1	The role of polysaccharides and diatom exudates
2	in the redox cycling of Fe and the photoproduction of
3	hydrogen peroxide in coastal seawaters
4	Sebastian Steigenberger ¹ , Peter J. Statham ² , Christoph Völker ¹ and Uta Passow ¹
5	
6	¹ Alfred Wegener Institut für Polar- und Meeresforschung, Am Handelshafen 12,
7	27570 Bremerhaven, Germany
8	² National Oceanography Centre, Southampton, University of Southampton Waterfront
9	Campus, European Way, Southampton SO14 3ZH
10	
11	Abstract
12	The effect of artificial acidic polysaccharides (PS) and exudates of
13	Phaeodactylum tricornutum on the half-life of Fe(II) in seawater was investigated in
14	laboratory experiments. Strong photochemical hydrogen peroxide (H ₂ O ₂) production
15	of 5.2 to 10.9 nM (mg C) ^{$^{-1}$} h ^{$^{-1}$} was found in the presence of PS and diatom exudates.
16	Furthermore when illuminated with UV light algal exudates kept the concentration of
17	ferrous iron in seawater (initial value 100 nmol L^{-1}) elevated for about 50 min. Since
18	no stabilising effect of PS on Fe(II) in the dark could be detected, enhanced
19	photoreduction seems to be the cause. This was confirmed by a simple model of the
20	photochemical redox cycle of iron. Diatom exudates seem to play an important role
21	for the photochemistry of iron in coastal waters.

23 1 Introduction

24 Marine phytoplankton contributes significantly to the CO₂ exchange between 25 atmosphere and ocean, thus impacting atmospheric CO₂ concentrations (Falkowski et 26 al. 1998). Global marine primary productivity shows great spatial and temporal 27 variability, caused primarily by variable light, zooplankton grazing and nutrient 28 distributions. In addition to the macronutrients (P, N), iron is an essential trace 29 element for photo-autotrophic organisms (Geider et al. 1994; Falkowski et al. 1998; 30 Morel et al. 2003). Several large scale iron fertilization experiments have revealed 31 that in 40% of the surface ocean, the so called High Nutrient Low Chlorophyll 32 (HNLC) areas, iron is at least partially responsible for limitation of phytoplankton 33 growth (Boyd et al. 2007). However, iron limitation can occur in coastal areas as well 34 (Hutchins et al. 1998) and here the supply of Fe through upwelling and resuspension 35 determine its cycling.

Free hydrated Fe(III) concentrations in seawater are very low ($<10^{-20}$ mol L⁻¹) (Rue *et* 36 37 al. 1995) and the more soluble Fe(II) is rapidly oxidised (Millero et al. 1987; Millero 38 et al. 1989; King et al. 1995; Gonzalez-Davila et al. 2005, 2006). Thus concentrations 39 of dissolved Fe in the ocean should be very low. However, over 99% of the dissolved 40 iron in seawater is reported to be bound by organic compounds (Rue et al. 1995; van 41 den Berg 1995; Croot et al. 2000; Boye 2001) and these ligands can maintain the 42 concentrations typically seen in the ocean (Johnson et al. 1997). Iron binding ligands 43 in seawater mainly consist of bacterial siderophores (Macrellis et al. 2001; Butler 44 2005) and possibly planktonic exudates like acidic polysaccharides (PS) (Tanaka et 45 al. 1971). Transparent exopolymer particles (TEP), which are rich in acidic

46 polysaccharides, are ubiquitous in the surface ocean (Passow 2002). TEP has been
47 shown to bind ²³⁴Th (Passow *et al.* 2006) and are therefore a prime candidate to bind
48 iron.

49	The main oxidation pathway of $Fe(II)$ to $Fe(III)$ is the reaction with O_2 and
50	H ₂ O ₂ according to the Haber-Weiss mechanism (Millero et al. 1987; Millero et al.
51	1989; King et al. 1995). This oxidation can be inhibited (Theis et al. 1974; Miles et
52	al. 1981) or accelerated (Sedlak et al. 1993; Rose et al. 2002, 2003a) in the presence
53	of organic compounds. The decrease in apparent oxidation rate is suggested to be due
54	to stronger photoreduction of Fe(III) (Kuma et al. 1995) or stabilisation of Fe(II)
55	(Santana-Casiano et al. 2000; Rose et al. 2003b; Santana-Casiano et al. 2004).
56	In marine systems H ₂ O ₂ functions as a strong oxidant or a reductant (Millero
57	et al. 1989; Croot et al. 2005). Thus it is important for the cycling of organic
58	compounds and trace metals like Fe (Millero <i>et al.</i> 1989). H_2O_2 is the most stable
59	intermediate in the reduction of O_2 to H_2O and is mainly produced in the water
60	column by photochemical reactions involving dissolved organic matter (DOM) and
61	O ₂ (Cooper et al. 1988; Scully et al. 1996; Yocis et al. 2000; Yuan et al. 2001). Light
62	absorbed by DOM induces an electron transfer to molecular oxygen, forming the
63	superoxide anion radical, which undergoes disproportionation to form hydrogen
64	peroxide. Hence light, O ₂ , H ₂ O ₂ and organic compounds are important factors in the
65	very complex chemistry of iron in seawater.
66	Increased photochemical reduction of Fe(III) in the presence of sugar acids has

68 polysaccharides no such studies have been carried out so far. However, the relative

67

been reported (Kuma et al. 1992; Ozturk et al. 2004; Rijkenberg et al. 2005) but for

69 abundance of polysaccharides in marine dissolved organic matter (DOM) is about

70	50% (Benner et al. 1992) and in phytoplankton derived DOM the fraction of
71	polysaccharides can be up to 64% (Hellebust 1965; Hellebust 1974). In the study
72	reported here we investigate the effect of PS and algal exudates on the photochemical
73	redox cycle of iron and production of H ₂ O ₂ .

75 2 Materials and Methods

76 2.1 <u>General</u>

Three different types of experiments were conducted to investigate the effect of PS and diatom exudates in combination with UV light on the speciation of iron and the production of H₂O₂. All experiments were conducted at a constant temperature (about 20°C) in the laboratory. In experiments 1 and 3 were samples were exposed to UV radiation, UV transparent 3 L Tedlar bags were used as incubation containers. Experiment 2 was conducted in 30 mL polystyrene screw cap tubes, without UV irradiation.

The natural coastal seawater (SW) was collected in July 2006 off Lepe near
Southampton (UK), filtered through 0.2 μm membranes and stored at 5°C. Organic
matter was removed from a part of this SW via photo-oxidation with strong UV
radiation. The so called "organic-free" UVSW (Donat *et al.* 1988) was also stored at
5°C.

