
Generic XML-based Framework for Metadata

Portals ?

Uwe Schindler ∗, Michael Diepenbroek

Center for Marine Environmental Sciences (MARUM), University of Bremen,
Leobener Straße, D-28359 Bremen, Germany

doi:10.1016/j.cageo.2008.02.023

Received 25 June 2007; revised 2 February 2008; accepted 9 February 2008

Abstract

We present a generic and flexible framework for building geoscientific metadata
portals independent of content standards for metadata and protocols. Data can be
harvested with commonly used protocols (e.g., Open Archives Initiative Protocol
for Metadata Harvesting) and metadata standards like DIF or ISO 19115. The new
Java-based portal software supports any XML encoding and makes metadata search-
able through Apache Lucene. Software administrators are free to define searchable
fields independent of their type using XPath. In addition, by extending the full-
text search engine (FTS) Apache Lucene, we have significantly improved queries
for numerical and date/time ranges by supplying a new trie-based algorithm, thus
enabling high-performance space/time retrievals in FTS-based geo portals. The har-
vested metadata are stored in separate indexes, which makes it possible to combine
these into different portals. The portal-specific Java API and web service interface is
highly flexible and supports custom front-ends for users, provides automatic query
completion (AJAX), and dynamic visualization with conventional mapping tools.
The software has been made freely available through the open source concept.

Key words: spatial data infrastructure, metadata portal, metadata standard, open
archives, full-text search, Apache Lucene

? Program code available open source at http://www.panFMP.org/
∗ Corresponding author.

Email addresses: uschindler@pangaea.de (Uwe Schindler),
mdiepenbroek@pangaea.de (Michael Diepenbroek).

Article published in Computers & Geosciences 34 (2008) 1947–1955



1 Introduction

1.1 Background and Motivation

Complex and large-scale investigations carried out within many projects in the
fields of earth and biological sciences have produced a huge amount of observa-
tional and modelling data with extensive geographical and temporal coverage.
During the past decade there have been various initiatives and approaches in
networking global data services and related data stored in distributed archives.
The recently formed Group on Earth Observations (GEO) conceived a plan
for a Global Earth Observations System of Systems (GEOSS, see Battrick,
2005), which largely builds on the principles of Global Spatial Data Infras-
tructures (GSDI, see Nebert, 2004). Correspondingly, the Infrastructure for
Spatial Information in Europe (INSPIRE, see The European Parliament and
Council, 2007) is an EU directive to foster the coordination of geodata and
the interoperability of data services within Europe.

These two initatives clearly emphasize the need for portal frameworks to pro-
vide simple and transparent access to geoscientific data and metadata. In fact,
global standardization efforts have been quite successful in recent years, lead-
ing to some convergence in developments. Nevertheless, portal developers have
to cope with two problems: First, the fact that data providers have different
backgrounds and capabilities and furnish data and metadata using various pro-
tocols and content structures. In practice, puristic, homogeneous approaches
based on unique standards are likely to cause exclusion of at least part of the
potential data sources and – due to the dynamics in SDI development – might
result in a premature end of operation. Therefore, portal implementations are
needed that compensate for the heterogeneity of the standards employed. Sec-
ond, search engines like Google have changed the way scientist are searching
for publications and data. Users are accustomed to a single input line to en-
ter search terms, and expect fast response times in receiving results ranked
by their relevance. This requires a change from relational databases, which
are commonly used in geosciences for data retrieval, to full-text search (FTS)
engines (Bennett, 2004). A major drawback of FTS engines, however, is the
inability to perform numerical or date/time range retrievals, which are fre-
quently needed when searching for limited temporal or spatial coverages (e.g.,
for geographic bounding boxes). At present, these types of queries are the
strength of relational databases (which have limited full-text possibilities).
Therefore, FTS implementations are needed that support fast and effective
numerical range queries.

1948



1.2 State of the Art

A metadata portal is an online internet site that typically provides simple and
transparent access to distributed information resources. Metadata portals in
the geoscientific world are also known as “Spatial Data Directory”, “Clearing-
house”, “Geospatial One-Stop Portal” (Nebert, 2004, p. 40), or “Geo Portal”
(Maguire and Longley, 2005). In the scientific context, it is perceived as a
broker among a multitude of data centers, information systems, institutions,
organizations, and the scientific community (see Abad-Mota, 2001; Maguire
and Longley, 2005). Technically speaking, it is designed to use distributed
applications, different numbers and types of middleware and hardware, to fa-
cilitate the discovery and mining of data from a number of different sources.

1.2.1 Metadata

Metadata are data about data. They provide basic information about data and
the information can help archiving, discovering, and describing data. In gen-
eral, in the geosciences metadata at a minimum have to answer the questions:
Who has measured, observed, or calculated what, where, when, and how? A
number of metadata standards define the corresponding content structures for
collecting metadata. The most important ones in the geographic information
domain are ISO 19115 (Kresse and Fadaie, 2004), FGDC 1 , DIF 2 , and Dublin
Core 3 . These content standards allow users to identify data sets not only by
bibliographic information, such as authors, title, date, publisher etc.; they
also make available spatial or temporal coverage (Dublin Core only as nom-
inal values), parameters used, and data quality. For interoperability among
data centers, these metadata records are often encoded into XML documents
with well-defined schemas.

