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Abstract

This paper presents the data collected during an expedition from the marginal ice
zone into the multi year sea ice in the Fram Strait in May-June 2005 to measure
the variance in sea-ice types, albedo and thickness. It also describes the techniques
used to analyze the data. The principal information from the methodologies applied
derives the sea-ice types from digital photography, the spectral and broadband re-
flectance from spectrometer measurements and the total sea-ice thickness profile
from an electromagnetic-probe. A combination of methods was used to extract more
information from each data set compared to what traditionally are obtained. The
digital images were standardized, textural features extracted and a trained neural
network was used for classification, while the optical measurements were normalized
and standardized to minimize effects from the set up and atmospheric conditions.
Measurements from June 3rd (before the onset of summer melt) showed that the
fractional sea-ice types had large spatial variability, with average fractions for snow-
covered sea ice of 81.0%, thick bare ice 4.0%, thin ice 5.3% and open water 9.6%,
hence an average ice concentration of 90.3%. The average broadband reflectance
factor was 0.73, while the average total sea-ice thickness (including snow) was 2.1
m. Relative high correlations were found between the measured albedo and sea-ice
concentration (0.69). The paper also addresses the lessons learned for future fusion
of data from large field campaigns.
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1 Introduction1

Scientific-based operations in the polar regions are limited, mainly due to2

the cost, ship and helicopter availability and competition from other scientific3

programs. Therefore, when opportunities to collect multiple data sets arise, it4

is important to co-ordinate all activities to ensure that not only are as many5

parameters as possible studied efficiently, but also that the data can be easily6

combined and compared for further analysis.7

This paper describes the data collected during an expedition from the marginal8

ice zone into the multi-year sea ice in the Fram Strait in May-June 2005 to9

measure the variance in sea-ice types, albedo and thickness, and the techniques10

used to analyze the data. Digital images, optical reflectance measurements and11

electromagnetic thickness measurements were combined to obtain a detailed12

description of the sea ice physical and optical properties. The classification13

of sea-ice types involved surfaces identified during winter and early spring14

conditions, and therefore melt ponds were not included as they did not cover15

a notably area fraction of the surface at the time of the measurements. A main16

question addressed is how albedo varies in relation to the type of sea ice. While17

there is a simple relationship where thick ice has a high albedo and thin ice18

has a low albedo, this only applies to thin ice covers up to 30 cm thick under19

cold winter conditions (Laine, 2004). However, under summer conditions in20

the Arctic Ocean, the correlation between albedo and sea-ice concentration21

(extent) extracted from remote sensing data are found to be only 0.34 (0.40),22

with large variability between different areas (Laine, 2004).23

Previous studies on classifying sea-ice types from helicopter images have mostly24

concentrating identifying melt ponds. As part of the Surface Heat Budget of25

the Arctic Ocean (SHEBA) field experiment aerial photography and video26

camera flights were completed between spring and autumn in 1998 (Perovich27

et al., 2002; Tschudi et al., 2001). Perovich et al. (2002) calculated fractions of28

ice, new ice, ponds and leads using imaging processing software and manually29

selected thresholds based on the image intensity histograms, while Tschudi30

et al. (2001) identified melt pond and open water fractions from video images31

using spectral information in the three color RGB (red-green-blue) bands of32

the converted images. Derksen et al. (1997) employed low level aerial infrared33

images for identifying melt pond fractions, and Fetterer and Untersteiner34

(1998) utilized maximum likelihood algorithms to select a threshold image-35

intensity to separate pond distribution from ice distribution. More advanced36

classification tools for detecting sea-ice types have been employed in studies37

analyzing Synthetic Aperture Radar (SAR) images. Although SAR images38

have a coarser spatial resolution than the aerial photography presented in this39

paper, some of the techniques applied can be adapted to digital photography.40

Bogdanov et al. (2005) used a neural network and linear discriminate analysis41
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together with data fusion to automatically classify SAR sea ice images. They42

