval is 0.1.

In the DOME configuration, 0.4 < Fr < 0.6 and Ek < 0.1 almost every-
where in the main part of the overflow (Ezer, 2005), where Fr is the Froude
number and Ek is the Ekman number, therefore, the simulated flow is in an
eddy regime (Cenedese et al., 2004). Strong cyclonic eddies can be found in all
runs. The vertically integrated relative vorticity after 15 days for 5 km resolu-
tion runs is shown in Fig. 5.3. A train of cyclonic eddies connected by weaker
anticyclones along the path of the dense plume is present, consistent to nu-
merical and laboratory studies (e.g., Jiang and Garwood, 1996; Lane-Serff and
Baines, 2000; Käse et al., 2003). One possible mechanism for cyclonic eddy
generation is the conservation of potential vorticity (Spall and Price, 1998;
Lane-Serff and Baines, 1998, 2000; Etling et al., 2000; Cenedese et al., 2004).
When the dense fluid which is coupled with the lighter water colume above it
moves downslope, the vortex is stretched. To conserve the potential vorticity,
the water colume acquired cyclonic vorticity. Dramatic cyclonic eddies over
the path of the DSO along the coast of Greenland have been clearly observed
(Bruce, 1995) through satellite measurements.

5.3.2 Comparison between grids

a) Tracer concentration over the bottom

The snapshots of bottom tracer concentration from simulations on different
grids are shown in Figs. 5.4 – 5.7. Results on different grids even at the
same resolution appear to be very different. In the full cell case, the dense
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Figure 5.3: Vertically integrated relative vorticity after 15 days for (a) σ, (b)
full cell, (c) partly shaved cell, and (d) fully shaved cell grid runs at resolution
of 5 km. Notice the difference in the position of cyclonic eddies between the σ
and other types of grids.

plume remains closer to the coast than in the σ cases, and the descent of the
downslope side front is about 50 to 100 km less than that in the σ runs. The
development of large scale eddies on the full cell grids is also confined near to
the northern coast compared with the σ grid simulations. These findings are
consistent with those of Ezer and Mellor (2004), who have also reported the
difficulty of full cell grids in properly simulating overflow processes.

The z-level model (DieCAST, full cell grid) used in the study of Tseng and
Dietrich (2006) utilizes a high-order conservative advection scheme, which sup-
presses numerical instability and allows using very small viscosity/diffusivity.
Such numerical ability has advantages in oceanographic applications (e.g., Di-
etrich et al., 2004), but the behavior of overflow in the DOME setup is not
significantly changed in terms of downslope penetration and resolution sen-
sitivity by this numerical property. The simulations of Tseng and Dietrich
(2006) show that the downslope penetration distance of the dense plume is
limited to about 100 km offshore, similar to the full cell simulations in Ezer
and Mellor (2004) and in the current work. However, there are indeed smaller
scale structures in simulations by Tseng and Dietrich (2006) than in ours, sim-
ply because of the very small diffusivity and viscosity (4 m2s−1) they have
used.

The downslope propagation process as simulated by models on full cell z-
level grids has been explained by Winton et al. (1998) and Ezer and Mellor
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Figure 5.4: Instantaneous bottom tracer concentration in the σ grid simula-
tions for runs (a) Si1, (b) Si2, (c) Si3, (d) Si4, (e) Si2H and (f) Si2V. Results
after (left) 15 days and (right) 40 days are shown for each run. There is no
strong sensitivity to resolution beginning from 5 km resolution (c) , and even
the difference between the 10 km (b) and 5 km (c) results with respect to large
scale eddies and plume downslope penetration is not very significant.
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Figure 5.5: As in Fig. 5.4 but for the full cell grid simulations: (a) FC1, (b)
FC2, (c) FC3, (d) FC4, (e) FC2H and (f) FC2V. Note the strong sensitivity to
the horizontal resolution in these full cell cases. The downslope propagation
is limited.
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Figure 5.6: As in Fig. 5.4 but for the partly shaved cell grid simulations: (a)
PSC1, (b) PSC2, (c) PSC3, (d) PSC4, (e) PSC2H and (f) PSC2V. With the
increase in resolution, the skill of partly shaved grids is improving and the
characteristics of the simulated plume start to approach those on σ grids.
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Figure 5.7: As in Fig. 5.4 but for the fully shaved cell grid simulations: (a)
FSC2, (b) FSC3, (c) FSC2H and (d) FSC2V. Although the fully shaved cells
provide better bottom approximation than partly shaved cells they are lacking
vertical resolution for the prescribed horizontal resolution. Hence, they lead to
stronger dilution of the plume. This comparison emphasizes that both bottom
representation and vertical resolution in the bottom vicinity are important.

(2004). Passing the plume over the step-like topography in the full cell grid
involves two steps. First, advection and diffusion mix the plume with the ad-
jacent water mass in the horizontal direction; then the vertical mixing scheme
(Richardson-number-dependent scheme in the current work) creates large ver-
tical mixing due to an unstable stratification (Fig. 5.8b). This situation is
different from the σ grid case (Fig. 5.8a), in which along sigma/slope advec-
tion plays the dominant role. Winton et al. (1998) indicated that unless both
vertical and horizontal resolution satisfy the criteria

Δz < h and Δx < h/ tan α, (5.4)
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where h is the thickness of the overflow and α is the topographic slope angle,
full cell z-level models are unable to transport dense overflows down the slope
without excessive entrainment. Although the requirements on both the hor-
izontal and vertical resolutions are satisfied in our full cell simulations, they
still have difficulty in reproducing downslope propagation. At coarse resolu-
tion the dense plumes are clearly more diluted on the full cell grids than on
the σ grids. With the increase in resolution, eddies associated with high tracer
concentration can be seen in the bottom tracer snapshots on full cell grids.
However, the spatial and temporal mean of the final plume density shows that
the dense plumes as a whole are still more diluted on the full cell grids than
on the σ grids (see details in section 5.3.5).

The simulations using the partly shaved cell grid (Fig. 5.6) show a better
resolved plume than on the full cell grid in terms of the downslope penetra-
tion. With the shaved elements introduced, the bottom topography is better
approximated and the stairs, over which the dense fluid passes, are not so steep
as in their full cell counterparts. A larger downslope descent of the plumes can
be observed on the partly shaved cell grid than on the full cell grid. At the
2.5 km resolution the bottom tracer concentration on the partly shaved cell
grid is quite close to the σ result at the quasisteady stage (after 40 days). The
tendency of approaching the σ results with the increase in resolution can be
observed on the partly shaved cell grids, but is not clearly observable on the
full cell grids. The grid scale errors due to artificial ridges are also expected
to be smaller in the partly shaved cell simulations (see Chapter 3). But the
remaining artificial stairs can still cause spurious mixing.

The fully shaved cell simulations at horizonal resolutions of 10 km and
5 km (Fig. 5.7) show plume structures similar to their partly shaved cell
counterparts in terms of eddy characteristics and plume propagation, but the
plume is more diluted in these cases. This is simply due to a coarser vertical
resolution adopted on such grids in order to match the horizontal resolution.
Because of lower vertical resolution, the fully shaved cell grid do not further
improve overflow representation compared with the partly shaved cell grids
despite the fact that they do not contain artificial ridges and allow downslope
advection (Fig. 5.8d). The series of experiments with fully shaved cell grids
clearly demonstrate the role of vertical resolution. The sensitivity to resolution
is addressed in a later section.

b) Plume thickness

Fig. 5.9 to Fig. 5.12 show the cross section of the passive tracer at x =
−100 km after 40 days. The full cell grid simulations have the dense plume
remaining the closest to the coast. On the σ grid, the plume thickness is
the thinnest, the front can penetrate downslope 150 to 200 km in this cross
section. For each resolution the partly and fully shaved cell grid simulations
show thicker plumes than the σ grid results. But their results agree better with
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Figure 5.8: Schematic diagram of the near bottom mixing processes of a dense
plume for (a) σ or z + σ grid, (b) full cell grid, (c) partly shaved cell grid, and
(d) fully shaved cell grid. As explained by Ezer and Mellor (2004), the along
slop advection in the σ grid is large so that the density ρi,k ≈ ρi−1,k > ρi−1,k−1,
while vertical mixing in the full cell grid is large so that ρi,k−2 > ρi−1,k−2 ≈
ρi−1,k−1 ≈ ρi−1,k. The processes in the partly shaved cell grid are similar to
those in the full cell grid, whereas the topography in the partly shaved cell grid
is better approximated than in the full cell grid. The fully shaved cell grid, in
which ρi,k−1 ≈ ρi−1,k ≈ ρi−1,k−1, can accurately represent the slope, and the
along slope advection is large. But its vertical resolution is coarser than in the
partly shaved cell grid when the same horizontal resolution is used.
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Figure 5.9: Cross section of tracer concentration at 100 km downstream of the
embayment after 40 days for the σ runs: (a) Si1, (b) Si2, (c) Si3, (d) Si4, (e)
Si2H and (f) Si2V. Contour interval is 0.1.
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Figure 5.10: As in Fig. 5.9 but for the full cell runs: (a) FC1, (b) FC2, (c)
FC3, (d) FC4, (e) FC2H and (f) FC2V.
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Figure 5.11: As in Fig. 5.9 but for the partly shaved cell grid runs: (a) PSC1,
(b) PSC2, (c) PSC3, (d) PSC4, (e) PSC2H and (f) PSC2V.