Having the compatibility of these major standards in at least the core fields,
it is basically possible to map fields to a common content structure and thus
to allow for consistent retrieval of metainformation. At present, however, ex-
isting portal software packages such as OJAX 4 only support single-content
standards. An improved interoperability between standards would give added
value to data providers and would foster the implementation of larger meta-
data networks and portals.

1 Federal Geographic Data Committee. http://www.fgdc.gov/metadata
2 Directory Interchange Format. http://gcmd.nasa.gov/User/difguide/
3 The Dublin Core Metadata Initiative – DCMI Metadata Terms. http://
dublincore.org/documents/dcmi-terms/
4 Ajax powered metasearch service. http://ojax.sourceforge.net/

1949

http://www.fgdc.gov/metadata
http://gcmd.nasa.gov/User/difguide/
http://dublincore.org/documents/dcmi-terms/
http://dublincore.org/documents/dcmi-terms/
http://ojax.sourceforge.net/


1.2.2 Search Technology for distributed Catalogues

Metadata portals allow users to search for data sets based on metadata schemas
used by data providers. Current portals use two different approaches for meta-
data search: (1) searching on distributed catalogues or (2) harvesting cata-
logues into a central searchable catalogue.

In distributed search infrastructures, every data provider not only has his own
metadata catalogue, but also a corresponding search interface to the portal
(e.g., web service based). Search requests are sent to all data providers. The
portal only needs to collect the search results from the providers, then rank
and display these to the end user. Examples of this architecture are the NSDI
Clearinghouse 5 (Nebert, 2000) and GeoPortal.BUND 6 .

The implicit assumption behind this approach is that all data providers need
to have interoperable interfaces for the search infrastructure (e.g., database
software), thesauri, and catalogue service software. Due to the distributed ar-
chitecture, the response of the end-user search interface is sluggish. The slowest
search provider and the network connections dictate the overall response time.
Another drawback is the need for special algorithms to merge and rank search
results in a user-friendly way.

In the harvesting solution, every data provider has its own metadata cata-
logue but the search engine is centralized. The portal periodically harvests all
metadata records into a central index and serves search requests from there.
Major web search engines like Google or the FGDC related Geospatial One-
Stop 7 (Goodchild et al., 2007) are based on this concept. The response time
is optimal because only local components are used in the search process.

One disadvantage of this approach is that the search results are not necessarily
current and up-to-date, because updates or deletes of the metadata records
at the source are not immediately reflected in the portal. Synchronization
is dependant on the harvesting frequency, and users may experience “404
Not Found” errors when accessing data that was deleted in the harvested
repository. Furthermore, there is the need for additional data storage space on
the portal’s side. In the optimal case this data storage is directly embedded
in the search index component.

Nevertheless, the disadvantages of a distributed search infrastructure outweigh
those of the harvesting approach (Lossau, 2004) making harvesting a more
efficient solution.

5 http://clearinghouse.fgdc.gov/
6 http://www.geoportal.bund.de/
7 http://www.geodata.gov/

1950

http://clearinghouse.fgdc.gov/
http://www.geoportal.bund.de/
http://www.geodata.gov/


1.2.3 Protocols for Metadata Retrieval

A standardized network protocol for distributed searches in the geoscientific
world is OGC Catalogue Services (OGC CS-W / OGC CAT) 8 . Metadata por-
tals can create search queries based on the metadata content standard used
and receive search results in XML encoding. So far, however, CS-W has only
limited support for the harvesting approach. CS-W supports harvesting of ex-
ternal documents for inclusion into the local catalogue 9 , but there is no special
interface for external portals to harvest a CS-W. It may be possible to start
a CS-W search request that returns metadata records to harvest, but it does
not correctly support incremental updates (harvesting only new or changed
documents), which is essential for large catalogues. Future developments of
the OGC CS-W interface may make this possible.

A further network protocol – widely used in library environments – is Z39.50 10 ,
which is a complex, binary pre-Web technology. Like CS-W, it does not na-
tively support harvesting, but metadata according to Z39.50 GEO profile 11

can be extracted as XML files in FGDC content standard from the data
stream.

In contrast, the Open Archives Initiative Protocol for Metadata Harvesting
(OAI-PMH, see Van de Sompel et al., 2004) 12 is a simple to use, HTTP-based
protocol that even supports incremental harvesting. The protocol is widely
used within the library world. During each harvesting event, data providers
are asked for new or changed metadata records filtered out by the times-
tamp of the last harvesting operation. If the repository supports tracking of
deleted datasets, the list of those is also provided during harvesting. If this
feature is not supported by the repository, the catalogue must be completely
re-harvested every time to sort out the outdated records.