found that substantial improvements were gained by fusion of several data43

types. Texture statistics from grey level co-occurence matrices was used in44

Barber and Le Drew (1991). Also several approaches were applied to optical45

remote sensing data. A data fusion algorithm involved iterative segmenta-46

tion procedure on SAR images and extraction of spectral characteristics from47

AVHRR images, resulted in distinguishing between six sea-ice types (Lythe48

et al., 1999), while Markus et al. (2002) used a threshold based algorithm on49

individual Landsat bands to distinguish between white ice, bare/wet ice, melt50

ponds and open water.51

2 Observations52

The Fram Strait is the main passage of sea ice and water from the central53

Arctic Ocean to the global ocean. The volume of ice and water passing through54

the Fram Strait has a significant impact on the global ocean circulation and55

convection (Kwok et al., 2004; Vinje, 2001). In May-June 2005, the Norwegian56

Polar Institute led a ship-based field campaign in the Fram Strait (Fig. 1a),57

in which three sets of airborne measurements were collected by helicopter58

(Table 1). As the helicopter was ship-based, it was possible to verify the surface59

conditions pre- and post-flights. The optical measurements required a clear60

field of view underneath the helicopter, so two separate flights were required61

to obtain the three components of the dataset. The first flight included digital62

photography (Canon EOS 350D digital camera) and optical measurements63

(ADS FieldSpec Pro spectrometer operated with 8◦ fore-optics), while the64

second was for electromagnetic (EM) ice thickness measurements. For the65

optical flight, the digital camera and the fore-optics of the spectrometer were66

mounted on an aluminum plate and fastened to the floor of the helicopter67

looking down (Fig. 2).68

[Fig. 1 about here.]69

[Table 1 about here.]70

[Fig. 2 about here.]71

The position, speed and altitude of the helicopter were logged with a Global72

Positioning System (GPS) receiver, and the altitude and speed of the he-73

licopter were restricted so as to obtain over-lapping images at a sampling74

frequency of 5 s. A typical optical flight had an image footprint of 200 m in75

flight direction and 150 m across flight direction with 50-75 m overlap between76

successive images. In reality, each pixel in the image footprint was rectangu-77

lar due to the speed of the helicopter and the exposure time of the camera.78
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A typical footprint for the spectrometer was for simplicity assumed to be a79

circle with a diameter of 15-25 m, but as with the pixels, the spectrometer80

footprint was an ellipse due to the helicopter movement during the time taken81

to conduct a measurement. The reflectance measurements and digital images82

were co-located post-flight based on GPS time and position.83

EM ice thickness measurements were performed continuously along the heli-84

copter flight track with a towed sensor (EM bird). This is a 3.4 m long, 105 kg85

light cylindric instrument operated at an elevation of 15 to 20 m above the ice86

surface and suspended with a 20 m long tow cable. It was operated with a sig-87

nal frequency of 3.68 kHz (Haas et al., 2008). With the EM system, the height88

of the bird above the ice/water-interface was determined from the strength of89

the inphase component of the received secondary EM field (Haas et al., 2008).90

Ice-plus-snow thickness, or total thickness, was obtained by subtracting the91

birds elevation above the snow/air-interface measured with a laser altimeter92

which was also integrated in the bird. Hereafter ”total thickness” is referred93

to as ”ice thickness”. With a sampling frequency of 10 Hz and typical flight94

speeds of 60 to 80 knots the distance between individual measurement points95

on the ice is about 3 to 4 m. The accuracy of the EM measurements is +/- 0.196

m over level ice. As shown by Haas et al. (1997) and Pfaffling et al. (2007), the97

accuracy is not strongly affected by porosity or salinity differences of the ice98

types discussed in this paper. However, due to the footprint of the EM method99

of up to 50 m the maximum thickness of pressure ridges can be strongly un-100

derestimated. As the EM measurements were collected on a separate flight101

afterwards, they could not be directly compared to the other measurements102

due to a slightly different track and a fast drifting ice cover (Fig. 1b).103

The spectral albedo is the ratio of reflected to incident irradiance (solar radia-104

tion integrated over the hemisphere), while spectral reflectance is the ratio of105

reflected to incident radiance (solar radiation over a restricted field-of-view).106

The measurement collected here was the spectral reflectance factor (spectral107

RF), the ratio of reflected radiance to incident radiation reflected from a per-108

fect, white, diffuse surface (Spectralon, Nicodemus et al., 1977).109

The fore-optics of the spectrometer was mounted behind a Lexan window in110

the helicopter. After the campaign it was realized that the curvature of the111

Lexan window acted as a collecting lens in the visible, directing the light112

towards the for-optic. In addition the Lexan window had absorption bands113

at 350-380 nanometer (nm), about 1700 nm and above 2200 nm (not shown114

here). Also the reflectance spectra showed an unexpected peak at UV wave-115

lengths (350-380 nm). It is probable that the Lexan window disturbed the116

measurements, but the net effect is difficult to assess. However, the spectra117

was normalized to minimize these effects (Sec. 3.2).118
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2.1 Description of sea-ice types119