0.
1

0.1

0.1

Y [km]

Z
 [m

]

−200 −150 −100 −50 0
−2500

−2000

−1500

−1000

−500

0

0.
1

0.1

0.1

0.
5

Y [km]

Z
 [m

]

−200 −150 −100 −50 0
−2500

−2000

−1500

−1000

−500

0

(a) (b)

0.1

0.1 0.5

Y [km]

Z
 [m

]

−200 −150 −100 −50 0
−2500

−2000

−1500

−1000

−500

0

0.1

0.1

0.1

Y [km]

Z
 [m

]

−200 −150 −100 −50 0
−2500

−2000

−1500

−1000

−500

0

(c) (d)

Figure 5.12: As in Fig. 5.9 but for the fully shaved cell grid runs: (a) FSC2,
(b) FSC3, (c) FSC2H and (d) FSC2V.



5.3. MODEL RESULTS 97

the σ results with respect to the downslope propagation distance compared
with the full cell simulations.

The thickness of the dense plume (defined by tracer concentration c >
0.1) averaged over the domain after 40 days is shown in Fig. 5.13. At each
resolution the σ grid simulation always has the smallest plume thickness. The
average plume thickness on the σ grid at the 10 km resolution is about 220
m, close to the model result in Ezer and Mellor (2004). At fine resolution
(2.5 km) the average plume thickness on the full cell and partly shaved cell
grids is similar, but at coarse resolution the average plume thickness on the
partly shaved cell grid is even thicker than that on the full cell grid. The
explanation is due here. The plume is more confined to the coast (Fig. 5.14)
and propagates faster along the slope (cf. 5.4-5.7) on the full cell grid. Very
large diapycnal mixing takes place mainly within a relatively narrow range
from the coast, resulting in large plume thickness there. But only very limited
tracers are able to penetrate further downslope, associated with relatively thin
plumes in this region. Because of this part of contribution, spatially averaged
plume thickness on the full cell grid is smaller than that on the partly shaved
cell grid. This observation can be understood as one of the manifestations of
the full cell grid’s difficulty in producing sufficient downslope propagation.

c) Meridional tracer distribution

Quantifying the average water mass distribution is a useful perspective to
compare the performance of different grids. The water mass distribution can be
characterized by the zonally averaged vertically integrated tracer concentration
(Ezer and Mellor, 2004),

C(y, t) =
∑

x

∑
z

c(x, y, z, t)ΔxΔz

/∑
x

Δx , (5.5)

which has units of meter and is proportional to the average thickness of the
plume at each downslope distance. This quantity from results averaged over
one week after 40 days for different runs is shown in Fig. 5.14.

In the σ-grid simulations, the maximum is always found large distance from
the coast for all resolutions used, with the maximum thickness located between
170 km to 200 km offshore. This location is close to that of the isopycnal model
(HIM) result (see Legg et al., 2006), but about 100 km farther away from the
coast than the σ simulation with POM (Ezer, 2005). Difference in model
numerics details, including mixing parameterization, could contribute to such
a variance. Finding appropriate parameterizations for diapycnal mixing is still
an area of ongoing research (Hallberg, 2000; Papadakis et al., 2003; Ezer, 2005;
Legg et al., 2006), and the difference mentioned above emphasizes the need for
further studies.

In the full cell simulations the maximum thickness of the dense plume
is about 25 km offshore independent on resolution (Fig. 5.14), although an



98 CHAPTER 5. SIMULATING OVERFLOWS

0 5 10 15 20 25
100

150

200

250

300

350

400

450

Δx [km]

T
hi

ck
ne

ss
 [m

]

sigma

full cell

partly shaved cell

fully shaved cell

Figure 5.13: Plume thickness averaged over the domain as the function of
horizontal resolution for the reference runs listed in Table (5.1). The results
from runs with lateral diffusivity of 100 m2 s−1 (black) and vertical mixing
coefficient limiter value of 0.2 m2 s−1 (gray) at horizontal resolution of 10
km are shown with separated small markers; the σ runs with geopotentially
oriented dissipation are shown with big squares (white for case Si2hor and
black for case Si2Hhor). To avoid overlap they are plotted at slightly shifted
Δx locations. The plume thickness decreases with an increase in resolution.
The simulated dense plume on σ grids is thinner than on other grids. The
plume on shaved cell grids is thicker than on the full cell grids, see explanation
in the text (section 5.3.2). Increasing the along-σ mixing on the sigma grid
leads to a thinner plume, whereas an increase in along-geopotential diffusivity
results in an increase in plume thickness.

increase in resolution can indeed lead to increased downslope distribution as
also indicated in Fig. 5.10. This location is very similar to that found in the
z-level grid simulation with POM (Ezer, 2005). The maximum location in the
partly and fully shaved cell grid runs is between the maximum locations of σ
and full cell grids at all different resolutions. The sensitivity to resolution is
addressed in the next section.

5.3.3 Sensitivity to resolution

With an increase in resolution, the plume structure is better resolved on all
different grids in terms of resolved large amplitude eddies, plume dilution (Fig.
5.4 to Fig. 5.7), and average plume thickness (Fig. 5.13). But the σ grid shows
less resolution dependence than others.
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Figure 5.14: Zonal mean and vertically integrated tracer as the function of
downslope distance, for reference runs with horizontal resolution (a) 20 km,
(b) 10 km, (c) 5 km, (d) 2.5 km, and for (e) runs with lateral diffusivity
of 100 m2 s−1 and (f) runs with vertical mixing coefficient limiter value of
0.2 m2 s−1. Also indicated by arrows in (e) are the locations of the maxima for
the POM σ case (σ-POM), POM z-level case (z-POM), and HIM case (HIM)
taken from Ezer (2005). Note the convergence of results on partly shaved cell
grids to those on σ grids with the increase in resolution. The plume is more
confined to the coast on the full cell grid than on other grids in all cases.
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a) Sigma grids

In the σ run with horizontal resolution of 20 km, the dense plume is poorly
resolved, but it still resembles a coarse-grained version of the plume structure
from the run with resolution of 10 km. The maximum location of the zonal
mean vertically integrated tracer at resolution of 20 km (Fig. 5.14a) is also
quite close to the maximum location in other higher resolution runs.

The simulation on the σ grid with 10 km resolution can marginally resolve
the plume in terms of eddies and subplumes. Resolution of 5 and 2.5 km should
be sufficient to fully resolve the large scale eddies and Rossby deformation
radius. It can be seen that the plume structures in the σ grid runs with
resolution of 5 km and 2.5 km are quite close to each other (Fig. 5.4c,d). The
average plume thickness (Fig. 5.13) also shows that the trend of the decrease
in plume thickness with the increase in horizontal resolution is reduced at
resolution finer than Δx = 5 km. The zonal mean and vertically integrated
tracer (Fig. 5.14) demonstrates the similar trend for the σ grid simulations.
Indeed, the reduction in the magnitude of the integrated tracer occurs mostly
between 10 km and 5 km, and is not so significant between 5 km and 2.5 km
resolution.