Current implementations of OAI-PMH compliant service providers are avail-
able in the open source community for various programming languages (Java,
PHP, PERL,...) and infrastructures (harvesting to file system, to database,...).
Unfortunately, all of those implementations are limited to a single content
standard (mostly Dublin Core metadata) and have a corresponding fixed data
storage backend. Database structures in these software packages are designed
for harvesting this simple metadata content standard and cannot be changed

8 OGC Catalogue Services. http://www.opengeospatial.org/standards/cat
9 an example of such a software is conterra’s terraCatalog version 2.2. http://www.
conterra.de/en/products/sdi/terra/
10 ANSI/NISO. Information Retrieval (Z39.50): Application Service Definition and
Protocol Specification. http://www.loc.gov/z3950/agency/
11 Z39.50 Application Profile for Geospatial Metadata or “GEO”. http://www.
blueangeltech.com/standards/GeoProfile/geo22.htm
12 http://www.openarchives.org/OAI/openarchivesprotocol.html

1951

http://www.opengeospatial.org/standards/cat
http://www.conterra.de/en/products/sdi/terra/
http://www.conterra.de/en/products/sdi/terra/
http://www.loc.gov/z3950/agency/
http://www.blueangeltech.com/standards/GeoProfile/geo22.htm
http://www.blueangeltech.com/standards/GeoProfile/geo22.htm
http://www.openarchives.org/OAI/openarchivesprotocol.html


<metadata>
<title>Carbon and oxygen in benthic foraminifera</title>
<latitude>74.1</latitude>
<longitude>12.3</longitude>

</metadata>

3

<metadata>
<title>Stable oxygen and carbon isotope composition</title>
<latitude>63.9</latitude>
<longitude>11.0</longitude>

</metadata>

2

<metadata>
<title>Carbon and oxygen isotope ratios</title>
<latitude>74.1</latitude>
<longitude>11.0</longitude>

</metadata>

1

Stored document contentsID

<metadata>
<title>Carbon and oxygen in benthic foraminifera</title>
<latitude>74.1</latitude>
<longitude>12.3</longitude>

</metadata>

3

<metadata>
<title>Stable oxygen and carbon isotope composition</title>
<latitude>63.9</latitude>
<longitude>11.0</longitude>

</metadata>

2

<metadata>
<title>Carbon and oxygen isotope ratios</title>
<latitude>74.1</latitude>
<longitude>11.0</longitude>

</metadata>

1

Stored document contentsID

312.3longitude

1, 211.0longitude

1, 374.1latitude

263.9latitude

2stabletitle

1ratiostitle

1, 2, 3oxygentitle

1, 2isotopetitle

3foraminiferatitle

2compositiontitle

1, 2, 3carbontitle

3benthictitle

Document IDsText tokenField

312.3longitude

1, 211.0longitude

1, 374.1latitude

263.9latitude

2stabletitle

1ratiostitle

1, 2, 3oxygentitle

1, 2isotopetitle

3foraminiferatitle

2compositiontitle

1, 2, 3carbontitle

3benthictitle

Document IDsText tokenField

Inverted Index Documents

Terms

Fig. 1. Example of inverted index as implemented by Apache Lucene: Document
fields (right side) are tokenized (without stop-words) and stored in inverted index
(left side). If user searches for term (text token in one of the fields), document IDs
are returned and search results may be displayed using stored contents.

without major changes in the software.

1.2.4 Search Engines

The harvesting approach requires central storage and searching of the collected
metadata on the portal side. Bennett (2004) compares the search features of
full-text search engines (FTS) with relational database management systems
(RDBMS) and comes to the conclusion that FTS engines are better adapted to
the search requirements for text-based information inventories. Even conven-
tional combinations of MySQL 13 and built-in FTS, for example, are limited in
functionality and performance, especially for larger databases. Moreover, be-
cause the editing system of the metadata records stays at the data providers,
there is no need for a relational database. The central facet of a portal is
searching and not curation of metadata.

A widely used open source FTS is Apache Lucene. It is a high-performance,
full-featured text search engine library written in Java and suitable for nearly
any application requiring full-text search, especially cross-platform (Hatcher
and Gospodnetic, 2004). Its features include: variable query types like phrase
queries or proximity queries, and the use of boolean operators. Furthermore,
because Apache Lucene offers support for fielded searching, it is possible to
search only on specific metadata parts. The segment-based index structure

13 http://www.mysql.com/

1952

http://www.mysql.com/


enables searches on multiple indexes with merged results and also allows for
simultaneous updates (compare with “transactions” in relational databases).

The fundamental concepts in Apache Lucene are “index”, “document” 14 ,
“field”, and “term” (Bennett, 2004, table 1). An “index” contains a sequence
of “documents”, which are a sequence of “fields”. Each field gets tokenized and
“terms”, which are pairs of field name and text tokens, are generated. The in-
dex stores term origin and statistics in order to make term-based search more
efficient. Apache Lucene’s index falls into the family of indexes known as an
inverted index (Harman et al., 1992). This is because it can list – for a term –
the documents that contain it. This is the inverse of the natural relationship,
in which documents list terms. Additionally, untokenized field contents may
be additionally stored for later display. Figure 1 shows an example of three
indexed documents and the corresponding inverted index.

A general disadvantage of FTS – compared to RDBMS – is its limited per-
formance with range queries for date/time or numerical values, which are
essential elements for metadata portals, because users need to be able to set
search constraints on temporal or spatial coverage.