The distinction and classification between sea-ice types is not a straight-120

forward task. While the WMO Sea-Ice Nomenclature (Secretary of World121

Meteorological Organization, 1970) is the accepted reference, it does not eas-122

ily allow for slight variations in ice cover which can be required in detailed123

scientific studies. As a result, several scientific studies developed sea ice clas-124

sification schemes based on the WMO, but modified to account for the many125

variations observed during field campaigns (Steffen, 1986).126

In this paper sea-ice classes have been identified based primarily on their127

surface optical appearance. Three broad and quite general sea-ice types were128

identified (Table 2, Fig. 3): snow-covered sea ice, bare thick sea ice and open129

water. We also included a “thin ice” class, mostly consisting of brash ice (a130

mixture of newly formed thin ice, ice floes and open water), because the small131

scale variability between ice floes and open water is too fine to be resolved by132

the classification scheme described (Sec. 3.1.3). The classes correspond well133

with other ice types chosen for classification (Massom and Comiso, 1994), as134

the unambiguous distinction of more ice types may be difficult.135

Most of the sea ice was covered with optically thick snow (i.e snow thickness136

above 5 cm (Brandt et al., 2005)) at the time of the measurements. However,137

for some areas the snow had blown away leaving exposed bare ice. Some of the138

bare ice areas may have been melt ponds or flooded snow/ice at a previous139

time, but they where refrozen at the time of the measurements. Snow-covered140

and bare sea ice were separated mainly based on color, as snow has a white141

appearance compared to the blue-green bare ice.142

The thin ice class covers the broadest range of types with a wide range in143

spectral reflectivity. Optically, it can be thought of as an intermediate type144

between thick blue-green bare ice and open water. The open water is easily145

classified with its dark appearance due to the relatively constant 0.07 spectral146

albedo value over the visual part of the spectrum (Brandt et al., 2005). After147

the onset of summer melt the situation can be quite different with large areas148

of melting snow and melt ponds on the ice. However, the techniques described149

in the next sections are general, and can therefore be expanded to include150

more sea-ice types.151

[Table 2 about here.]152

[Fig. 3 about here.]153
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3 Data analysis154

3.1 Digital photography155

The images sizes were originally about 2Mb with an average pixel size equiv-156

alent to 0.05 m. To reduce processing time the images were down-sampled by157

averaging over every 10 pixels, giving a down-sampled image of 230x345 pixels158

and a resolution of approximately 0.50 m.159

3.1.1 Image standardization160

The exposure time, aperture opening and white balance parameters of the161

camera were set to automatic, and therefore the color intensity of the images162

was scaled according to the amount of light and dark pixels in the image. For163

example, the snow in an image consisting of only snow (bright pixels) seemed164

darker than the snow in an image consisting of both snow and open water165

(bright and dark pixels), as also experienced by others (Derksen et al., 1997).166

The brightness was not constant across the images, and particularly for snow,167

darker intensities along the edges due to vignetting was observed. However, it168

did not cause a major problem and was not corrected for. The white balance in169

the images required corrections, and the images were standardized according170

to the following iterative procedure (Fig. 4): The first image with good contrast171

was selected and scaled to an appropriate range. Sub-images of 100 pixels in172

the flight direction from two overlapping images (last 100 pixels from the first173

image and first 100 pixels from the second image) were normalized and cross-174

correlated. The maximum in the cross-correlation matrix gave the position175

where the two images were aligned or had the best match. The second sub-176

image was normalized so that the two overlapping sub-images had the same177

intensity mean and standard deviation. Due to the angle and tilt and variable178

speed of the helicopter, the images did not completely overlap in the flight179

direction, and some images required manual adjustments.180

[Fig. 4 about here.]181

3.1.2 Feature selection182

Every pixel in the images was classified separately based on 14 features for183

texture characterization according to Table 3 (Theodoridis and Koutroumbas,184

1999). Features 5-11 were calculated inside a 7 × 7 pixels sliding window of185

the grey-leveled indexed image, and provide information related to the grey186

level distribution of the image, but did not give information about the rela-187

tive positions of the various gray levels within the image. Features 12-14 are188
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based on the second-order histogram, where pixels are considered in pairs to189

investigate the relative distance and orientation between them. In Barber and190

Le Drew (1991), the maximum discrimination between SAR sea-ice types was191

obtained when considering the grey level co-occurrence matrix with parallel192

pixels with an interpixel distance of one, and this approach was followed here.193