The difference between σ grids and z-level grids can be attributed to not
only the different downslope propagation processes on different grids as indi-
cated in Fig. 5.8, but also to the difference in local vertical resolution. On
the σ grid, 36 active layers are used, which correspond to a vertical resolution
of 100 m at the southern domain bottom but only 17 m near to the northern
coast. The ability to have locally refined vertical resolution is also one of the
advantages of the σ grid. With this vertical resolution the BBL dynamics can
be marginally resolved as shown later in this section.

b) Full cell grids

The plume structures in the full cell grids (Fig. 5.5) show that full cell grids
have more demanding resolution requirement. At both the 10 and 20 km
horizontal scales, the plume is very poorly resolved and remains near to the
coast, and eddies are almost absent. With the resolution increased to 5 km
and 2.5 km, large scale eddies start to appea. Although with an increase in
resolution the downslope expansion is increased and plume thickness is reduced
(Fig. 5.10 and Fig. 5.13), the location of maximum tracer distribution (Fig.
5.14) is always maintained near to the coast and much less tracer is distributed
at the downslope side of the plume than on the σ grids. Comparison between
σ grid and full cell z-level grid in Ezer (2005) also indicated that the plume in
the full cell run stays closer to the coast and is more diluted than on σ grids
even at the resolution of 2.5 km.

Higher requirement for resolution and much more sensitivity to resolution
in the full cell grid is a general finding in existing relevant studies (Ezer and
Mellor, 2004; Ezer, 2005). Bearing in mind the limited computational resources
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currently affordable, high-resolution full cell grid is not adequate for simulat-
ing dense water overflows in oceanographic applications, even in basin scale
modeling.

c) Partly shaved cell grids

The partly shaved cell grid shows clearly improved performance compared with
the full cell grid, since its results converge to the σ results much faster than
those on the full cell grid (Fig. 5.14). At 10 km resolution the maximum
location of zonal mean vertically integrated tracer on the partly shaved cell
grid is less than 100 km offshore with a large amount of dense water remaining
near to the coast. With an increase in resolution, the maximum location moves
downslope, to about 170 km offshore at horizontal resolution of 2.5 km, and
the total shape of distribution tend to resemble the σ grid result. In the partly
shaved cell simulations with horizontal resolution of 2.5 km, the bottom tracer
concentration at the quasisteady phase after 40 days (Fig. 5.6d) is similar to
the σ-grid result, and the downslope penetration distance in the cross section
at x = −100 km (Fig. 5.11d) is also quite close to that in the σ grid simulation.

d) Fully shaved cell grids

The tracer distribution on the fully shaved cell grids (Fig. 5.14) resembles
mostly the partly shaved cell results. But the passive tracer in the fully shaved
cell grid with horizontal resolution 5 km and vertical resolution 50 m (Fig.
5.7b) is more diluted than the partly shaved cell result with the same horizontal
resolution but with vertical resolution of 25 m (Fig. 5.6c), which implies that
vertical resolution finer than 50 m is required to well resolve the BBL dynamics
in this model setup.

e) Vertical profiles of tracer concentration

The vertical profiles of tracer concentration taken at locations close to (x, y)=(-
100, -40 km) after 40 days are shown in Fig. 5.15 for different runs. In all
reference runs, the σ grids resolve the BBL the best. The mixing layer thickness
is between 50-100 m in previous model studies (Ezer and Mellor, 2004), close
to the σ grid results in the current work. The BBL can be marginally resolved
by reference runs with the σ grid, owing to both its fine vertical resolution
above the topography and accurate bottom flow representation. The only
partly shaved cell run in which the mixing layer thickness almost approaches
that of the σ grid simulation is the PSC4 case (Fig. 5.15d), in which the
vertical resolution of 25 m and horizontal resolution of 2.5 km are used. Due to
unstructured surface meshes used, the locations where these profiles are taken
do not exactly coincide at different resolution. But the trend for the mixing
layer thickness simulated on z-level grids to converge to the σ grid results
with the increase in resolution can still be observed. Especially, comparing
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Figure 5.15: Example of vertical profiles of tracer concentration after 40 days:
for reference runs with horizontal resolution (a) 20 km, (b) 10 km, (c) 5 km,
(d) 2.5 km, and for (e) runs with lateral diffusivity of 100 m2 s−1 and (f)
runs with vertical mixing coefficient limiter value of 0.2 m2 s−1. The x and
y coordinates refer to tracer concentration and depth [m], respectively. The
profiles are taken at surface grid nodes which are the closest to the location
(x, y) = (−100 km,−40 km). Due to irregular surface nodes used, the locations
are not exactly identical at different resolution.

the resolved bottom mixing layer between the cases PSC3 and PSC4, in which
the same vertical resolution is employed, clearly demonstrates that the z-level
grids need higher horizontal resolution to be able to resolve BBL dynamics
than required by the σ grids.



5.3. MODEL RESULTS 103

5.3.4 Sensitivity to subgrid scale mixing

a) Sensitivity to the lateral mixing

The sensitivity to lateral dissipation is studied through a series of experiments
with higher diffusivity (100 m2 s−1) using different grids at horizontal resolu-
tion of 10 km. The influence of lateral dissipation is clearly illustrated in the
snapshots of bottom tracer concentration. With an increase in lateral dissipa-
tion, the plume fronts are more diffuse and show less fine-scale features at all
grids, simply due to increased damping effects. The tracer concentration in
the cross sections at x = −100 km indicates reduced downslope penetration,
consistent to suppressed frontal instability with increased dissipation.

Except for these common features observed with all grids, there exist also
more subtle differences. On the σ grid (Fig. 5.4), the bottom tracer concen-
tration in the high dissipation run (Si2H) is higher than in the low dissipation
run (Si2). Fig. 5.13 shows that the plume thickness is decreased in the high
dissipation σ run, consistent to the findings by Ezer and Mellor (2004). These
features indicate that the dense water is less diluted with an increase in lateral
mixing coefficients. This can be attributed to the decrease in parameterized
vertical mixing when eddy activity is suppressed by the larger lateral viscosity.
On the contrary, the high dissipation runs on other grids show an increase in
plume thickness (Fig. 5.13).

b) Sensitivity to the orientation of lateral dissipation

The increase in plume thickness with an increase in horizontal dissipation in
the full cell and partly shaved cell grids could be partly attributed to the fact
that the larger horizontal diffusion can lead to more excessive vertical mixing
over artificial stairs (Ezer and Mellor, 2004). But the increase in mean plume
thickness in the fully shaved cell grid suggests another reason for increasing
plume thickness. The lateral dissipation is applied in the horizontal direction
in all runs except in the σ runs presented so far. A horizontal diffusion can be
decomposed to a component along the slope and a component perpendicular
to the slope, the latter of which contributes to diapycnal mixing. This can be
another reason for the increased plume thickness with an increase in horizontal
dissipation on the z-level grids.

To illustrate this point another two σ grid runs (Si2hor and Si2Hhor) were
taken, in which geopotentially oriented diffusivity are used. The snapshots for
bottom tracer concentration for these two cases are shown in Fig. 5.16. In
the case of low horizontal diffusivity (Si2hor), the plume features are similar
to the reference run (Si2), in which the dissipation is along-σ (Fig. 5.4b).
When the horizontal dissipation is increased (Si2Hhor), not only are the large
scale eddies clearly smoothed and suppressed, but also the plume is more
diluted than in the low dissipation case (Si2hor). Also opposite to the along-σ
diffusion case, the mean plume thickness using horizontally oriented diffusion is
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increased with an increase in diffusivity (Fig. 5.17). The zonal mean vertically
integrated tracer distribution (Fig. 5.17c) indicated that the value of lateral
dissipation has much stronger influence on the overflow simulations when it
is oriented in the horizontal direction, which could create dominant diapycnal
mixing overwhelming other applied diapycnal mixing parameterizations in the
model.

With horizontal dissipation
15 days 40 days

(a)
low
Kh Ah

(b)
high
Kh Ah

Figure 5.16: Instantaneous bottom tracer concentration on the σ grid for runs
with lateral dissipation oriented in the horizontal: (a) Si2hor, (b) Si2Hhor.
Results after 15 days (left) and 40 days (right) are shown for each run. In-
creasing along-geopotential diffusivity not only supresses eddies, but also leads
to more dilution.