2 panFMP – A Generic XML-based Metadata Portal Software
Framework

Based on the needs of scientific communities we have designed a generic portal
system architecture suitable for metadata portals in Earth and biological sci-
ences without constraints on the metadata content standard used. This new
Java-based portal software supports any XML encoding that can be harvested
from OAI-PMH repositories, file systems, or web servers and makes them
searchable through Apache Lucene without any other database software.

Figure 2 shows the main components of the package, which consists of (1)
a harvester and index builder component, that collects metadata from the
providers (see section 2.1), (2) Apache Lucene as central indexing component
and data store, (3) a search interface for querying indexes (see section 2.3),
and (4) configuration of metadata formats, data providers and searchable fields
in an XML-based configuration file (see section 2.4). To support fast queries
with temporal or spatial coverages (e.g., for geographic bounding boxes), a
trie-based implementation of range queries was created (see section 2.2).

14 elsewhere in this paper, we use the term “metadata record” instead of “document”
because it more accurately describes the scope. “Document” comes from the original
purpose of FTS engines: searching in text documents.

1953



Metadata Portal

panFMP - Framework for Metadata Portals

<<component>>
Harvester

<<component>>
IndexBuilder

Metadata Provider 1

<<component>>
Apache Lucene

<<component>>
RangeQuery

Metadata Provider 2

<<component>>
Web Server

<<component>>
Search API

<<component>>
<<entity>>

Configuration

<<datastore>>

Lucene Indexes
in File System

<<component>>
User Frontend

<<component>>
OAI-PMH Provider

User

HTTP

OAI-PMH

SOAP or
native Java

Fig. 2. Overview of all components needed for metadata portal: The portal frame-
work “panFMP” described in this paper is cyan colored and consists of Apache
Lucene (purple) and components developed by the authors for harvesting, index-
ing, configuration, search (yellow). Parts that must be supplied by portal developers
or third parties are colored red.

Portal developers need to generate a configuration file defining index proper-
ties, harvestable metadata providers, and searchable fields. After initial har-
vesting into the Apache Lucene indexes located in the local file system, it is
possible to query those using the application programming interface (API)
supplied. For that a web-based user interface may be created.

The portal framework has been made freely available through the open source
concept under the Apache License 15 and is hosted by SourceForge.net 16 .
Version 1.0 will be officially released at http://www.panFMP.org/ when the
code base has proven its usability and the design of the programming API for
portal implementers is stable.

1954

http://www.panFMP.org/


<<centralBuffer>>

DOM tree

validate against
schema

<<centralBuffer>>

DOM tree

transform by
XSL

apply XPath

field

apply XPath

field

add document
to index

serialize
DOM

XML
blob

accept Document as
DOM tree

Lucene
Index

Lucene
Index

Lucene
Index

Virtual
Index

Virtual
Index

Data
Provider

Data
Provider

File
System

OAI-PMH
Harvester

OAI-PMH
Harvester

Directory
Harvester

Index Builder

S
ea

rc
h 

In
te

rfa
ce

Se
ar

ch
 

In
te

rfa
ce

Fig. 3. Overview of harvester and index builder

2.1 Harvester and Index Builder

The portal software harvests all metadata into the Apache Lucene index di-
rectly without the need to store them separately (see fig. 3). The event-based
abstract harvester class is universally designed to support a number of different
harvesting solutions. It is responsible for collecting new or updated metadata
XML files from various sources. For each new or updated metadata record it
creates a DOM 17 tree and notifies the index builder, which then analyzes the
tree and updates the index in a different thread(s).

Additionally, the harvester class allows for an on-the-fly transformation by
XSLT 18 from any metadata content standard into the index specific one –
provided that the content standards are compatible – and allows for valida-
tion of resulting metadata files by an XML schema. These two features allow
the harvest of metadata into unique index structures from data providers that
supply metadata in various content standards. This is essential for a compre-
hensive portal with many different data providers.

15 Apache License, Version 2.0, January 2004. http://www.apache.org/licenses/
LICENSE-2.0
16 SourceForge.net is the world’s largest Open Source software development web
site, hosting more than 100 000 projects and over a million registered users with
a centralized resource for managing projects, issues, communications, and code.
http://sourceforge.net/
17 Document Object Model. http://www.w3.org/DOM/
18 XSL Transformations. http://www.w3.org/TR/xslt

1955

http://www.apache.org/licenses/LICENSE-2.0
http://www.apache.org/licenses/LICENSE-2.0
http://sourceforge.net/
http://www.w3.org/DOM/
http://www.w3.org/TR/xslt


The reference implementation is a high-performance OAI-PMH harvester (class
OAIHarvester). We opted for our own implementation because available open-
source harvesters support only one distinct metadata scheme, usually Dublin
Core, because the data-storage backend (e.g., relational databases) is fixed and
Dublin Core is a minimal requirement for OAI-PMH. In contrast, metadata
from science is often complex (e.g., ISO 19115). Because OAI-PMH embeds
all records in a large XML file that is parsed sequentially, available DOM-
based harvesters often fail with “out of memory” problems. We use SAX 19

(which works sequentially and is event-based) to parse the OAI response us-
ing Digester 20 as the frontend. Digester was extended to support on-the-fly
switching to build a DOM tree when coming to the metadata component and
switching back when going further with OAI-PMH protocol. This makes it pos-
sible to sequentially harvest the entire XML file and build multiple separate
DOM trees that are sent to the index builder. To also support less complex se-
tups, our package contains a very simple harvester for XML files from local file
systems (DirectoryHarvester). Another harvester (WebCrawlingHarvester)
can be employed to an HTML web page (e.g., a directory listing) containing
links to XML files for harvesting.