[Table 3 about here.]194

The best features for distinguishing between snow-covered ice, thick bare ice,195

thin ice and open water were selected according to Fisher Discriminant Anal-196

ysis (Johnson and Wichern, 2002). Fisher Discriminant Analysis is a trans-197

formation of the multi-variate observations from the feature space into the198

Fisher space, where a linear combination of features is selected to achieve199

maximum separation between the classes. The Fisher discriminant was calcu-200

lated based on feature vectors with a known classification label, which requires201

training and test data sets where the classes are known. The training set is202

used for constructing the classifier, while the test set is used for testing the203

performance of the classifier. The test and training data sets were created by204

manual classification of the four sea-ice types. Every combination of features205

(which results in 16 384 combinations) were tested by calculating the Fisher206

discriminant, applying the Fisher classification rule (Johnson and Wichern,207

2002) and evaluating the total average classification error based on the test208

set. The set of features giving the smallest classification error was chosen for209

further investigations.210

3.1.3 Classification211

A feed-forward back propagation neural network (Haykin, 1999) with 3 layers212

was used for classification. The first layer has a size (number of neurons) equal213

to the number of features, the middle (hidden) layer has two times the number214

of features neurons, and the output layer has one neuron (separating the four215

classes on the interval [0,1]). All neurons have the log-sigmoid as the activation216

function. See Haykin (1999) for more information about the neural network217

options. The neural network was trained by presenting the test set to the218

network, and the network updated its weight to minimize the sum of squared219

error to achieve the expected output in an adaptive manner.220

Classification based on texture features (calculated over a sliding window) of-221

ten experiences problems on the edge between classes, e.g., an image consisting222

of a sharp edge between snow-covered ice and open water will in the classified223

image often have a small transition zone where intermediate classes (bare ice224

or thin ice) are detected. Since the median filter is particularly effective in225

reducing noise, while at the same time preserving edge sharpness (Gonzalez226

and Woods, 1992), the classified images were median filtered (with a filter227
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size equal to the window size used for extracting the texture features). This228

approach was also used by others (Tschudi et al., 2001; Derksen et al., 1997).229

However, it does not completely remove the bias, and we must expect the230

intermediate classes (bare ice and thin ice) to be somewhat overestimated.231

3.2 Optical measurements232

The reflected radiance from the Spectralon reference plate was collected twice233

(before and after the flights), and only the reflected surface radiance were col-234

lected during the flights. The radiance reflected from the surface is affected235

by the amount of clouds, and may change as clouds drift, so variable light236

conditions will result in an error in the spectral RF (both in the spectral sig-237

nature and the absolute value). To reduce the effect of changing light condi-238

tions and overcome some of the shortcomings with the set-up, the spectral RF239

measurements were normalized with the ratio of the reflectance over a large,240

homogeneous, snow-covered surface both from inside the helicopter when fly-241

ing and from the ground afterwards. This approach was also used in Allison242

et al. (1993) on their optical airborne measurements.243

3.3 Data fusion244

The reflectance measurements and images were co-located based on time and245

position. For each reflectance spectrum the footprint in the image was identi-246

fied and the fractions of sea-ice types within that footprint calculated (Fig. 5).247

As the co-location was based on time (resolution 1 s) and the helicopter had a248

typical speed of 25-30 ms−1, some error in the co-location procedure must be249

assumed. Angle and tilt of the helicopter change the direction of the spectrom-250

eter footprint, and measured reflectances are subject to errors if the surface251

is tilted. The effect is largest under clear sky, but also evident for overcast252

conditions (Allison et al., 1993). No attempt was made to correct for this.253

[Fig. 5 about here.]254

3.3.1 Spectral unmixing255

Spectral unmixing is an unsupervised classification technique based on the256

spectral reflectances, which models the measured reflectance spectra as a lin-257

ear combination of characteristic reference spectra (so-called endmembers).258

If the endmembers are known, the product of the spectral unmixing gives259

the fraction of each sea-ice type within the spectrometer footprint by solving260
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Eq. (1) in a least square manner (Vikhamar, 2003).261

f · αch(λ) = r(λ) (1)262

f is the (m×4) matrix of fractions for the four sea-ice types for m images, r(λ)263

is the (m×n) matrix of measured reflectance spectra for n wavelength bands,264

and αch(λ) is the (4×n) characteristic albedo curves for each sea-ice type. The265

endmembers were identified directly from the classified images (the fraction of266

sea-ice types within the spectrometer footprint in the image) and the spectral267

reflectance measurements by using inverse spectral unmixing. This was done268

in a partly iterative manner, by first assuming standard characteristic albedo269

curves from previous measurements, following Tschudi et al. (2001). Based on270

the classified image fractions and the endmembers, an additional measure of271

spectral RF was calculated by weighting the characteristic spectra with the272

fractions in the spectrometer footprint, following the method of Perovich et al.273