The influence of the orientation of the lateral diffusion in σ coordinate mod-
els has been discussed since a long time (e.g., Beckmann and Haidvogel, 1997).
In traditional σ coordinate models the natural orientation of the lateral diffu-
sive/viscous operators is along σ surfaces. An along-σ subgrid mixing can be
decomposed to horizontal and vertical components. Beckmann and Haidvogel
(1997) suggested to use geopotentially oriented mixing to avoid the smoothing
effect in the vertical direction when the vertically propagating internal waves
are important. However, along-σ diffusion is commonly used in the simulation
of density driven overflows in FD σ coordinate models (e.g., Ezer and Mellor,
2004). The intrinsic properties of density driven overflows (bearing in mind
that the isopycnal direction is mostly along the bottom topography slope)
support, also can benefit from, the usage of along-σ diffusion.
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Figure 5.17: Cross section of tracer concentration at 100 km downstream of
the embayment after 40 days for runs with lateral dissipation oriented in the
horizontal: (a) Si2hor and (b) Si2Hhor. Contour interval is 0.1. (c) shows
the zonal mean vertically integrated tracer for these two cases (thick curves),
where their counterparts with along-σ dissipation are also shown (thin curves)
for an easy comparison. An increase in horizontal diffusivity leads to a thicker
plume. Changing horizontal diffusivity has stronger influence on the tracer
distribution than changing the along-σ diffusivity.

c) Sensitivity to the vertical mixing parameter

With the limiting value of vertical mixing coefficients increased to Av0 =
0.2 m2 s−1, both the allowed maximum vertical diffusivity and vertical vis-
cosity are increased. Enhanced diapycnal mixing and Ekman transport play
the role together. When the diapycnal mixing for tracers is increased, the
dense plume is expected to be thicker. As shown in Fig. 5.13, the mean plume
thickness increases with an increase in the limiting value Av0 on all the grids.
The same trend can also be observed in the tracer cross sections (Figs. 5.9 to
5.12). The zonal mean vertically integrated tracer (Fig. 5.14f) shows that the
location of maximum tracer thickness moves further offshore at higher limiting
value Av0 on all different grids, although the sensitivity is dependent on the
grids. At higher Av0 there is a much broader region of high tracer thickness
at the downslope side of the plume in the σ grid simulation. On the partly
shaved cell grid, the location of maximum tracer thickness is about 30 km
further downslope than in the reference run. The increase in downslope pen-
etration on the fully shaved cell grid is not so large, mainly due to its coarse
vertical resolution. Although the location of maximum tracer thickness on the
full cell grid is not significantly changed, there is also more tracer located at
the downslope side of the plume when the limiting value Av0 is increased.
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5.3.5 Entrainment and transport

As the overflow descends it entrains the ambient fluid, which modifies the
tracer properties and increases the volume of the dense water mass (Price and
Baringer, 1994; Girton and Sanford, 2003). Therefore, the ability to properly
represent entrainment in overflows is of importance for a numerical model. In
this section the properties of entrainment obtained with different vertical grids
are to be examined.

a) Volume transport

By defining the dense plume by tracer concentration values greater than 0.01,
the along slope transport can be calculated as (Legg et al., 2006)

T(x) =

∫
A

u(x, y, z) dydz, A is such that c > 0.01, (5.6)

where u(x, y, z) is the zonal velocity. The spatial variation of the along slope
transport is useful to quantify the entrainment. Strong variation in transport
associated with meandering and eddies has been found in all runs, consistent to
observations (Girton and Sanford, 2003) and model studies (Käse et al., 2003).
The variation in transport can be attributed to the covariation of velocity and
cross section area of the plume.

For an easy comparison, the zonal transport averaged over one week after
40 days for different runs is taken and shown in Fig. 5.18. The significant
increase in zonal transport occurs mostly within the first 200 km downstream
the inlet except for the coarsest z-level grid runs. The σ grid runs show much
less variability in zonal transport than other grids when resolution is changed.
On the σ grid, further increase in the zonal transport after x = −200 km only
occurs at the coarsest resolution (20 km), and a trend of decrease in zonal
transport after x = −200 km is found in both the 5 km and 2.5 km resolution
σ runs.

On the full cell and partly shaved cell grids with resolution 20 km, the
increase in transport within the first 200 km is quite small, and the transport
continues increasing at a similar rate further downstream. On the z-level grids
(full cell, partly and fully shaved cell grids) a decrease in transport (imply-
ing detrainment) after x = −200 km is only found at the highest resolution
(2.5 km). At this resolution, the transport derived from the σ-grid and partly
shaved cell grid runs are quite similar to each other showing similar maxi-
mal transport (amount and location) and the mean rate of (relatively small)
detrainment after x = −200 km.

In the high lateral diffusivity runs using full cell and partly shaved cell
grids (Fig. 5.18e), the zonal transport is larger than in the low diffusivity runs,
consistent to the larger plume thickness observed in higher horizontal diffusion
runs (Fig. 5.13). On the contrary, a decrease in the zonal transport is observed
on σ grids with an increase in along-σ mixing, as implied by the reduced
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Figure 5.18: The along-slope transport averaged over one week after 40 days:
for reference runs with horizontal resolution (a) 20 km, (b) 10 km, (c) 5 km,
(d) 2.5 km; for (e) runs with lateral diffusivity of 100 m2 s−1; and for (f) runs
with vertical mixing coefficient limiter value of 0.2 m2 s−1 with resolution of
10 km. The zonal transport on σ grids has less sensitivity to resolution than
on other grids. A trend of weak detrainment beyond 200 km from the inlet
can be observed on σ grids at both 5 and 2.5 km horizontal resolution. The
transport on the full cell and shaved cell grids starts to converge to that on the
σ grid at 2.5 km horizontal resolution. Note that the same vertical resolution
(25 m) is used for both the 5 and 2.5 km z-level grids, and the difference in
results implies that z-level grids need higher horizontal resolution to properly
resolve the overflow.
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dilution and plume thickness in the high dissipation run. The transport in
the fully shaved cell grid is not changed significantly, mostly due to its coarse
vertical resolution which, in this situation, could be a more important factor
influencing the entrainment. Although a one week averaging is taken for the
computation of transport, oscillations in transport can still be observed in
reference runs, whereas oscillations are almost suppressed in high dissipation
runs.

The influence of vertical mixing parameterizations on zonal plume trans-
port is shown in Fig. 5.18f. Clear influence can be observed on all grids except
the fully shaved cell grid. Increase in plume transport is enhanced in the partly
shaved cell and full cell grids within the first 200 km from the source. The
σ grid transport shows quite large oscillations at the downstream side. This
can be explained by the fact that the along-slope propagation is slowed down
when the plume is more diluted and farther transported downslope, and the
head of the dense plume has just passed by the location of strong oscillations.
It appears that the σ run with Av0 = 0.2 m2 s−1 at 10 km resolution does not
reach a quasisteady state in the whole domain after 40 days.

b) Tracer distribution in the density space

The total tracer distribution as a function of along slope distance and density
anomaly ΔσT (referenced to surface in kg m−3) has been proposed by Legg
et al. (2006) to illustrate the property of dense plume water formation. Figures
5.19 and 5.20 show this diagram for simulations at 10 km and 5 km resolution,
respectively. The source water is located at the lower right corner of the
diagram, with density anomaly of 2 kg m−3 as prescribed for inflow conditions.
In both resolution σ runs, the maximum in tracer moves rapidly to lighter
density classes as the overflow moves westward and downslope. The diapycnal
mixing occurs mainly within 100−200 km from the inlet, after which the tracer
maximum is not changed significantly, remaining between 1.4 < ΔσT < 1.6
at both resolutions. The region of strong diapycnal mixing coincides with the
region of significant entrainment (increase in transport), so the entrainment
is largely diapycnal, as expected from the previous study employing the non-
hydrostatic physics (Legg et al., 2006). The plume is clearly less diluted on
the σ grid than on others, indicated by a smaller region of density classes not
reached by overflows (the blue region at the bottom of the diagram).

In the full cell simulations diapycnal mixing and entrainment appears to
occur over a longer distance. The maximum tracer is located at about ΔσT =
1.1 in the 10 km run, associated with a lighter neutral buoyancy level than
in the σ simulation. When the resolution is increased to 5 km, entrainment
is reduced on the z-level grids, indicated by denser plume water. Both the
partly and fully shaved cell simulations show a distance of strong diapycnal
mixing similar to that in the σ runs. Although the maximum tracer is located
in lighter density classes on the partly and fully shaved cell grids than on the
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σ grids, the partly and fully shaved cell grids have less diluted plume water
than the full cell grid.

The final plume density (anomaly to the surface) averaged over −600 km <
x < −200 km for different reference runs is shown in Fig. 5.22. This plot
clearly shows that the mean density increases with an increase in resolution on
different grids except for the finest σ grid run. The σ grid simulations have the
least resolution sensitivity. At each resolution, the mean plume density is the
highest on the σ grid, then the second highest on the partly shaved cell grid.