Due to the abstract harvester design, it is possible to extend scope of its
capability, making it possible to include implementations for other protocols
such as future versions of CS-W or even Z39.50 21 .

All harvested documents are fed to the index builder. During this step it is
possible to filter unwanted documents by checking for characteristics using
an XPath 22 function that returns a boolean value. The index builder then
extracts the contents from the DOM tree and passes four types of objects to
the full-text search engine, Apache Lucene, which performs the subsequent
indexing. The four types of objects are:

• A list of user-defined fields with their contents. The open architecture
makes it possible to define all searchable fields in several data formats using
XPath and XSL templates syntax. Not only does this allow full-text queries,
it also means that numerical or date ranges are retrievable on specific parts
of the metadata. In Apache Lucene, fields may be stored, in which case
their text is stored in the index literally, in a non-inverted manner for later
retrieval as part of the record. Fields that are inverted are called indexed. A
field may be both stored and indexed. The text of a field may be tokenized
into terms to be indexed, or the text of a field may be used literally as a

19 Simple API for XML (Brownell, 2002). http://www.saxproject.org/
20 Jakarta Commons Digester. http://jakarta.apache.org/commons/digester/
21 Currently, metadata according to Z39.50 GEO profile can be extracted as
FGDC XML files by third party tools to make them ready for harvesting by
DirectoryHarvester.
22 XML Path Language. http://www.w3.org/TR/xpath

1956

http://www.saxproject.org/
http://jakarta.apache.org/commons/digester/
http://www.w3.org/TR/xpath


421

52

4

44 6442

644642641634633632522521448446445423

63

5 6

Fig. 4. Example on trie-based recursive splitting of range query with three precisions
(simplified for demonstration): User wants to find all records with terms between
“423” and “642”. Instead of selecting all terms in lowermost row, query is optimized
to only match on labelled terms with lower precision, where applicable. It is enough
to select term “5” to match all records starting with “5” (“521”, “522”) or “44” for
“445”, “446”, “448”. Query is therefore simplified to match all records containing
terms “423”, “44”, “5”, “63”, “641”, or “642”.

term to be indexed. Most fields are tokenized, but it is useful for identifier
and numeric fields to be indexed literally. The implementation of searchable
(inverted) numerical fields (even dates are numerical values) inside a full-
text index is described in section 2.2. XPath/XSL template definitions and
properties of fields are achieved by the configuration file, which is described
in section 2.4.

• A tokenized default field covering the entire record for a Google-
like search.

• The full string-serialized DOM tree as a compressed stored field.
It comprises the central metadata inventory to be used, for example, for the
display of metadata details.

• Control information for each record: a timestamp and the record iden-
tifier for later updates.

The metadata of all the various harvested data providers are stored internally
as separate indexes (with exactly equal structure) giving the administrator the
possibility to manage them separately and allowing for flexible combinations
into “virtual” indexes for searching.

2.2 Optimized Range Queries

Because Apache Lucene is a full-text search engine and not a conventional
database, it cannot handle numerical ranges (e.g., field value is inside user

1957



defined bounds, even dates are numerical values). So it expands a range to a
large “OR” query consisting of all terms between the boundaries (this is called
query rewriting and is also used for wildcard queries). When the index contains
a lot of records with distinct numerical values and the range boundaries are
far-off, this “OR” list is extremely long. Older versions of Apache Lucene (<
2.1, current is version 2.3) were limited to a maximum number of “OR” terms
and threw exceptions. Current versions use a bitmap for these type of queries,
nevertheless, all terms between the range boundaries must be discovered.

We have developed an extension to Apache Lucene that stores the numerical
values in a special string-encoded format with variable precision (all numeri-
cal values like doubles, longs, and timestamps are converted to lexicographic
sortable string representations of long long words and stored with precisions
from one byte to the full 8 bytes). This is similar to a “trie memory” 23 , as was
originally proposed by Fredkin (1960). A range is then divided recursively into
multiple intervals for searching (see fig. 4): The center of the range is searched
only with the lowest possible precision in the trie, the boundaries are matched
more exactly (using the idea from the paper of de la Briandais, 1959). This
reduces the number of terms dramatically (in the lowest precision of 1-byte
the index only contains a maximum of 256 distinct values). Overall, a range
could consist of a theoretical maximum of

7× 255︸ ︷︷ ︸
boundaries split into
7 different precisions

× 2︸︷︷︸
lower and
upper part

+ 255︸︷︷︸
center with

lowest precision

= 3 825

distinct terms (when there is a term for every distinct value of an 8-byte-
number in the index and the range covers all of them; a maximum of 255
distinct values is used because it would always be possible to reduce the full
256 values to one term with degraded precision). In practise, we have seen
up to 300 terms in most cases (index with 500 000 metadata records and a
homogeneous dispersion of values).