(2002).274

4 Results and discussion275

On 3rd June the most consistent dataset of the expedition was obtained un-276

der mostly overcast conditions, and these data are further investigated in this277

section. The temperature on 3rd June was above 0◦C and the snow surface278

was wet. However no melt ponds were visible (neither from ground nor air).279

Altogether 592 images, 1487 spectra and 26488 thickness signals were col-280

lected, standardized and classified (Sec. 3). The airborne measurements were281

collected from a transect going west-north-east for the optical flight and west-282

east for EM-measurements (Fig. 1b). The two west transects, seen relative to283

the ice surface, become more separated to the west as the ice in the western284

Fram Strait drifts relatively fast in a S-SW direction. From 3◦W to 4◦ 36’285

W the flight-line for the EM measurements coincides more or less with the286

first east-west transect of the optical flight, so these sections were selected for287

comparing sea-ice thicknesses with findings and characteristics from the optics288

and photography analysis. Taking the relatively fast ice drift in the western289

Fram Strait into account, this comparison is only possible when assessing the290

general ice regime characteristics, and not individual floes.291

4.1 Sea-ice types292

The test and training data sets (Sec. 3.1.3) were created by manually classi-293

fying 120 000 pixels within 23 images to each of the four sea-ice types. The294
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best set of features were selected according to Fisher Discriminant Analysis295

(Sec. 3.1.2) by performing 50 Monte Carlo simulations where the test and296

training set were chosen randomly within the set of classified pixels for each297

simulation. The best features for separating between the sea-ice classes were298

found to be the three RGB intensities, the coefficient of variance (standard de-299

viation divided by the mean), the entropy (measure of histogram uniformity)300

and the GLCM homogeneity. A range of one standard deviation around the301

mean for the RGB intensities was found to separate the four classes completely,302

only with slight overlap between thin ice and open water. The co-efficient of303

variance was high for thin ice, and the mean +/- one standard deviation sepa-304

rated it from the other classes, while the mean of the entropy +/- one standard305

deviation separated thick bare ice from thin ice. No such simple relationship306

was found for the GLCM homogeneity.307

The neural network proved to be extremely efficient for discriminating be-308

tween the four sea-ice types, with only 1.06% classification error on the test309

set. The confusion matrix gives the number of times a feature vector belong-310

ing to class i (row) is classified to class j (column), where i, j are the four311

classes (Table 4). The correct classified pixels are along the diagonal from up-312

per left to lower right. The test resulted in 98-100% correct classification for313

the different classes, which is more than sufficient for routine use. Open water314

was easily distinguished from the other types, with only 0.2% confusion with315

thin ice. Thick bare ice was most often confused with snow-covered ice (1.0%).316

Large scale structures such as large areas of open water or snow-covered sea317

ice were generally easily identified (Fig. 5). At smaller scales, the classifier318

was less accurate due to down-scaling and smoothing when calculating the319

texture features. Errors at the edges between classes are typical as the median320

filter (Sec. 3.1.3) does not completely remove this. The consequence is that the321

intermediate sea-ice types (thick bare ice and thin ice) were over-estimated.322

Also, the test set results under-estimate the classification error since the pixels323

in the test set were chosen within larger, relative homogeneous areas of the324

individual sea-ice types, and very few pixels were on the edge between classes.325