Δx = 10 km

(a) σ grid (b) full cell

(c) partly shaved cell (d) fully shaved cell

Figure 5.19: Total tracer averaged over one week after 40 days as the function
of downstream distance (x) and density anomaly class (y) for runs at 10 km
resolution: (a) Si2, (b) FC2, (c) PSC2, (d) FSC2. The overflow is less entrained
on the σ grid than on others. Entrainment takes place mainly within the region
100-200 km from the inlet on the σ and shaved cell grids, but over a longer
distance on the full cell grid.
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Δx = 5 km

(a) σ grid (b) full cell

(c) partly shaved cell (d) fully shaved cell

Figure 5.20: As Fig. 5.19 but for runs at 5 km resolution: (a) Si3, (b) FC3,
(c) PSC3, (d) FSC3. Entrainment is reduced on all the z-level grids with the
increase in resolution.

Δx = 10 km, σ grid, high Kh

(a) along-σ diffusion (b) horizontal diffusion

Figure 5.21: As Fig. 5.19 but for σ runs with high diffusivity of 100 m2 s−1: (a)
along-σ Si2H, and (b) along geopotential direction Si2Hhor. This comparison
clearly shows the diapycnal mixing effect of the horizontally oriented diffusivity.
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The partly shaved cell grid results converge to the σ grid results faster than the
full cell runs, especially at the finest resolution. The fully shaved cell grid has
plume density similar to that in the full cell grid, and lower than in the partly
shaved cell grid. Once again this is due to the coarser vertical resolution used
in the fully shaved cell grid, which appears coarser than required for solving
the dense plume.
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Figure 5.22: Overflow plume density (anomaly to surface) averaged over
−600 km < x < −200 km as the function of resolution. The σ grid pro-
duces a denser overflow plume, and it is not very sensitive to the horizontal
resolution. With increased resolution (both horizontal and vertical), the plume
density on z-level grids starts to converge to that on the σ grid. Plume density
increases further on the partly shaved cell grid when horizontal resolution is
increased from 5 km to 2.5 km (at the same vertical resolution), which demon-
strates the higher requirement for horizontal resolution by z-level grids. The
results on the fully shaved cell grids, which have lower vertical resolution than
other grids, emphasize the importance of vertical resolution.

Consistent to the findings from the plots of plume transport, both an in-
crease in lateral diffusivity and an increase in vertical mixing coefficients can
cause more tracer to be distributed in lighter buoyancy classes on the full cell
and partly shaved cell grids (diagram not shown). However, an increase in
lateral diffusivity causes more tracer to be in heavier water classes on the σ
grid (Fig. 5.21a). On the contrary, in the σ run with geopotentially oriented
diffusivity of 100 m2 s−1 (Fig. 5.21b), most tracer is located in much lighter
buoyancy classes, indicating stronger entrainment, as can be expected from
the increased plume thickness (Fig. 5.13) and reduced bottom tracer concen-
tration (Fig. 5.16). As stated previously, it is the increased diapycnal mixing
contributed from the geopotentially oriented diffusion that directly enhanced
the simulated entrainment.
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c) Vertical mixing coefficients

The vertical viscosity (5.1) in the cross section at x = −50 km after 40 days
for each run is shown in Figs. 5.23 and 5.24. Parameterized vertical diffusivity
is not shown here, from which the same general conclusions can be drawn
as below. Larger vertical viscosity (corresponding to smaller local gradient
Richardson number) is mostly found at the upslope side of the plume, which is
consistent to previous simulations (Ezer, 2005; Tseng and Dietrich, 2006). In
the reference runs, the σ grid has smaller regions of viscosity above 0.03 m2 s−1

(blue patches) than the full cell and partly shaved cell grids in coarse resolution
runs. Larger viscosity (also diffusivity) found in full cell and partly shaved cell
grids indicates excessive vertical mixing due to the effects of artificial stairs.
So more diluted plume is generally found in these grids (Fig. 5.22). With an
increase in resolution the area of large vertical viscosity is reduced, as expected
from the better resolved bottom mixing layer in the fine resolution full cell and
partly shaved cell runs (Fig. 5.15). On the fully shaved cell grid, there is no so
excessive vertical mixing as in the full cell and partly shaved cell grids because
of its accurate bottom representation. In fact, the vertical mixing coefficient in
the fully shaved cell grid is even smaller than that on the σ grid. This should
be attributed to larger gradient Richardson numbers caused by the poorly
resolved (smaller) velocity shear with coarser vertical resolution in the fully
shaved cell grid.

On all grids, increasing permitted maximum vertical mixing coefficients
leads to much larger regions of strong vertical mixing, which is responsible
for enhanced entrainment and thicker plume (Fig. 5.13). With an increase
in lateral diffusivity/viscosity, regions with large parameterized vertical mix-
ing coefficients are more confined to the bottom, shown by thinner areas of
contour lines in all high diffusivity/viscosity runs. Reduction in areas of large
vertical mixing coefficients is not necessary related with a thinner plume. As
previously stated, decrease in plume thickness with an increase in lateral dis-
sipation is only found in the σ grid experiments when along-slope diffusiv-
ity/viscosity is applied. It appears that diapycnal mixing due to horizontally
oriented diffusivity plays an important role in having larger entrainment and
plume thickness on z-level grids. This point becomes clearer by comparing
the Si2H and Si2Hhor cases. In the Si2Hhor case, the parameterized vertical
mixing coefficients are smaller, while the plume is much more diluted (Fig.
5.16b).

5.4 Summary

In this section FEOM has been used to simulate overflows in the idealized
DOME configuration. Our major attention was to the influence of different
types of vertical discretization supported by FEOM on the properties of the
simulated plume. However, issues such as resolution and subgrid scale mixing
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Figure 5.23: Vertical viscosity (AV in unit of 10−4 m2 s−1) in the cross slope
section 100 km downstream the inlet after 40 days for σ and fully shaved cell
grids. The contour lines for [1, 10, l00] are shown; the contour line for 100 is
in red. Blue patches represent areas with values between 300 and 500, and the
green patches for areas with values above 500. Note that the parameterized
vertical mixing is small in (h), where large horizontal diffusivity is used. So
strong dilution observed in this case is attributed to the diapycnal mixing due
to the horizontal diffusion.
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Figure 5.24: As Fig. 5.23 but for full cell and partly shaved cell grid runs.
Note that the vertical mixing coefficient is larger on the full cell and partly
shaved cell grids than their counterpart of σ grids in Fig. 5.23. But the full
cell grids have larger vertical mixing than the partly shaved cell grids.
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are also important factors determining the properties of overflows. The study
here touched these aspects, too.

In the σ (also z +σ) grid simulations the DOME overflow plume converges
to a low-diluted solution very fast with the increase in resolution. The 5 km
resolution run appears to be able to fully resolve large scale structures. The
σ grid shows less sensitivity to resolution than other grids. Even the coarsest
σ run still reproduces the pattern obtained at finer resolution. The dense
plume features, including plume thickness, downslope penetration distance,
large scale eddies, and the accompanying diapycnal mixing and entrainment
on the σ grid agree well with previous studies (e.g., Ezer and Mellor, 2004;
Ezer, 2005; Legg et al., 2006).

The volume transport on σ grids is increased by a factor of 2-3 within the
first 100 to 200 km from the entrance, accompanied by strong entrainment
and dilution in this region. A slight but clear detrainment beyond 200 km
from the source was observed in σ runs at resolution of 5 and 2.5 km. The
occurrence of detrainment has also been reported by Ezer (2005). Although
more observations are required to justify the location of detrainment in the real
ocean, the finding in the current work is consistent to the study of Killworth
(2001). Through a simple dynamical analysis under the assumption of local
turbulent equilibrium, Killworth (2001) argued that entrainment is confined
to small regions where topography varies rapidly, whereas detrainment can be
expected when the slope angle is uniform (or decreasing) and the stratification
of the surrounding water is stable.

The dense plume simulated on full cell grids is confined to the northern
boundary and is excessively diluted when the resolution is not very fine. The
difficulty of z-level grids in simulating overflows is mainly due to its step-
like bottom representation. Static instability over these artificial “stairs” can
result in intensive spurious vertical mixing, leading to overestimated dilution.
By introducing shaved cells at the bottom, the z-level grid can better resolve
the overflow dynamics and mixing. At 2.5 km resolution the partly shaved cell
simulation results appear to approach the σ grid results in terms of downslope
propagation, bottom mixing layer thickness and final plume density, but finer
resolution could still be required for the partly shaved cell grid to converge
to the less diluted plume of the σ solution. Strong resolution dependence in
z-level grid simulations has been generally observed. Similarly, the study by
Legg et al. (2006) shows that isopycnal models also have less sensitivity to
resolution than z-level models.