We used gum xanthan, laminarin and carrageenan (all from Sigma) as the artificial PSs. The molecular weight of laminarin is 7700 g mol⁻¹ (Rice *et al.* 2004) and 43% (w/w) of the molecule is carbon. For gum xanthan and carrageenan no specifications could be found but we assumed a carbon content of ~40% (w/w).

Diatom exudates were collected as the 0.4 µm filtrate of a senescent culture of *Phaeodactylum tricornutum* grown in f/2 medium. Ford and Percival (1965) separated
a significant amount of a water-soluble glucan from an aqueous extract of *Phaeodactylum tricornutum*, and their results showed this polysaccharide to be a
typical chrysolaminarin with essential similar properties to the p-1,3-linked glucan,
laminarin.

99 Philips 40TL12 and Philips 40T'05 lamps, respectively, were used as a light source for the irradiation of samples with UVB and UVA light during experiments 1 100 101 and 3. Irradiance was measured with a UVA (315-400 nm) sensor type 2.5, a UVB 102 (280-315 nm) sensor type 1.5 (INDIUM-SENSOR, Germany) and a spherical 103 quantum sensor SPQA 2651 (LI-COR) for the photosynthetically active radiation 104 (PAR, 400-700 nm). Sensors were coupled to a data logger LI-1400 (LI-COR). The 105 following irradiance values were used for all light incubations during this study: UVB=0.3 W m⁻², UVA=17.6 W m⁻² and PAR=3.8 W m⁻². For all experiments 106 107 samples were held in UV transparent 3 L polyvinyl fluoride (PVF, Tedlar) bags (SKC 108 Inc., USA), fitted with a polypropylene hose for filling and sub-sampling.

109

110 2.2 Specific Experiments

111 2.2.1 Experiment 1: Effect of polysaccharides on the photogeneration of H_2O_2

Four pairs of Tedlar bags were filled with MQ water and concentrated solutions of three different PSs were added to three pairs of these bags. For this experiment carrageenan, gum xanthan and laminarin were used. The PSs were dissolved in MQ water by sonicating for 30 min. The final concentration of PS was

116	10 mg	L^{-1} in about 2.3 L. The last pair of bags served as control and contained no PS.
117	One b	ag of each pair was placed in the dark the other was illuminated with UV light
118	for 27	0 min. H_2O_2 was measured 1 h before illumination and after 0, 10, 30, 90,
119	270 m	in in the light and the dark sample.
120		
121	2.2.2	Experiment 2: Effect of polysaccharides on the oxidation of Fe(II) in seawater
122		in the dark
123		Ten clean polystyrene screw cap tubes (30 mL) were filled with the natural

Solent seawater (0.2 µm filtered) and another ten tubes were filled with the organic-124 125 free Solent Seawater. To 5 tubes of each treatment gum xanthan was added to a final concentration of 1 mg L⁻¹ and the samples were sonicated for 30 min. Initially Fe(II) 126 equivalent to 200 nmol L^{-1} was added to all tubes, and Fe(II) and H₂O₂ measured after 127 0, 2, 6, 18, 54 min. Temperature, salinity, oxygen concentration and pH were 128

129 measured before the iron addition and at the end of the experiment.

130

2.2.3 Experiment 3: Effect of diatom exudates and UVA/B radiation on the oxidation 131 of Fe(II) in seawater 132

133 Three Tedlar bags were filled with about 1 L of organic-free seawater (0.2 µm filtered). One bag served as a control and no further additions were made. To the 134 second bag 100 nmol L^{-1} Fe(II) were added. To the third bag an addition of diatom 135 136 exudates and 100 nmol L^{-1} Fe(II) was made. The amount of diatom exudates added to 137 the sample was chosen in order to reach a concentration of PS similar to natural Solent seawater (0.4 mg glucose eq. L⁻¹). Ferrous iron concentration was measured 138

139 over a 60 min period after the iron addition. The UV light was switched on for the 140 whole experiment right after the addition of iron to the sample bags. Temperature, 141 salinity, oxygen concentration, pH and total iron were measured before the iron 142 addition and at the end of the experiment. H_2O_2 in the organic-free seawater was 143 adjusted to an initial concentration of 5 nmol L⁻¹ and was measured again at the end of 144 the experiment.

145

146 2.3 <u>Analyses</u>

147 Iron concentrations in the samples were determined using a colorimetric method described by Stookey (1970) and Viollier et al. (2000). Briefly Ferrozine (the 148 149 disodium salt of 3-(2-pyridyl)-5,6-bis(4-phenylsulfonic acid)-1,2,4-triazine) forms a 150 magenta coloured tris complex with ferrous iron. The water soluble complex is stable 151 and quantitatively formed in a few minutes at pH = 4-9 after adding an aqueous 0.01 mol L^{-1} Ferrozine solution. The absorbance was measured with a Hitachi U-1500 152 153 at 562 nm in 10 cm cuvettes buffered with an ammonium acetate buffer adjusted to pH = 5.5, and compared to a calibration curve made by standard additions to the 154 sample water. Standards were prepared from a 10 mmol L^{-1} Fe(II) stock solution 155 $(Fe(NH_4)_2(SO_4)_2; 6H_2O \text{ in } 0.1 \text{ mol } L^{-1} \text{ HCl})$ diluted in 0.01 mol L^{-1} HCl. Total iron 156 157 was determined by previous reduction of the iron present in the sample under acid 158 conditions over 2 h at room temperature by adding hydroxylamine hydrochloride $(1.4 \text{ mol } L^{-1} \text{ in 5 mol } L^{-1} \text{ HCl})$ as the reducing agent. The detection limit of this 159 method is about 8 nmol L^{-1} of Fe(II) and the standard error is about 20%. All 160 161 Reagents were from Sigma-Aldrich and at least p.a. grade. All solutions were prepared in MQ water (18 M Ω cm⁻¹) purified with a Millipore deionisation system. 162

163 Samples were prepared in 30 mL polystyrene screw cap tubes. All equipment has164 been carefully acid washed prior to use.