This dramatically improves the performance of Apache Lucene with range
queries, which is no longer dependent on the index size and number of distinct
values because there is an upper limit not related to any of these properties.

2.3 Search Interface

We added a portal-specific Java API to the existing one of Apache Lucene,
which allows for a full-featured and flexible usage of the search engine. It

23 “Trie” is derived from “reTRIEval”, also known as “prefix tree”.

1958



abstracts the underlying Lucene API and combines it with the portal config-
uration file (cf. section 2.4) using a “factory” to create correctly configured
Apache Lucene Query objects. In this way, portal developers can formulate
queries as described in section 1.2.4 using the defined fields. It uses optimized
range queries (see section 2.2) for queries on numerical and date/time values.
Search results are returned in the XML metadata encoding and/or the stored
fields. An API providing query auto completion was implemented, thus giv-
ing users guidance to retrievable terms. This improves the overall ergonomy
of the web frontend. Portal developers can implement this by using AJAX 24

technologies.

Based on the API the programmer can even display the results in maps (e.g.,
using UMN MapServer 25 or Google Earth 26 ). Sample implementations for
various metadata content standards are provided together with the portal
package.

For portals running in environments without Java support in the web server,
a simplified version of the API can be made available as a web service to
SOAP/WSDL clients.

2.4 Configuration of Metadata and Indexes

Many components of the portal software are highly customizable. We devel-
oped an XML-based configuration file that handles definition of the metadata
format, data providers including their properties and, last but not least, the
search interface. The file is read by the harvester and search interface on
startup and parsed with Jakarta Commons Digester. We selected XML as
the preferred file encoding because it harmonizes perfectly with the meta-
data to be harvested. As described in section 2.1, index fields are defined
by XPath queries on the underlying metadata file. An XML-based configura-
tion file makes it possible to handle XML namespace 27 declarations used by
the XPath queries in a very elegant way (like it is done by XSLT). Optional
metadata transformations can also be expressed by XSLT embedded in the
configuration file.

The definition of harvester properties (attributes and type of metadata repos-
itory), the stream analyzer used (for tokenization of string fields during har-

24 Asynchronous JavaScript and XML (AJAX). Several tools are available for en-
abling web sites with auto-completing input fields, e.g., “Yahoo! User Interface
Library”, http://developer.yahoo.com/yui/
25 http://mapserver.gis.umn.edu/
26 http://earth.google.com/
27 Namespaces in XML. http://www.w3.org/TR/xml-names

1959

http://developer.yahoo.com/yui/
http://mapserver.gis.umn.edu/
http://earth.google.com/
http://www.w3.org/TR/xml-names


Fig. 5. SEDIS data portal web interface

vesting and parsing search queries), and index configurations (which index
contains what repository, which indexes can be searched as virtual index,...)
are also supplied by the configuration.

3 Usage Scenarios

Based on the portal framework described in this article the World Data Cen-
ter for Marine and Environmental Sciences (WDC-MARE) with its informa-
tion system PANGAEA R© (Diepenbroek et al., 2002) has implemented sev-
eral metadata portals for EU and international projects (e.g., IODP, EUR-
OCEANS, CARBOOCEAN, etc.) 28 .

An example of such a data portal is IODP SEDIS 29 (Scientific Earth Drilling
Information Service for the Integrated Ocean Drilling Program, see Miville

28 a current list of portals with corresponding web addresses can be found at http:
//www.panFMP.org/front_content.php?idcat=346
29 Scientific Earth Drilling Information Service. http://sedis.iodp.org/

1960

http://www.panFMP.org/front_content.php?idcat=346
http://www.panFMP.org/front_content.php?idcat=346
http://sedis.iodp.org/


et al., 2006), which disseminates and publishes data and metadata about sci-
entific ocean drilling, regardless of the origin or location of data. Metadata
providers to SEDIS are the IODP implementing organizations (IOs) from the
United States (USIO), Japan (CDEX), Europe with Canada (ESO), Lamont-
Doherty Earth Observatory (LDEO) for bore hole data, and NOAA/NGDC
for legacy data. Each provider uses its own data management system. SEDIS
consists of a central metadata index based on the ISO 19115 standard and
ISO 19139 for its XML implementation using “panFMP” as the portal frame-
work. The IOs are harvested using OAI-PMH. SEDIS can be expanded at a
later stage to include other scientific drilling data from continental drilling
(ICDP) or further data providers related to IODP. Current work comprises
the inclusion of a search engine on IODP related publications (also selected
from different providers) and advanced data search, visualization, and map-
ping tools.

In principle, the components for SEDIS and its portal are the same as in
figure 2. The front-end software was written in PHP 30 using the web service
interface of “panFMP” (see fig. 5).

Furthermore, SEDIS contains a catalogue of all expeditions stored in a MySQL
database. This catalogue is also included in the portal by exporting all expe-
dition metadata from the relational database to XML files into the local file
system and harvesting them using the DirectoryHarvester of the portal
framework. Because the metadata files are not “real” ISO 19139 files (expe-
dition metadata are more simple), the harvester uses the XSL transformation
feature of the framework.