The fully shaved cell grid (Fig. 1.3b) can represent topography accurately.
In the current work, simulating overflows did not benefit more from this ac-
curate continuous bottom representation than from general partly shaved cell
grid which could contain artificial “stairs” in places, because the fully shaved
cell grid is realized by reducing vertical resolution (to match the fixed horizon-
tal resolution). Deciding which kind of shaved cell grid is beneficial appears to
be application dependent. The results from the experiments with fully shaved
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cell grids confirmed the necessary vertical resolution, O(25 m), for this model
configuration.

With an increase in horizontal dissipation, the overflow plume is more
diluted and gets more entrained on z-level grids. On the σ grids, increasing
the along-σ mixing leads to a slightly thinner plume. But when diffusivity is
oriented in the geopotential direction, the plume simulated on the σ grid will
also be more diluted. The reason is horizontally aligned diffusion can lead to
diapycnal mixing and entrainment. Applying along-σ diffusion on the σ grid
can avoid interacting with vertical mixing scheme. To avoid such numerical
entrainment, high horizontal diffusivity/viscosity should not be used when
simulating overflows on z-level grids, which is also suggested by the work of
Tseng and Dietrich (2006). One general remedy is to use isoneutral diffusion.

The Richardson-number-dependent mixing scheme (Pacanowski and Phi-
lander, 1981) can approximate vertical mixing well. Its role in mixing tracers
to provide necessary entrainment and in downslope Ekman transport is il-
lustrated through sensitivity studies. The vertical mixing coefficient shows a
spatially asymmetric structure across the plume with stronger mixing over a
thicker BBL at the upslope side of the plume, as shown in Ezer (2005) and
Tseng and Dietrich (2006). The Mellor-Yamada turbulence scheme (Mellor
and Yamada, 1982) has been shown to be able to approximate vertical mix-
ing properly using the DOME configuration by Ezer (2005). The remaining
difference in detailed plume features (e.g., the across-slope tracer distribution)
indicates that further research on entrainment approximation is required. Yet
final answer can only be found by combining field observations, laboratory
studies and model simulations.

Although partly and fully shaved cell grids are not so successful as σ grids
in simulating bottom trapped overflows, it has been shown that they can at
least reduce grid scale errors induced by artificial “stairs” in the z-level grid
(Chapter 3 and 4, also see Adcroft et al., 1997; Pacanowski and Gnanadesikan,
1998). Therefore, their application in OGCM can improve the representation of
ocean topography and the ocean circulation. Note that pressure gradient errors
on grids with skewed lattices (in σ coordinate models and also in FEOM when
σ grid is used) cannot be fully eliminated even with the most sophisticated
methods (Ezer et al., 2002). In the partly and fully shaved cell grids the
pressure gradient errors exist only in the bottommost elements (when one layer
of shaved cells applied), whereas pressure gradient errors pollute solutions in
all σ layers in a σ grid. When both the general circulation and dense water
formation are to be more accurately simulated, the z + σ grid (Fig. 1.2c) is
recommended. The number and resolution of σ layers at the bottom can be
chosen according to applications.
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Conclusions

Bottom topography determines the physics of many processes in the ocean, yet
its proper representation in ocean circulation models still presents a challenge
for the modelling community. An approach proposed in this work suggests
several solutions which are realized within a new version of FEOM and allow
the bottom topography to be represented continuously or partly continuously
in the numerical domain. FEOM supports a hybrid or generalized vertical
discretization which does not require the number of vertical layers be the same
within the model domain. It can work on σ grids and grids combining z and
σ levels, and also supports (partly) shaved cell bottom representation within
the z-level framework.

The choice of the vertical grids is delegated to the mesh design, so the sup-
port for different types of vertical grids and bottom representation is realized
within the same numerical core. This is possible because the grid is treated as
a collection of elements in FEOM.

The performance of different grid types was studied in this work by simulat-
ing the eddy shedding off a Gaussian seamount, lee waves downstream it, the
topographic waves in a rotating stratified channel, and dense water overflows
under the framework of the DOME configuration. The five grid types explored
here include the old-fashion full cell z-level grid, the σ grid, the combined z+σ
grid, and z-level grids with partly and fully shaved bottom cells.

The main question answered in this work is how these grids perform. Ad-
ditionally, since the test cases were specially selected among those that are
sufficiently well documented in the literature, the intercomparison results can
be considered as tests of the overall FEOM performance, which are successfully
passed.

The main results of this work are formulated below.

1. The support for hybrid vertical grids is implemented in FEOM. The
model as a whole is also developed to be more efficient and versatile for
ocean modelling.

2. A nonlocal spline interpolation method is suggested and implemented
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for the computation of pressure gradients. By comparing the spurious
velocity and kinetic energy caused by pressure gradient errors on σ grids
in a standard seamount configuration, this method is shown to be much
more accurate than a direct calculation method described in Ford et al.
(2004a), and reaches the level of state-of-the-art techniques employed in
FD σ coordinate models.

3. It is shown that the z + σ and shaved cell grids clearly reduce the pres-
sure gradient errors with respect to the pure sigma grid in the standard
seamount configuration.

4. Simulations of steadily forced flow past an isolated seamount show that
full cell z-level grids are incapable of producing correct fields of density
and vertical velocity. Modifying these grids with (partly) shaved bot-
tom elements improves the grid performance considerably. The partly
shaved cell grid can still contain grid-scale noise over the steep part of
the topography where vertical walls are allowed. The noise disappears if
the whole bottom is continuously represented by employing fully shaved
cells. Results obtained with the σ and z + σ grids are almost identical,
and are also very similar to those obtained on σ grids by others.

5. In the simulation of topographic waves in a rotating stratified channel,
the full cell grid produces unrealistic dispersion relation because it cannot
resolve gentle slopes at moderate vertical resolution commonly used for
the deep ocean. After adding shaved cells to the z-level grid (i.e., to
realize continuous bottom representation) the dispersion relation for such
topographic waves can be reproduced very accurately.

6. Both σ and z + σ grids approximate density-driven overflows in the
DOME configuration with very similar skills in terms of plume thickness,
downslope propagation distance, entrainment and final density classes.
They have much less resolution sensitivity than other grids that we em-
ployed. Their results compare well with those obtained with σ and isopy-
cnal models by other authors. The solutions on partly shaved cell grids
can approach those on σ grids, yet excessively high horizontal and verti-
cal resolution is required to achieve it.

Discontinuity in the bottom topography representation can indeed influence
model simulation results. However, removing the discontinuities of the bottom
with the shaved cells does not always solve all problems, as solutions still
depend on vertical resolution (for a fixed horizontal mesh). In this respect
σ and z + σ grids are better suited to problems involving essential dynamics
close to bottom as they can easily provide necessary vertical resolution there.
Considering the problem of pressure gradient errors, the z + σ grids are more
beneficial in realistic oceanographic applications.
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In addition to vertical discretization and bottom representation, the dy-
namics can also be affected by the orientation of diffusivity, as spurious diapy-
cnal mixing generated by horizontal or along-sigma diffusion can interact with
adopted diapycnal mixing approximations. In the particular case of simulating
overflows, along-sigma diffusion is found to be superior to horizontal diffusion
simply because isopycnals are mainly parallel to the slope in this case. Neutral
physics dominates in the interior of the ocean, so diffusion in the isoneutral di-
rection should be applied in large scale simulations, the functionality of which
is available in FEOM.

This work opens perspectives of using FEOM in studies of dense water
formation processes in the world ocean. The effects of topographic steering by
seamounts and canyons and the influence of tides are to be explored in both
an idealized configuration and in a regional model of the Weddell Sea as a
continuation of the current work. The coupling of the current model with a
sea ice module based on the FE method is under testing. The coupled model is
planned to be used for regional studies on the Arctic Ocean and the Southern
Ocean.
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Appendix A

Primitive equations in general
coordinates

This appendix shows the primitive equations in a general coordinate and illus-
trates some properties of particular coordinate formulations. More background
for the coordinate transformation can be found in Haltiner and Williams (1980)
and Griffies (2004). Overviews of different models are referred to Haidvogel
and Beckmann (1999) and Griffies et al. (2000a).