165	Concentrations of dissolved mono- and polysaccharides were determined semi
166	quantitatively using another colorimetric method described by Myklestad et al.
167	(1997). Briefly the absorbance of the strong coloured complex of 2,4,6-tripyridyl-s-
168	triazine (TPTZ) formed with iron reduced by monosaccharides or previously
169	hydrolyzed polysaccharides at alkaline pH is measured at 595 nm in 2.5 cm cuvettes
170	and compared to a calibration curve prepared from D-glucose in MQ water. Total
171	sugar concentration was determined after hydrolysis of the acidified sample in a
172	sealed glass ampoule at 150°C for 90 min. The detection limit was
173	0.02 mg glucose eq. L^{-1} and the standard error was about 3%. All glassware and
174	reagents were prepared as described by Myklestad et al. (1997).
175	For the determination of hydrogen peroxide (H ₂ O ₂) a chemiluminescence flow
176	injection analysis (FIA-CL) described by Yuan and Shiller (1999) was used. The
177	method is based on oxidation of luminol by hydrogen peroxide in an alkaline solution
178	using Co(II) as a catalyst. Our flow injection system generally resembled that
179	described by Yuan and Shiller (1999) but as a detection unit we used the photosensor
180	module H8443 (Hamamatsu) with a power supply and a signal amplifier. The voltage
181	signal was logged every second using an A/D converter and logging software (PMD-
182	1208LS, Tracer DAQ 1.6.1.0, Measurement Computing Corporation). The
183	chemiluminescence peaks were evaluated by calculating their area. The detection
184	limit was 0.1 nmol L ⁻¹ and the standard error was 4%. All reagents and solutions were
185	prepared as described by Yuan and Shiller (1999). Since ferrous iron in the sample
186	shows a significant positive interference (Yuan et al. 1999) H ₂ O ₂ was measured in

parallel samples without added Fe(II) or after one hour when most of the iron wasreoxidised.

189	A WTW 315i T/S system was used to determine temperature and salinity in
190	the sample. Oxygen was measured using a WPA OX20 oxygen meter. The dissolved
191	organic carbon (DOC) content in the 0.2 μ m filtered samples was measured with a
192	Shimadzu TOC-VCSN system via high temperature catalytic oxidation (HTCO) on Pt
193	covered Al ₂ O ₃ beads. The detection limit of this method is \sim 3 µmol L ⁻¹ and the
194	precision is $\pm 2 \ \mu mol \ L^{-1}$.
195	The UV photooxidation system consisted of a fan cooled 1 kW medium
196	pressure mercury lamp (Hanovia), with 10 x 200 mL quartz tubes mounted around the
197	axial lamp. After 6 h of UV irradiation the samples were considered "organic-free"
198	(UVSW) (Donat <i>et al.</i> 1988). To remove the resulting high concentrations of H_2O_2 the
199	organic-free water was treated with activated charcoal. The charcoal had previously
200	been washed several times with HCl, ethanol and MQ water to remove contaminants.
201	After stirring for 30-40 min the charcoal was removed by filtration through a 0.2 μ m
202	polycarbonate membrane. The H_2O_2 concentration in the resulting water was less than
203	0.5 nmol L^{-1} and no contamination with iron was detectable.

204

205 **3** Results and discussion

3.1 Experiment 1: Effect of polysaccharides on the photochemical production of H₂O₂

208 The first experiment, examining the effect of polysaccharides on the 209 photochemical production of H_2O_2 , showed that within 270 min (4.5 h) of

illumination large amounts (140-240 nmol L⁻¹) of H₂O₂ were formed due to the 210 addition of 10 mg L^{-1} of polysaccharides to MO water (Figure 1). The H₂O₂ 211 concentrations in all samples increased linearly during the experiment, after the light 212 213 was switched on. Gum xanthan showed the highest photochemical production of H_2O_2 214 followed by carrageenan and laminarin, which can be explained by their different absorptivity at <400 nm (Figure 2). The addition of laminarin led to a net 215 accumulation rate of H_2O_2 of 22.5 nmol L⁻¹ h⁻¹, which was twice as high as that for 216 pure MO water (12.3 nmol $L^{-1} h^{-1}$). The H₂O₂ accumulation during illumination of the 217 MQ water was probably due to organic matter leaching from the resin of the filter 218 219 cartridge of the MQ system. However, the DOC concentration in MQ water was $<<10 \mu mol L^{-1}$. H₂O₂ accumulation rates of 36.2 nmol L⁻¹ h⁻¹ and 43.4 nmol L⁻¹ h⁻¹ 220 were determined in samples with added carrageenan and gum xanthan, respectively. 221 222 The photochemical production of H_2O_2 was thus 3-4 times higher in the presence of 223 carrageenan and gum xanthan compared to pure MQ water. Linear H₂O₂ 224 accumulation rates of similar magnitude have been reported by Cooper et al. (1988) 225 and Miller et al. (1995) in natural seawater samples. The main structural differences 226 between the molecules of these three PSs are that laminarin has a linear structure of 227 linked glucose monosaccharide units, carrageenan has sulphur containing groups and 228 gum xanthan has a branched structure incorporating uronic acid groups. The PS concentration used in our experiment is equivalent to about 4 mg L^{-1} organic carbon 229 leading to normalised H₂O₂ generation rates of 5.2 nmol L^{-1} (mg C)⁻¹ h⁻¹ (laminarin). 230 9.1 nmol L^{-1} (mg C)⁻¹ h⁻¹ (carrageenan) and 10.9 nmol L^{-1} (mg C)⁻¹ h⁻¹ (gum xanthan). 231 These values are up to 29 times higher than the rate of 0.38 nmol L^{-1} (mg C)⁻¹ h⁻¹ 232 reported by Price et al. (1998) for the >8000 Da fraction of natural DOM in the 233 234 Western Mediterranean even though the light bulbs used in our study typically 235 produced only 25% of the UVB radiation 39% of UVA and 1% of PAR of the 236 calculated natural irradiance found in midday summer sun in the Mediterranean (Zepp 237 et al. 1977). The polysaccharides in our study caused strong photogeneration of H_2O_2 238 even under low light exposure probably due to the absence of removal processes such 239 as enzymatic decomposition of H₂O₂ (Moffett et al. 1990). Photochemical production rates of H₂O₂ in the Atlantic Ocean and Antarctic waters are much lower ranging from 240 2.1 to 9.6 nmol L⁻¹ h⁻¹ (Obernosterer 2000; Yocis et al. 2000; Yuan et al. 2001; 241 Gerringa et al. 2004). Gerringa et al. (2004) calculated a net production rate of 242 7 nmol L^{-1} h⁻¹ at irradiance levels of 2.8 (UVB), 43 (UVA) and 346 W m⁻² (VIS/PAR) 243 244 in 0.2 µm filtered water from the eastern Atlantic close to the Equator. These low 245 rates are presumably due to lower DOC concentrations and higher decay rates due to 246 colloids or enzymatic activity in natural waters (Moffett et al. 1990; Petasne et al. 1997). Our experiments suggest that PSs may have had a significant indirect effect on 247 248 Fe oxidation due to the enhanced photochemical production of H_2O_2 .