Various other groups have already expressed an interest in using the framework
software (e.g., ICSU WDC System 31 , IODE 32 ). Recently, the main search
engine of PANGAEA R© (formerly “PangaVista”) and the C3Grid 33 were also
adapted to the generic portal software. It verifies the generic design because
in the case of PANGAEA R© it was implemented by plugging in a custom har-
vester that accesses the XML metadata directly from the editorial system in
an SYBASE database (a graphical overview can be seen in fig. 3 of Schindler
et al., 2005). In C3Grid the framework was embedded in a grid architecture
largely based on GridSphere 34 and Globus Toolkit 35 . Here the software is
used for discovery of data sets and available workflows. In principle, any ex-

30 PHP: Hypertext Preprocessor. http://www.php.net/
31 World Data Center System. http://www.ngdc.noaa.gov/wdc/
32 The IOC’s International Oceanographic Data and Information Exchange. http:
//www.iode.org/
33 Collaborative Climate Community Data and Processing Grid. http://www.
c3grid.de
34 The GridSphere Portal Framework. http://www.gridsphere.org/
35 The Globus Alliance. http://www.globus.org/

1961

http://www.php.net/
http://www.ngdc.noaa.gov/wdc/
http://www.iode.org/
http://www.iode.org/
http://www.c3grid.de
http://www.c3grid.de
http://www.gridsphere.org/
http://www.globus.org/


isting XML metadata management system may be extended by “panFMP”
as search engine add-on. For e.g. the Geospatial One-Stop it could supply a
significant improvement of search speed. Moreover, if the metadata inventory,
which by January 2006 contained 10400 records (Goodchild et al., 2007), grows
significantly, a separate, well-scaling FTS infrastructure might be necessary –
at least from the user perspective.

The search speed for any query type is excellent because top-ranked results
normally show up immediately without any noticeable delay, because FTS en-
gines do not need to wait for the full query to complete like with RDBMS. This
conforms to current user experience with major internet search engines. We
ran some test queries on different machines with ≈ 500 000 metadata records.
On an Opteron machine with four processor cores and 8 GByte RAM run-
ning 64 bit Linux, results mostly display in � 0.05 s. Comparisons with other
machines, for example, a low-cost developer’s machine with the same Lucene
indexes, did not show any difference in response times. Because the portal
framework does not modify the search capabilities of the underlying Apache
Lucene engine, apart from optimized range queries, results from other bench-
marks as shown on the Apache Lucene homepage 36 also apply to “panFMP”.
In general, the portal machine should be a multi-processor for handling si-
multanous harvesting, metadata parsing, index updates, and search requests
from users (≥ 4 processor cores). Disk space scales linear to the number of
documents. As described in section 2.2, the optimized range query algorithm
is no longer dependent on the index size and number of distinct numerical val-
ues. Usage of system memory is better than linear to the number of metadata
records, and linear to the number of parallel search requests. Portal devel-
opers should assign a maximum memory suitable for their needs to the Java
virtual machine. As this memory is often > 2 GBytes, a 64 bit platform is pre-
ferred, particularly because it is possible to tune index access times by using
memory-mapping techniques on a 64 bit platform.

4 Conclusions

The new generic portal software helps to provide fast and low-barrier access to
scientific data based on XML metadata formats. Service providers are free to
use various metadata content standards that can be transformed into uniquely
structured indexes. The use of a full-text search engine – in contrast to classical
relational data bases – conforms to the current user experience. For the first
time the speed deficit in range query execution has been solved by using trie
structures, thus enabling high-performance space/time retrievals in FTS-based

36 Apache Lucene – Resources – Performance Benchmarks. http://lucene.
apache.org/java/docs/benchmarks.html

1962

http://lucene.apache.org/java/docs/benchmarks.html
http://lucene.apache.org/java/docs/benchmarks.html


geo portals.

The portal framework is applicable to a wide range of architectures, data
providers, and content models, including the digital library world. The generic
design of the framework allows for extension of its use to various other pro-
tocols and content standards, and assures wide interoperability among data
bases and data grids in the context of the Open Access Initiative (Chan et al.,
2002) and beyond.

Acknowledgment

The authors are indebted to Walter Hale (MARUM) who assisted through
constructive comments and proofreading the English text.

References

Abad-Mota, S., 2001. Databases and portals for knowledge management. In:
Digital Libraries and Virtual Workplaces: Important Initiatives for Latin
America in the Information Age. Inter-American Agency for Cooperation
and Development, Washington, DC, USA, pp. 201–210.

Battrick, B., 2005. Global Earth Observation System of Systems (GEOSS)
10-year implementation plan reference document. ESA (European Space
Agency) Publications Division, 11 pp., http://www.earthobservations.
org/documents/10-Year%20Implementation%20Plan.pdf, [accessed 21
April 2008].

Bennett, M., 2004. Contrasting relational and full-text engines. NIE (New
Idea Engineering) Enterprise Search Newsletter 2 (9), article 1, http://

ideaeng.com/pub/entsrch/issue09/article01.html, [accessed 21 April
2008].