The hydrostatic primitive equations in a general or hybrid coordinate,
(x, y, s), can be written as:

Dtu + fk × u +
1

ρ0

∇sp +
gρ

ρ0

∇sz = F (A.1)

∂sp + gρ∂sz = 0 (A.2)

∂tη + ∇ ·
∫

u ∂sz ds = P (A.3)

∂t(∂sz) + ∇s · (∂sz u) + ∂s(∂sz ṡ) = 0 (A.4)

DtC = q (A.5)

ρ = ρ(T, S, z), (A.6)

where F is the horizontal force resulting from stresses, P is the fresh water
source, C stands for potential temperature T or salinity S, q is the correspond-
ing source for tracer C, ∇s is the horizontal gradient taken along surfaces of
constant generalized vertical coordinate s, and the total time derivative of a
property φ denotes:

Dtφ = ∂tφ|s + u · ∇sφ + ṡ∂sφ. (A.7)

Note that the z coordinate equations can be readily recovered from above
expressions by setting s = z.

By defining a transformation relation s = σ ≡ σ(x, y, z), one gets the
terrain-following or σ coordinate equations. A properly chosen transformation
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relation (e.g., Song and Haidvogel, 1994) can provide refined vertical resolution
where it is required, for instance, in both the surface and bottom boundary
layers. In σ coordinate models, the pressure gradient force in the horizontal
momentum equation (A.1) is:

1

ρ0

∇zp =
1

ρ0

∇σp +
gρ

ρ0

∇σz, (A.8)

where ∇zp is the horizontal pressure gradient taken along surfaces of constant
depth z. On slopes of continental shelves and seamounts, the two terms on the
right-hand side of the above expression could be on the same order. In this
situation, a very accurate numerical representation of these two terms should
be employed in order to obtain an accurate pressure gradient force, otherwise
the “pressure gradient error” could cause severe spurious motion. For reviews
of the development of σ coordinate models one is referred to Greatbatch and
Mellor (1999) and Ezer et al. (2002).

When the vertical coordinate is the potential density, the proxy of entropy,
the horizontal momentum equation (A.1) can be written as:

Dtu + fk × u + ∇ρM = F , (A.9)

where M ≡ p/ρ0 + ρgz/ρ0 is the Montgomery potential, and the hydrostatic
equation becomes

∂ρM =
gz

ρ0

. (A.10)

It is assumed that potential density is equal to in situ density in the above
derivation, that is, the equation of state is linear. In this case, the pressure
gradient force in the horizontal momentum equation (A.9) consists of only one
term, so isopycnal models do not suffer from the problem of pressure gradient
errors. The continuity equation (A.4) in the isopycnal model is written as:

∂t(∂ρz) + ∇ρ · (∂ρz u) + ∂ρ(∂ρz ρ̇) = 0, (A.11)

which becomes a layer thickness equation for each density class. Isopyc-
nal coordinate models maintains all spurious mixing within density classes,
and do not allow spurious diapycnal mixing. This is a distinct advan-
tage of isopycnal coordinate models. For details about the realization of
isopycnal coordinate models, one is referred to the descriptions of HIM
(http://www.gfdl.noaa.gov/~rwh/HIM/HIM.html) and MI-COM (http://
oceanmodeling.rsmas.miami.edu/micom/).

Each single coordinate has its advantages, but each has particular diffi-
culty in faithfully representing the large scale circulation over climate time
scales. Efforts have been made to employ a z or pressure coordinate for the
surface boundary layer, an isopycnal coordinate for the ocean interior, and
σ coordinate near the bottom in hybrid coordinate models (e.g., HYCOM,
Bleck, 2002). One essentially important utility in hybrid coordinate models
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is the so-called vertical grid generator (Bleck, 2002, 2006), which determines
where different coordinates are located and how particular layer thickness is
constrained or made massless.
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Appendix B

A list of symbols

Table B.1: Symbols

symbol meaning

Ah horizontal viscosity
Av vertical viscosity

Av0, α, n control parameters in the vertical mixing scheme
B matrix of the bottom stress term in the momentum equation
Bu Burger number
c phase speed
c1 approximate first baroclinic gravity wave speed
C tracer; stand for T or S
Cd bottom drag coefficient
C matrix of the hydrostatic pressure term
d ocean depth (distance from the surface)

DΦ matrix of the velocity divergence term in the continuity equation
Ek Ekman number
f Coriolis parameter

f1, f2 tapering functions in the neutral physics scheme
f1, f2 boundary forcing in discrete momentum and elevation equations
F stress force in the horizontal momentum equation

F (σ) the σ grid stretching function
Fe,i antidiffusive flux from element e to node i in the FCT scheme
F Redi diffusive flux, or the full SGS flux

Fskew GM skew flux
Fr Fround number
g gravitational acceleration
G matrix of the surface pressure term in the momentum equation

hmin minimum ocean depth in the model domain
h(x, y) ocean bottom depth

H vertical length scale
H matrix of the Laplacian term in the elevation equation

kx, ky zonal and meridional wavenumbers
k vertical unit vector
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Table B.1: Symbols

symbol meaning

Kh horizontal diffusivity
Kv vertical diffusivity
KI isoneutral diffusivity
KD dianeutral diffusivity

KRedi Redi diffusion tensor
K,K′ matrix of the diffusion term in momentum and tracer equations

L horizontal length scale
L matrix of the Coriolis term in the momentum equation
M Montgomery potential

{Mj} 2D basis functions
M number of nodes in the 2D mesh
M mass matrix

MC ,ML consistent mass matrix and lumped mass matrix
Mu,Mη,M

′ mass matrix in equations of momentum, elevation and tracers
MΦ matrix of the left-hand side operator in the continuity equation
n 2D normal unit vector
n3 3D normal unit vector
N buoyancy frequency

{Nj} 3D basis functions
N number of nodes in the 3D mesh
N matrix of the advection term in the momentum equation

Ns,Ls

Cs,Gs
matrix of the stabilization terms in the momentum equation

N′ matrix of the advection term in tracer equations
N′

s matrix of the stabilization term in tracer equations
O matrix of the open boundary term in the elevation equation
OΦ matrix of the open boundary term in the continuity equation
p hydrostatic (baroclinic) pressure
pf full pressure
P fresh water source
P± sum of positive and negative antidiffusive flux in the FCT scheme

Px,Py the x and y components of the pressure gradient forces
q surface flux for T or S
Q combination of particular terms in tracer or momentum equations

{Qk} discontinuous piecewise-linear basis functions
Q the number of discontinuous functions {Qk}
Q± admissible variable increment in the FCT scheme
R rotation matrix
R± bounds for limiting factors in the FCT scheme

R, Rx, Ry discrete equations’ right-hand side and its x and y components
Ro Rossby number
Ri local gradient Richardson number
s general vertical coordinate
S salinity
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Table B.1: Symbols

symbol meaning

S, Sx, Sy neutral slope and its x, y components in describing neutral physics
Smax, Sd parameters in the tapering function f1

S matrix for the wind stress term in the momentum equation
S′ matrix of the surface flux term in the tracer equation
SΦ matrix for the surface integration term in the continuity equation
t time
T potential temperature
u horizontal velocity
u∗ auxiliary horizontal velocity
v 3D velocity
v∗ advective bolus velocity

u, v, w the three components of velocity
urot,ut,un rotated velocity vector and its tangential and normal components

u⊥
OB open boundary velocity

U⊥
OB vertically integrated open boundary velocity
U general one dimensional velocity

x, y, z Cartesian directions
x(ξ) coordinate mapping between the parent domain and Ω
tan α topography slope
α, β, d parameters used in the implicit form of the dynamical equations

αe limiting factor in the FCT scheme
γ parameter controlling the strength of pressure mode stabilization
δ traveling distance used in describing CG method
δ fractional height of seamount elsewhere
ε the ratio of the dianeutral to isoneutral diffusivity

εAB parameter stabilizing the second-order Adams-Bashforth method
ε parameter determining the antidiffusive flux in the FCT scheme

ζ̂/f vertically integrated relative vorticity
η surface elevation
θ θ method representing the temporal discrete form

θ1, θ2 σ grid stretching parameters
κ skew diffusivity
λ1 the first baroclinic Rossby radius
μ Courant number

ξ, (ξ, χ, ζ) coordinates in the parent domain
ρ density
ρ0 (Boussinesq) mean density
σ sigma coordinate or grid
τ wind stress
φ general variable (a tracer or one velocity component)
Φ potential of vertical velocity
ω angular velocity
Ω model’s physical domain
Ωe element e in the physical domain
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Table B.2: Abbreviations
ACC Antarctic Circumpolar Current
ALE arbitrary Lagrangian Eulerian
BBL bottom boundary layer
CBS characteristic-based split
CG characteristic-Galerkin
DSO Denmark Strait Overflow
FCT flux-corrected transport
FD finite difference
FE finite element
FV finite volume
GLS Galerkin least-squares
GM Gent-Mcwilliams

OGCM ocean general circulation model
PCT pointwise-corrected transport
RMS root mean square
SGS subgrid scale
lhs left-hand side
rhs right-hand side
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Beckmann, A., Döscher, R., 1997. A method for improved representation of dense
water spreading over topography in geopotential-coordinate models. Journal of
Physical Oceanography 27, 581–591.