249

250 3.2 Experiment 2: Effect of gum xanthan on the oxidation of Fe(II) in the dark

251 Differences in the rate of Fe(II) oxidation due to added gum Xanthan were 252 small, both in the natural SW and the UVSW samples (Figure 3 and 4). However, the 253 oxidation of Fe(II) in the natural SW samples (with or without gum xanthan) (Figure 254 3) was much slower than that in the respective DOM-free UVSW samples (Figure 4). 255 Half-life values and oxidation rates of organic-free seawater can be calculated 256 according to Millero and Sotolongo (1989) and Millero et al. (1987). Under our experimental conditions the calculated half-life was 25 s for the ambient H_2O_2 257 concentrations and 82 s under O₂ saturation. These theoretical values can be compared 258

to measured Fe(II) half-life values of 42 s (UVSW) and 35 s (UVSW+PS). The measured values resemble the theoretical values under the ambient H_2O_2 conditions. This indicates that the high H_2O_2 concentration had a stronger oxidising effect on Fe(II) than the dissolved O_2 in the samples.

For the natural SW sample the theoretical half-life of 43 s under O_2 saturation does not fit the measured data well. The half-life of Fe(II) in the natural SW sample (Figure 3) was ~17 times (11.9 min) and with PS added ~19 times (13.3 min) longer than theoretical value. The measured data followed the exponential oxidation curve calculated for the low H₂O₂ concentration of these samples whereas the high O₂ content seemed to not accelerate the measured oxidation of Fe(II).

The DOC content of the natural SW (97 μ mol L⁻¹) was almost 10 times higher 269 270 than of the UVSW. The difference in Fe(II) oxidation between the water types might therefore be due to the stabilisation of Fe(II) against oxidation by natural occurring 271 272 compounds of the coastal SW (Theis et al. 1974; Miles et al. 1981; Santana-Casiano et al. 2000; Rose et al. 2003a; Santana-Casiano et al. 2004). These results show that 273 274 the added gum xanthan was not a good model for natural occurring substances 275 stabilising Fe(II) against oxidation. Initial H₂O₂ concentrations also differed appreciably, with 5 nmol L^{-1} H₂O₂ in the natural SW sample and 270 nmol L^{-1} H₂O₂ in 276 the UVSW sample. UV oxidation in UVSW water during removal of natural DOM 277 278 must have caused the differences in H₂O₂. We calculated Fe(II) oxidation rates due to 279 O₂ and H₂O₂ in our experiment to investigate if the differing rates could have been 280 caused by differing initial H₂O₂ concentrations. From the comparison between our 281 measured and theoretically calculated values we conclude that a strong effect of H_2O_2 282 on the lifetime of Fe(II) was observed but no effect of gum xanthan was found in this

experiment conducted without irradiation. The lower initial H_2O_2 concentrations in the natural SW sample (5 nmol L⁻¹ H_2O_2 ; Figure 3) compared to the UVSW sample (270 nmol L⁻¹ H_2O_2 ; Figure 4) appears to be the major cause for slower Fe(II) oxidation, suggesting that H_2O_2 mainly control the oxidation of Fe(II).

287

288 3.3 <u>Experiment 3: Effect of diatom exudates and UVA/B radiation on the oxidation</u> 289 <u>of Fe(II) in seawater</u>

290 Initially, the half-lives of Fe(II) in both treatments, those with and without addition of diatom exudates, was quite similar (Figure 5). For the initial 5 min (300 s) 291 292 a half life of 4.5±0.7 min and 4.0±0.3 min, respectively was determined for Fe(II) in 293 the UVSW without and with added diatom exudates. These values are in the same 294 range as published values (Millero et al. 1987; Kuma et al. 1995; Croot et al. 2002). 295 A remarkable difference between both treatments is clearly visible after about 7 min 296 (420 s) (Figure 5). In the UVSW without exudates the Fe(II) concentration continued 297 decreasing exponentially reaching the detection limit after 20 min, whereas in UVSW with added diatom exudates the Fe(II) concentration remained at about 30 nmol L^{-1} 298 299 decreasing only very slightly with time. The photochemical effect of the exudates was 300 strong enough to result in a net stabilising effect on Fe(II) after 7 minutes.

301	Differences in H_2O_2 production during the first hour of irradiation were
302	significant between UVSW with and without exudates. In the UVSW sample with
303	added diatom exudates a linear production rate of 33 nmol L^{-1} h^{-1} H_2O_2 was
304	determined whereas in pure UVSW the respective rate was only 5 nmol $L^{-1} h^{-1}$. The
305	higher production rate of H_2O_2 in the presence of exudates, suggests increased
306	photochemical production of H_2O_2 . UVSW without exudates contained 11 µmol L ⁻¹

307	DOC and no measurable total MS and PS, whereas UVSW mixed with exudates of
308	<i>Phaeodactylum tricornutum</i> contained ~450 μ mol L ⁻¹ DOC, including
309	0.4 mg glucose eq. L^{-1} (i.e. 13 µmol C L^{-1}) total MS and PS. The DOC- normalised
310	H_2O_2 generation rate of 6.1 nmol L ⁻¹ (mg C) ⁻¹ h ⁻¹ calculated from UVSW with
311	exudates indicates that laminarin-like diatom exudates (Ford et al. 1965)
312	photochemically produce H ₂ O ₂ . However, the high DOC content suggests that there
313	was also other organic matter contributing to the photo-production of H_2O_2 .
314	Figure 6 shows a schematic of that part of the iron cycle relevant for our
315	experiment. In pure UVSW the added Fe(II) was oxidised rapidly, but in the presence
316	of ligands contained in the diatom exudates Fe(II) formed FeL, which in the light was
317	released as Fe(II) and then oxidised. The Fe(II) concentration could thus remain stable
318	as Fe(II) production from FeL balanced Fe(II) oxidation. We used a simple numerical
319	model based on these processes to model the Fe(II) concentration in our experimental

320 system.