Brownell, D., 2002. SAX2. O’Reilly, Sebastopol, CA, USA, 240 pp.
Chan, L., Cuplinskas, D., Eisen, M., Friend, F., 2002. Budapest Open Access

Initiative. http://www.soros.org/openaccess/read.shtml, [accessed 21
April 2008].

de la Briandais, R., 1959. File searching using variable length keys. In: Pro-
ceedings of the Western Joint Computer Conference, New York. Vol. 15. pp.
295–298.

Diepenbroek, M., Grobe, H., Reinke, M., Schindler, U., Schlitzer, R., Sieger,
R., Wefer, G., 2002. PANGAEA–an information system for environmental
sciences. Computers & Geosciences 28 (10), 1201–1210, doi:10.1016/S0098-
3004(02)00039-0.

Fredkin, E., 1960. Trie memory. Communications of the ACM 3 (9), 490–499.

1963

http://www.earthobservations.org/documents/10-Year%20Implementation%20Plan.pdf
http://www.earthobservations.org/documents/10-Year%20Implementation%20Plan.pdf
http://ideaeng.com/pub/entsrch/issue09/article01.html
http://ideaeng.com/pub/entsrch/issue09/article01.html
http://www.soros.org/openaccess/read.shtml
http://dx.doi.org/10.1016/S0098-3004(02)00039-0
http://dx.doi.org/10.1016/S0098-3004(02)00039-0


Goodchild, M. F., Fu, P., Rich, P., 2007. Sharing geographic information: an
assessment of the Geospatial One-Stop. Annals of the Association of Amer-
ican Geographers 97 (2), 250–266, doi:10.1111/j.1467-8306.2007.00534.x.

Harman, D., Baeza-Yates, R., Fox, E., Lee, W., 1992. Inverted files. In: Frakes,
W. B., Baeza-Yates, R. (Eds.), Information Retrieval: Data Structures and
Algorithms. Prentice-Hall, New Jersey, USA, pp. 28–43.

Hatcher, E., Gospodnetic, O., 2004. Lucene in Action. Manning Publications,
Greenwich, CT, USA, 456 pp.

Kresse, W., Fadaie, K., 2004. ISO Standards for Geographic Information.
Springer, Heidelberg, Germany, 322 pp.

Lossau, N., 2004. Search engine technology and digital libraries: li-
braries need to discover the academic internet. D-Lib Magazine 10 (6),
doi:10.1045/june2004-lossau.

Maguire, D. J., Longley, P. A., 2005. The emergence of geoportals and their
role in spatial data infrastructures. Computers, Environment and Urban
Systems 29 (1), 3–14, doi:10.1016/j.compenvurbsys.2004.05.012.

Miville, B., Soeding, E., Larsen, H. C., 2006. Scientific Earth Drilling In-
formation Service for the Integrated Ocean Drilling Program. Geophysical
Research Abstracts 8, 05486.

Nebert, D. D., 2000. Building a geospatial data clearinghouse for data discov-
ery and access. Statistical Journal of the United Nations Economic Com-
mission for Europe 17 (2), 149–156.

Nebert, D. D. (Ed.), 2004. The SDI Cookbook, Version 2.0. Global Spatial
Data Infrastructure Association, Technical Working Group Chair, 171 pp.,
http://www.gsdi.org/gsdicookbookindex.asp, [accessed 21 April 2008].

Schindler, U., Brase, J., Diepenbroek, M., 2005. Webservices infrastructure for
the registration of scientific primary data. In: Rauber, A., Christodoulakis,
S., Tjoa, A. M. (Eds.), Research and Advanced Technology for Digital Li-
braries. Vol. 3652 of Lecture Notes in Computer Science. Springer, pp. 128–
138, doi:10.1007/11551362 12.

The European Parliament and Council, 2007. Directive 2007/2/EC
of establishing an infrastructure for spatial information in the
European Community (INSPIRE). Official Journal of the Euro-
pean Union L108, 1–14, http://www.ec-gis.org/inspire/directive/l_
10820070425en00010014.pdf, [accessed 21 April 2008].

Van de Sompel, H., Nelson, M., Lagoze, C., Warner, S., 2004. Resource
harvesting within the OAI-PMH framework. D-Lib Magazine 10 (12),
doi:10.1045/december2004-vandesompel.

1964

http://dx.doi.org/10.1111/j.1467-8306.2007.00534.x
http://dx.doi.org/10.1045/june2004-lossau
http://dx.doi.org/10.1016/j.compenvurbsys.2004.05.012
http://www.gsdi.org/gsdicookbookindex.asp
http://dx.doi.org/10.1007/11551362_12
http://www.ec-gis.org/inspire/directive/l_10820070425en00010014.pdf
http://www.ec-gis.org/inspire/directive/l_10820070425en00010014.pdf
http://dx.doi.org/10.1045/december2004-vandesompel

	Introduction
	Background and Motivation
	State of the Art

	panFMP -- A Generic XML-based Metadata Portal Software Framework
	Harvester and Index Builder
	Optimized Range Queries
	Search Interface
	Configuration of Metadata and Indexes

	Usage Scenarios
	Conclusions