Beckmann, A., Haidvogel, D. B., 1993. Numerical-simulation of flow around a tall
isolated seamount 1. problem formulation and model accuracy. Journal of Physical
Oceanography 23, 1736–1753.

Beckmann, A., Haidvogel, D. B., 1997. A numerical simulation of flow at Fieberling
Guyot. Journal of geophysical research 102, 5595–5613.

Beckmann, A., Timmermann, R., Pereira, A. F., Mohn, C., 2001. The effect of flow
at Maud Rise on the sea-ice cover - numerical experiments. Ocean dynamics 52,
11–25.

Blazek, J., 2001. Computational fluid dynamics: Principles and applications. Else-
vier.

Bleck, R., 2002. An oceanic general circulation model framed in hybrid isopycnic-
Cartesian coordinates. Ocean Modelling 4, 55–88.

129



130 BIBLIOGRAPHY

Bleck, R., 2006. Ocean Weather Forecasting: An Integrated View of Oceanogra-
phy. Springer, Ch. On the use of hybrid vertical coordinates in ocean circulation
modeling, pp. 109–126.

Bleck, R., Smith, L. T., 1990. A wind-driven isopycnic coordinate model of the
North and Equatorial Atlantic-Ocean 1. model development and supporting ex-
periments. Journal of Geophysical Research-Oceans 95, 3273–3285.

Blumberg, A. F., Mellor, G. L., 1987. A description of a three-dimensional coastal
ocean circulation model. In: Heaps, N. S. (Ed.), Three-Dimensional Coastal Ocean
Models. Vol. 4 of Coastal and Estuarine Series. American Geophysical Union, pp.
1–16.

Borowski, D., Gerdes, R., Olbers, D., 2002. Thermohaline and wind forcing of
a circumpolar channel with blocked geostrophic contours. Journal of Physical
Oceanography 32, 2520–2540.

Brasseur, P. P., 1991. A variational inverse method for the reconstruction of general-
circulation fields in the Northern Bering Sea. Journal of Geophysical Research-
Oceans 96, 4891–4907.

Brezzi, F., 1974. Existence, uniqueness and approximation of saddle-point problems
arising from Lagrangian multipliers. R. A. I. R. O. Anal. Numer. R2, 129–151.

Bruce, J. G., 1995. Eddies southwest of the Denmark Strait. Deep-Sea Research Part
I - Oceanographic Research Papers 42, 13–29.

Bryan, K., 1969. A numerical method for the study of the circulation of the world
ocean. Journal of Computational Physics 4, 347–376.

Campin, J. M., Goosse, H., 1999. Parameterization of density-driven downsloping
flow for a coarse-resolution ocean model in z-coordinate. Tellus Series a-Dynamic
Meteorology and Oceanography 51, 412–430.

Casulli, V., Walters, R. A., 2000. An unstructured grid, three-dimensional model
based on the shallow water equations. International Journal For Numerical Meth-
ods In Fluids 32, 331–348.

Cenedese, C., Whitehead, J. A., Ascarelli, T. A., Ohiwa, M., 2004. A dense current
flowing down a sloping bottom in a rotating fluid. Journal of Physical Oceanog-
raphy 34, 188–203.

Chapman, D. C., Haidvogel, D. B., 1992. Formation of Taylor caps over a tall isolated
seamount in a stratified ocean. Geophysical and Astrophysical Fluid Dynamics 64,
31–65.

Chapman, D. C., Haidvogel, D. B., 1993. Generation of internal lee waves trapped
over a tall isolated seamount. Geophysical and Astrophysical Fluid Dynamics 69,
33–54.



BIBLIOGRAPHY 131

Chassignet, E. P., Arango, H., Dietrich, D., Ezer, T., Ghil, M., Haidvogel, D. B.,
Ma, C. C., Mehra, A., Paiva, A. M., Sirkes, Z., 2000. DAMEE-NAB: the base
experiments. Dynamics of Atmospheres and Oceans 32, 155–183.

Chen, C., Liu, H., Beardsley, R. C., 2003. An unstructured, finite volume, three-
dimensional, primitive equation ocean model: Application to coastal ocean and
estuaries. Journal of Atmospheric and Oceanic Technology 20, 159–186.

Chu, P. C., Fan, C. W., 1997. Sixth-order difference scheme for sigma coordinate
ocean models. Journal of Physical Oceanography 27, 2064–2071.

Codina, R., Coppola-Owen, H., Nithiarasu, P., Liu, C. B., 2006. Numerical compar-
ison of CBS and SGS as stabilization techniques for the incompressible navier-
stokes equations. International Journal for Numerical Methods in Engineering 66,
1672–1689.

Codina, R., Soto, O., 1997. Finite element solution of the Stokes problem with dom-
inating Coriolis force. Computer Methods in Applied Mechanics and Engineering
142, 215–234.

Codina, R., Vazquez, M., Zienkiewicz, O. C., 1998. A general algorithm for com-
pressible and incompressible flows. Part III: The semi-implicit form. International
Journal for Numerical Methods in Fluids 27, 13–32.

Codina, R., Zienkiewicz, O. C., 2002. CBS versus GLS stabilization of the incom-
pressible Navier-Stokes equations and the role of the time step as stabilization
parameter. Communications in Numerical Methods in Engineering 18, 99–112.

Cox, M. D., 1984. A primitive equation three-dimensional model of the ocean. Tech.
rep., Geophysical Fluid Dynamics Laboratory.

Cox, M. D., 1987. Isopycnal diffusion in a z-coordinate ocean model. Ocean Mod-
elling 74, 1–5.

Danabasoglu, G., McWilliams, J. C., 1995. Sensitivity of the global ocean circulation
to parameterizations of mesoscale tracer transports. Journal of Climate 8, 2967–
2987.
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Danilov, S., Kivman, G., Schröter, J., 2005. Evaluation of an eddy-permitting finite-
element ocean model in the North Atlantic. Ocean Modelling 10, 35–49.

Dietrich, D. E., 1998. Application of a modified Arakawa ’a’ grid ocean model having
reduced numerical dispersion to the Gulf of Mexico circulation. Dynamics Of
Atmospheres And Oceans 27, 201–217.

Dietrich, D. E., Mehra, A., Haney, R. L., Bowman, M. J., Tseng, Y. H., 2004. Dis-
sipation effects in North Atlantic Ocean modeling. Geophysical Research Letters
31.



132 BIBLIOGRAPHY
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Käse, R. H., Girton, J. B., Sanford, T. B., 2003. Structure and variability of the Den-
mark Strait Overflow: Model and observations. Journal of Geophysical Research
108, 3181.

Killworth, P. D., 2001. On the rate of descent of overflows. Journal Of Geophysical
Research-Oceans 106, 22267–22275.

Killworth, P. D., Edwards, N. R., 1999. A turbulent bottom boundary layer code for
use in numerical ocean models. Journal of Physical Oceanography 29, 1221–1238.

Kliem, N., 2004. A transport corrected finite element advection scheme. Ocean Mod-
elling 7, 1–19.

Kliem, N., Pietrzak, J. D., 1999. On the pressure gradient error in sigma coordinate
ocean models: A comparison with a laboratory experiment. Journal of Geophys-
ical Research-Oceans 104, 29781–29799.

Kunze, E., Sanford, T. B., 1996. Abyssal mixing: Where it is not. Journal of Physical
Oceanography 26, 2286–2296.

Kuzmin, D., 2000. A high-resolution finite element scheme for convection-dominated
transport. Communications in Numerical Methods in Engineering 16, 215–223.
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