321 The model uses a constant photoproduction term k_{hv} [FeL] of ferrous iron, and constant oxidation rates with oxygen (ko_2) . The oxidation rates with hydrogen 322 323 peroxide $(\mathbf{k}_{\mathbf{H}_2\mathbf{O}_2})$ are assumed to increase linearly with a photoformation rate of 33 nmol L^{-1} h⁻¹ as measured in this experiment and initial H₂O₂ concentration are set 324 at 4.6 nmol L⁻¹. The initial Fe(II) concentration [Fe(II)₀] is set at 100 nmol L⁻¹ Fe(II), 325 326 the amount added in the experiment, and increases in the model by the constant 327 photoreduction of the FeL complex (where L is either EDTA or diatom exudates or a 328 combination of both). The direct photoreduction of inorganic iron colloids and 329 dissolved ferric iron is also possible (Waite et al. 1984; Wells et al. 1991a; Wells et 330 al. 1991b; Johnson et al. 1994), but rates for these processes are negligibly low. For

- both processes together we calculated about 0.004 nmol L^{-1} s⁻¹ of Fe(II) for
- $100 \text{ nmol } \text{L}^{-1}$ Fe(II) added using the rates reported by Johnson et al. (1994). The

333 model assumes that the concentration of FeL changes only negligibly during the

- 334 experiment. As loss processes of Fe(II) we included the oxidation of Fe(II) with O₂
- and the oxidation with H_2O_2 . The latter depends on the increasing H_2O_2
- 336 concentrations during the experiment. Since dissociation and formation of FeL are

relatively slow (Hudson *et al.* 1992) compared to the photoreduction of FeL and the

- 338 oxidation of Fe(II) we ignored these processes in the model. The model calculates the
- 339 change in Fe(II) concentration over time (equation 1).

340
$$\frac{d[Fe(II)]}{dt} = k_{hv}[FeL] - k_{O_2}[Fe(II)_0] - k_{H_2O_2}[H_2O_2][Fe(II)_0]$$
eq. 1

341
$$[H_2O_2] = 33/3600 * t + 4.6$$
 eq. 2

342 t given in [s], k_{hv} and k_{O_2} in [s⁻¹], $k_{H_2O_2}$ in [L nmol⁻¹ s⁻¹] and all concentrations given in 343 [nmol L⁻¹].

The parameters k_{O_2} , k_{hv} [FeL] and $k_{H_2O_2}$ were estimated by fitting the model to the observed data, minimizing the root mean squared model-data misfit, scaled by the assumed variance of the measurements. If the deviations between model and data are independent and normally distributed, the misfit

348
$$\chi^2 = \sum_{i} \frac{(d_i - m_i)^2}{\sigma_i^2}$$
 eq. 3

349 is a χ^2 variable. In this case we can estimate the posterior probability density function 350 (pdf) of the model parameters (assuming a uniform prior) by

351
$$pdf(k_{O_2}, k_{h\nu}[FeL], k_{H_2O_2}) \sim \exp\left(\frac{-\chi^2}{2}\right)$$
 eq. 4

352	(see e.g. D.S. Sivia (2006)). The probability function is well approximated by a
353	multidimensional Gaussian distribution with a maximum value for the best estimated
354	set of parameter values. To obtain an estimate of the variance for this maximum
355	likelihood estimate of the parameters, we also need an estimate of the covariance
356	matrix of the parameters at the minimum of χ^2 . This covariance matrix can be
357	estimated as the inverse of the Hessian matrix of χ^2 at the minimum. We can then
358	assume a confidence interval (\pm one standard deviation) for the best estimates of the
359	parameters, which are $ko_2 = 6.04e-03\pm 1.20e-03 \text{ s}^{-1}$, $k_{H_2O_2} = 1.97e-04\pm 8.59e-05$
360	L nmol ⁻¹ s ⁻¹ and k_{hv} [FeL] = 0.22±0.06 nmol L ⁻¹ s ⁻¹ . With this high photoreduction rate
361	the model fits the measured data very well (Figure 7) but the oxidation rates for
362	oxygen and H_2O_2 are 30% lower and 105% higher, respectively, than rates reported
363	by Millero <i>et al.</i> (1987; 1989). Holding the oxidation rates k_{0_2} and $k_{H_2O_2}$ fixed at
364	values calculated for the given experimental conditions (22 °C, S = 34.2, O_2 saturated,
365	pH = 8.1) according to Millero <i>et al.</i> (1987; 1989) the model-data misfit becomes
366	somewhat larger and the model requires a slightly higher Fe(II) photoproduction term
367	k_{hv} [FeL] of about 0.24±0.01 nmol L ⁻¹ s ⁻¹ to fit the measured data (Figure 7). The
368	larger error margins when fitting all three parameters, compared to fitting only the
369	photoreduction rate, is explained by the strong correlation between the estimates of
370	$k_{\rm H_2O_2}$ and of $k_{\rm hv}$ [FeL], meaning that the data can be represented almost equally well
371	with different combinations of these two parameters.

The estimated photoproduction rates of Fe(II) are about 50 times higher than the

373 photoreduction rate of inorganic colloidal and dissolved iron calculated before,

independent of whether we assume the oxidation rates by Millero et al. (1987, 1989).

- 375 This indicates high photoreduction of Fe(III) mediated by the added organic material.
- 376 This high reduction of Fe(III) could have resulted either from direct photoreduction of

the FeL or indirectly via light induced (see absorbance spectra Figure 2) formation of superoxide (DOM + $h\nu \rightarrow$ DOM*; DOM* + $O_2 \rightarrow$ DOM⁺ + O_2^- ; and Fe(III) + $O_2^ \rightarrow$ Fe(II) + O_2) and the subsequent reduction of ferric iron (King *et al.* 1995; Voelker *et al.* 1995; Rose *et al.* 2005; Fujii *et al.* 2006; Rose *et al.* 2006; Waite *et al.* 2006; Garg *et al.* 2007b, 2007a).

Since the estimated laminarin concentration of $\sim 1 \text{ mg L}^{-1}$ only accounts for 382 383 \sim 8% of the DOC content of this sample it is not clear to what extend PS were 384 responsible for the photoreduction during this experiment. Some EDTA (concentration of $\sim 1 \text{ umol } L^{-1}$) had inadvertently also been added with the diatom 385 386 exudates, as it was part of the culture media. However, photoreduction of iron from complexes with EDTA seemed to have had only a minor effect. Reported steady state 387 388 Fe(II) concentrations present under stronger irradiation due to photoreduction of Fe-389 EDTA complexes are much lower (Sunda et al. 2003) than observed in this study. 390 Photo-redox cycling of Fe–EDTA complexes has a larger influence on Fe(III) 391 concentrations than on those of Fe(II) (Sunda et al. 2003). 392 Steady state concentrations of photochemical Fe(II) are linearly related to the 393 irradiation energy especially in the UV range (Kuma et al. 1995; Rijkenberg et al. 394 2005; Rijkenberg et al. 2006; Laglera et al. 2007). In our study the light intensity was 395 only 25% of the UVB radiation 39% of UVA and 1% of PAR of the calculated natural 396 irradiance in midday summer sun at 40°N (Zepp et al. 1977). Therefore under natural 397 coastal conditions, with 4-5 times lower DOC concentrations but a 2.6 to 100 times 398 higher irradiance levels, a photoreductive effect of diatom exudates seems highly 399 probable.

400

401 **4 Conclusions**

402 In this study we investigated the photochemical effect of artificial and natural 403 polysaccharide material in aquatic systems on iron speciation and on the production of 404 H₂O₂. Artificial PS caused high photochemical production of H₂O₂, which acts as a 405 strong oxidant for metals and organic matter on the one hand. On the other hand H_2O_2 406 is formed photochemically via the superoxide intermediate which is capable of 407 reducing Fe(III). We found increased steady state Fe(II) concentrations in illuminated 408 seawater with a high concentration of exudates of *Phaeodactylum tricornutum*. In the 409 dark this effect of artificial PS on ferrous iron was not detectable, suggesting that 410 light-produced superoxide reduces Fe(III) maintaining elevated Fe(II) concentration. 411 In coastal seawater with high content of organic matter originating partly from 412 diatoms a positive effect of the exudates on the bioavailability of iron seems likely. 413 Field studies comparing natural phytoplankton bloom waters with open ocean waters 414 are needed to confirm these photoreduction results and the counteracting effect of 415 H₂O₂ on a daily time scale and as a function of particle size (dissolved, colloidal and 416 particulate fraction).

417

418 **5** Acknowledgments

We thank P. Gooddy for his help in the laboratory at the NOCS (UK)
and T. Steinhoff and S. Grobe who measured the DOC in our samples at the IfMGeomar (Germany). Thanks also to N. McArdle for administrational help during this
BIOTRACS Early-Stage Training (EST) Fellowship which was funded by the
European Union under the Sixth Framework Marie Curie Actions.

425 6 References

- 426 Benner, R., J. D. Pakulski, *et al.* (1992). "Bulk chemical characteristics of dissolved 427 organic matter in the ocean." <u>Science</u> **255**: 1561-1564.
- 428
- Boyd, P. W., T. Jickells, *et al.* (2007). "Mesoscale iron enrichment experiments 1993–
 2005: synthesis and future directions." <u>Science</u> 315: 612-617.
- 431
- Boye, M. (2001). "Organic complexation of iron in the Southern Ocean." <u>Deep Sea</u>
 <u>Research I</u> 48(6): 1477-1497.
- Butler, A. (2005). "Marine Siderophores and Microbial Iron Mobilization." <u>BioMetals</u> **18**(4): 369-374.
- 437
- 438 Cooper, W. J., R. G. Zika, *et al.* (1988). "Photochemical formation of H_2O_2 in natural 439 waters exposed to sunlight." <u>Environ. Sci. Technol.</u> **22**: 1156-1160.
- 440
- 441 Croot, P. L. and M. Johansson (2000). "Determination of iron speciation by cathodic
 442 stripping voltammetry in seawater using the competing ligand 2-(2-Thiazolylazo)-p443 cresol (TAC)." <u>Electroanalysis</u> 12(8): 565-576.
- 444
- 445 Croot, P. L. and P. Laan (2002). "Continuous shipboard determination of Fe(II) in
 446 polar waters using flow injection analysis with chemiluminescence detection."
 447 <u>Analytica Chimica Acta</u> 466: 261-273.
- 448
- 449 Croot, P. L., P. Laan, *et al.* (2005). "Spatial and temporal distribution of Fe(II) and
 450 H₂O₂ during EisenEx, an open ocean mescoscale iron enrichment." <u>Mar. Chem.</u> 95:
 451 65-88.
- 452
- 453 Donat, J. R. and K. W. Bruland (1988). "Direct determination of dissolved Cobalt and
 454 Nickel in seawater by differential pulse cathodic stripping voltammetry preceded by
 455 adsorptive collection of cyclohexane-1,2-dione dioxime complexes." <u>Anal. Chem.</u> 60:
 456 240-244.
- 457
- Falkowski, P. G., R. T. Barber, *et al.* (1998). "Biogeochemical controls and feedbacks
 on ocean primary production." <u>Science</u> 281(5374): 200-206.
- 460
- 461 Ford, C. W. and E. Percival (1965). "The carbohydrates of *Phaeodactylum*462 *tricornutum*." J. Chem. Soc.: 7035-7041.
- 463
- 464 Fujii, M., A. L. Rose, *et al.* (2006). "Superoxide-mediated dissolution of amorphous 465 ferric oxyhydroxide in seawater." Environmental Science & Technology **40**(3): 880-
- 465 466

887.

- 467
- 468 Garg, S., A. L. Rose, *et al.* (2007a). "Superoxide-mediated reduction of organically
- 469 complexed iron(III): Impact of pH and competing cations (Ca2+)." <u>Geochimica Et</u>
 470 Cosmochimica Acta **71**: 5620-5634.

471	
472	Garg, S., A. L. Rose, <i>et al.</i> (2007b), "Superoxide mediated reduction of organically
473	complexed Iron(III): Comparison of non-dissociative and dissociative reduction
474	nathways "Environmental Science & Technology 41 (9): 3205-3212
175	puttivuys. <u>Environmental Science & Technology</u> $\mathbf{H}(y)$. 5205 5212.
475	Coider P L at al. (1004) "The role of iron in phytoplankton photosynthesis and the
470	notantial for iron limitation of primary productivity in the sea "Destagy the Des 20 :
4//	potential for non-initiation of primary productivity in the sea. <u>Photosynui. Res.</u> 59.
4/8	275-301.
4/9	
480	Gerringa, L. J. A., M. J. A. Rijkenberg, <i>et al.</i> (2004). "The influence of solar
481	ultraviolet radiation on the photochemical production of H_2O_2 in the equatorial
482	Atlantic Ocean." J. Sea Res. 51: 3-10.
483	
484	Gonzalez-Davila, M., J. M. Santana-Casiano, et al. (2005). "Oxidation of iron (II)
485	nanomolar with H_2O_2 in seawater." <u>Geochimica et Cosmochimica Acta</u> 69(1): 83-93.
486	
487	Gonzalez-Davila, M., J. M. Santana-Casiano, et al. (2006). "Competition between O ₂
488	and H ₂ O ₂ in the oxidation of Fe(II) in natural waters." Journal of Solution Chemistry
489	35 (1): 95-111.
490	
491	Hellebust I A (1965) "Excretion of some organic compounds by marine
492	nhytonlankton "Limnol Oceanogr 10: 192-206
493	priytophankton. <u>Eminor. Occuriogr.</u> 10. 172 200.
193	Hellebust I & (1974) "Extracellular products In: W D P Stewart (Ed.) Algal
4)4 105	nbusiology and biochemistry " Blackwall: 838 863
495	physiology and blochemistry. <u>Blackwen</u> . 838-865.
490	Hudson DIM at al (1002) "Investigations of iron apardination and raday reactions
497	in accurate using ⁵⁹ E radiometry and ion pair solvent autraction of amphiphilis iron
498	in seawater using Fe radiometry and ion-pair solvent extraction of amphiphing from
499	complexes." <u>Marine Chemistry</u> 38: 209-235.
500	
501	Hutchins, D. A. and K. W. Bruland (1998). "Iron-limited diatom growth and Si:N
502	uptake ratios in a coastal upwelling regime." <u>Nature</u> 393 : 561-564.
503	
504	Johnson, K. S., K. H. Coale, et al. (1994). "Iron photochemistry in seawater from the
505	equatorial Pacific." Mar. Chem. 46: 319-334.
506	
507	Johnson, K. S., R. M. Gordon, et al. (1997). "What controls dissolved iron
508	concentrations in the world ocean?" Marine Chemistry $57(3/4)$: 137.
509	
510	King, D. W., H. A. Lounsbury, et al. (1995). "Rates and mechanism of Fe(II)
511	oxidation at nanomolar total iron concentrations." Environ. Sci. Technol. 29: 818-824.
512	
513	Kuma K S Nakabayashi <i>et al.</i> (1995) "Photoreduction of Fe(III) by
514	hydrocarboxylic acids in seawater " Water Research 29 (6): 1559-1569
515	$\frac{1}{1000} \frac{1}{1000} \frac{1}{1000$
516	Kuma K S Nakabayashi <i>et al.</i> (1002) "Photoreduction of Fe(III) by dissolved
517	organic substances and existence of Eq(II) in segurator during spring blooms "Mar
J1/ 510	Chom 27: 15 27
318	<u>Ulelli.</u> 31. 13-27.

- 520 Laglera, L. M. and C. M. G. Van den Berg (2007). "Wavelength dependence of the
- 521 photochemical reduction of iron in arctic seawater." <u>Environ. Sci. Technol.</u> **41**: 2296-522 2302.
- 523
- 524 Macrellis, H. M., C. G. Trick, *et al.* (2001). "Collection and detection of natural iron-525 binding ligands from seawater." <u>Marine Chemistry</u> **76**: 175-187.
- 526
- Miles, C. J. and P. L. Brezonik (1981). "Oxygen consumption in humic-colored
 waters by a photochemical ferrous-ferric catalytic cycle." <u>Environ. Sci. Technol.</u>
 15(9): 1089-1095.
- 530
- Miller, W. L., D. W. King, *et al.* (1995). "Photochemical redox cycling of iron in
 coastal seawater." <u>Mar. Chem.</u> 50: 63-77.
- 534 Millero, F. J. and S. Sotolongo (1989). "The oxidation of Fe(II) with H_2O_2 in 535 seawater." <u>Geochim. Cosmochim. Acta</u> **53**: 1867-1873.
- 536
- Millero, F. J., S. Sotolongo, *et al.* (1987). "The oxidation kinetics of Fe(II) in
 seawater." <u>Geochim. Cosmochim. Acta</u> 51: 793-801.
- Moffett, J. W. and O. C. Zafiriou (1990). "An investigation of hydrogen peroxide in surface waters of Vineyard Sound with H₂¹⁸O₂ and ¹⁸O₂." <u>Limnol. Oceanogr.</u> 35: 1221-1229.
- 543
 544 Morel, F. M. M. and N. M. Price (2003). "The biogeochemical cycles of trace metals
 545 in the oceans." <u>Science</u> 300: 944-947.
- 546
 547 Myklestad, S. M., E. Skanoy, *et al.* (1997). "A sensitive and rapid method for analysis
 548 of dissolved mono- and polysaccharides in seawater." <u>Marine Chemistry</u> 56(3-4):
 549 279-286.
- 550
- Obernosterer, I. B. (2000). "Photochemical transformations of dissolved organic
 matter and its subsequent utilization by marine bacterioplankton." <u>PhD thesis</u>: 133 pp.
- 553
 554 Ozturk, M., P. L. Croot, *et al.* (2004). "Iron enrichment and photoreduction of iron
 555 under UVand PAR in the presence of hydroxycarboxylic acid: implications for
 556 phytoplankton growth in the Southern Ocean." <u>Deep Sea Research II</u> 51: 2841-2856.
- 557
 558 Passow, U. (2002). "Transparent exopolymer particles (TEP) in aquatic
 559 environments." Progress in Oceanography 55: 287-333.
- 560
- Passow, U., J. Dunne, *et al.* (2006). "Organic carbon to ²³⁴Th ratios of marine organic
 matter." <u>Mar. Chem.</u> 100: 323-336.
- 563
- Petasne, R. G. and R. G. Zika (1997). "Hydrogen peroxide lifetimes in south Florida
 coastal and offshore waters." <u>Mar. Chem.</u> 56: 215-225.
- 567 Price, D., R. F. C. Mantoura, et al. (1998). "Shipboard determination of hydrogen
- 568 peroxide in the western Mediterranean sea using flow injection with
- 569 chemiluminescence detection." <u>Analytica Chimica Acta</u> 377: 145-155.

- Rice, P. J., B. E. Lockhart, et al. (2004). "Pharmacokinetics of fungal (1-3)-β-Image-glucans following intravenous administration in rats." International Immunopharmacology 4(9): 1209-1215. Rijkenberg, M. J. A., A. C. Fischer, et al. (2005). "The influence of UV irradiation on photoreduction of iron in th Southern Ocean." Mar. Chem. 93: 119-129. Rijkenberg, M. J. A., L. J. A. Gerringa, et al. (2006). "Enhancement and inhibition of iron photoreduction by individual ligands in open ocean seawater." Geochimica Et Cosmochimica Acta 70(11): 2790-2805. Rose, A. L. and D. Waite (2006). "Role of superoxide in the photochemical reduction of iron in seawater." Geochimica Et Cosmochimica Acta 70(15): 3869-3882. Rose, A. L. and T. D. Waite (2002). "Kinetic model for Fe(II) oxidation in seawater in the absence and presence of natural organic matter." Environ. Sci. Technol. 36: 433-444. Rose, A. L. and T. D. Waite (2003a). "Effect of Dissolved Natural Organic Matter on the Kinetics of Ferrous Iron Oxygenation in Seawater." Environ. Sci. Technol. 37: 4877-4886. Rose, A. L. and T. D. Waite (2003b). "Kinetics of iron complexation by dissolved natural organic matter in coastal waters." Marine Chemistry 84(1-2): 85-103. Rose, A. L. and T. D. Waite (2005). "Reduction of organically complexed ferric iron by superoxide in a simulated natural water." Environmental Science & Technology (8): 2645-2650. Rue, E. L. and K. W. Bruland (1995). "Complexation of iron(III) by natural organic ligands in the central North Pacific as determined by a new competitive ligand equilibrium / adsorptive cathodic stripping voltammetric method." Marine Chemistry : 117-138. Santana-Casiano, J., M. G.-D. Vila, et al. (2000). "The effect of organic compounds in the oxidation kinetics of Fe(II)." Marine Chemistry 70(1-3): 211-222. Santana-Casiano, J. M., M. Gonzalez-Davila, et al. (2004). "The oxidation of Fe(II) in NaCl-HCO₃- and seawater solutions in the presence of phthalate and salicylate ions: a kinetic model." Mar. Chem. 85(1-2): 27-40. Scully, N. M., D. J. McQueen, et al. (1996). "Hydrogen peroxide formation: The interaction of ultraviolet radiation and dissolved organic carbon in lake waters along a 43-75 degrees N gradient." Limnol. Oceanogr. 41(3): 540-548. Sedlak, D. L. and J. Hoigne (1993). "The role of copper and oxalate in the redox cycling of iron in atmospheric waters." Atmospheric Environment 27A(14): 2173-2185.

- 620 Sivia, D. S. (2006). "Data Analysis, A Bayesian Tutorial." 246 pp.
- 621
 622 Stookey, L. L. (1970). "Ferrozine a new spectrophotometric reagent for iron." <u>Anal.</u>
 623 Chem. 42(7): 779-781.
- 624
- 625 Sunda, W. and S. Huntsman (2003). "Effect of pH, light, and temperature on Fe-626 EDTA chelation and Fe hydrolysis in seawater." Mar. Chem. **84**: 35-47.
- 627
- Tanaka, Hurlburt, *et al.* (1971). "Application of Algal Polysaccharides as *in vivo*
- Binders of Metal Pollutants." <u>Proceedings of the International Seaweed Symposium</u> 7:
 602-604.
- 631
- Theis, T. L. and P. C. Singer (1974). "Complexation of Iron(ll) by organic matter and
 its effect on Iron(ll) oxygenation." <u>Environ. Sci. Technol.</u> 8: 569-573.
- 634
 635 van den Berg, C. M. G. (1995). "Evidence for organic complexation of iron in
 636 seawater." Marine Chemistry 50: 139-157.
- 637
- Viollier, E., P. W. Inglett, *et al.* (2000). "The ferrozine method revisited: Fe(II)/Fe(III)
 determination in natural waters." <u>Applied Geochemistry</u> 15(6): 785-790.
- 640
- Voelker, B. M. and D. L. Sedlak (1995). "Iron reduction by photoproduced
 superoxide in seawater." <u>Mar. Chem.</u> 50: 93-102.
- Waite, T. D. and F. M. M. Morel (1984). "Photoreductive dissolution of colloidal iron
 oxides in natural waters." <u>Environmental Science & Technology</u> 18: 860-868.
- Waite, T. D., A. L. Rose, *et al.* (2006). "Superoxide-mediated reduction of ferric iron
 in natural aquatic systems." <u>Geochimica Et Cosmochimica Acta</u> 70(18): A681-A681.
- 650 Wells and M. L. a. L.M.~Mayer (1991a). "The photoconversion of colloidal iron 651 oxyhydroxides in seawater." <u>Deep-Sea-Research A</u> **38**: 1379-1395.
- Wells, M., L. Mayer, *et al.* (1991b). "The photolysis of colloidal iron in the oceans."
 <u>Nature</u> 252: 248-250.
- 655
 656 Yocis, B. H., D. J. Kieber, *et al.* (2000). "Photochemical production of hydrogen
 657 peroxide in Antarctic Waters." <u>Deep Sea Research I</u> 47(6): 1077-1099.
- 658
 659 Yuan, J. and A. M. Shiller (1999). "Determination of subnanomolar levels of
 660 hydrogen peroxide in seawater by reagent-injection chemiluminescence detection."
 661 <u>Analytical Chemistry</u> 71(10): 1975-1980.
- 662

- 663 Yuan, J. and A. M. Shiller (2001). "The distribution of hydrogen peroxide in the 664 southern and central Atlantic ocean." Deep Sea Research II **48**: 2947-2970.
- 665 666 Zepp, R. G. and D. M. Cline (1977). "Rates of direct photolysis in aquatic
- 667 environment." Environ. Sci. Technol. **11**(4): 359-366.
- 668

669 **7 Figures**

670

 $\label{eq:Figure 1: Photogeneration of H_2O_2 during 270 min of irradiation of a 10 mg L^{-1}$

672 solution of laminarin (open triangle), carrageenan (open circle), gum xanthan (filled

- 673 circle) and of pure MQ water (filled triangle) and the mean of all 4 dark controls
- 674 (filled squares)

Figure 2: Absorbance spectra (normalised absorbance for 1 g L⁻¹ and 5 cm cuvette) of
laminarin (dashed line), carrageenan (dotted line), gum xanthan (solid line) dissolved
in MQ water and filtered over 0.2 μm membrane

- 682 Figure 3: Dark oxidation of 218 nmol L^{-1} Fe(II) in natural SW (filled circles) and
- 683 natural SW with PS added. Model results of oxidation of Fe (II) under O₂ saturation
- 684 (dotted line) and in the presence of 5 nmol L^{-1} H₂O₂ (solid line) at pH = 8.4, S = 34.1,
- 685 18 °C are also depicted

687

Figure 4: Dark oxidation of 230 nmol L^{-1} Fe(II) in UVSW (filled circles) and UVSW with PS added. Model results of oxidation of Fe (II) under O₂ saturation (dotted line) and in the presence of 270 nmol L^{-1} H₂O₂ (solid line) at pH = 8.3, S = 34.1, 17 °C are also depicted

694 Figure 5: Oxidation of Fe(II) in pure UVSW (triangles) and in UVSW with added

695 diatom exudates (circles) (22 °C, S = 34.2, O₂ saturated, pH = 8.1, UVB = 0.3 W m^{-2} ,

696 UVA = 17.6 W m⁻², PAR = 3.8 W m⁻²). The dotted line depicts the detection limit.

703 Figure 6: Schematic photoredox cycle for FeL describing the Fe cycling in experiment

- Figure 7: Best curve fits for measured data (experiment 3) of the oxidation of Fe(II) in
- 708 UVSW (22 $^{\circ}$ C, pH = 8.1) with added diatom exudates (diamonds) using fix oxidation
- rates calculated according to Millero *et al.* (1987; 1989) and the best estimate for the
- photoproduction term (solid line) and using the best parameter estimates for all three
- 711 parameters (dashed line) the dotted line shows the detection limit