For images outside the test set, larger classification error is expected, partic-326

ularly for thick bare ice and thin ice covering relative small areas. Since the327

textural features are averages over a 3.5x3.5 m (7x7 pixels) window, features328

smaller than this, e.g. wind shaped formations in snow, small ice floes and329

blocks, pancake ice etc. will be removed by smoothing and are not identified.330

This is partly why the thin ice class (with mixed brash ice) was introduced.331

[Table 4 about here.]332

The fractional area of snow-covered ice, thick bare ice, thin ice and open333

water as a function of longitude bands show considerable spatial variability,334

with snow-covered ice fractions varying from 0 to 100%, but with an average335

high ice concentration over the entire profile (Figs. 1b and 6a). The two ice336
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classes without snow cover represent only a small portion compared to snow-337

covered ice and open water. In the west there are more areas of open water338

compared to the east. Overall, the average ice concentration (total of snow339

covered, thick and thin ice) was 90.4%, with average fractions for snow-covered340

sea ice of 81.0%, thick bare ice 4.0%, thin ice 5.3% and open water 9.6%.341

For comparison, the average sea-ice concentration compiled from The Ocean342

and Sea Ice Satellite Application Facility (OSI-SAF-http://www.osi-saf.org,343

derived from special sensor microwave/imager data SSM/I) were 82.8% (with344

median 83.7% and range 64.0-93.9%) for the twelve 10 km resolution pixels345

inside the rectangular area of Fig. 1a.346

[Fig. 6 about here.]347

The sea-ice types were also calculated from the optical measurements by means348

of spectral unmixing. Compared to the neural network classification of the349

digital images (taken to represent the “true classes”), this resulted in an over-350

estimation of open water fractions to the west and thick bare ice fractions to351

the east (Fig. 6). The spectral unmixing technique was not very appropriate352

for detecting thin ice as the thin ice fraction in the west is detected as open353

water in Fig. 6, due to large scatter in the spectra used for determining the354

endmembers. The correlation coefficient between the fractions from the neural355

network and spectral unmixing was highest for snow-covered ice (0.90) and356

open water (0.81), whereas it was substantially smaller for the two intermedi-357

ate sea-ice classes (0.51 for thick bare ice and 0.58 for thin ice). Limitations358

in the co-location is probably responsible for some of the deviations, as the359

intermediate types cover smaller spatial areas, and thereby are more sensi-360

tive to small off-sets. A scatter-plot of neural network fractions (fNN) against361

spectral unmixing fractions (fSU) for the four sea-ice classes (Fig. 7), show a362

cluster along fNN = 1 (Fig. 7a), meaning that the spectral unmixing under-363

estimates the snow-covered ice. For thick bare ice and open water (Figs. 7b364

and d, respectively) the trend is opposite, with clusters along fNN = 0, im-365

plying that the spectral unmixing over-estimates those fractions. For thin ice366

(Fig. 7c) the congestion is along fSU = 0, meaning that the spectral unmixing367

has problems in detecting thin ice, as discussed above. The overall root mean368

square error for using spectral unmixing to estimate the fractions are 0.034,369

0.027, 0.021 and 0.028 for snow-covered ice, thick bare ice, thin ice and open370

water, respectively.371

[Fig. 7 about here.]372

The EM thickness measurements can also be used to determine the sea-ice373

types by separating open water (thickness below 0.05 m), thin ice (thickness374

between 0.05-0.3 m) and thick snow-covered ice (thickness above 0.3 m). It375

is not possible to partition the snow and the ice from the EM measurements,376

since the snow thickness is always included in the total thickness. The fractions377
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from the EM measurements show different characteristics, with no trend, and378

mostly thick snow-covered sea ice at all longitudes (Fig. 6d). These fractions379

can not be compared directly with the others, as the two flight lines were not380

concurrent and the ice drifted fast, so the comparison is more a statistical381

than a point-to-point comparison. By totaling the snow covered and thick ice382

fractions from the neural network and comparing it with the thick ice fraction383

from the EM measurements, the correlation coefficient is as low as 0.25, with384

corresponding correlation coefficients between the thin ice and open water385

fractions of 0.34 and 0.08, indication low and no correlation, respectively.386

4.2 Reflectance387

For the calculation of the spectral reflectance factor measurements, only the388

first east-west transect of the optical flight was used, as the light conditions389

changed too much over time to include all measurements. The broadband RF,390

calculated from the spectral RF by weighing the spectral RF with an appro-391

priate solar irradiance spectrum for cloudy conditions (Grenfell and Perovich,392

2004), is hereinafter called the measured broadband RF. It shows a relative393

high mean broadband RF over the entire transect, however higher in the east394

than in the west (Fig. 8a). Broadband albedos are higher for cloudy sky than395

clear sky (Brandt et al., 2005), so this may indicate more clouds in the east.396

The average measured broadband RF was 0.73 with standard deviation of397

0.33. The broadband RF was also calculated from the inverse spectral unmix-398

ing (hereinafter called calculated broadband RF), which corresponds well with399

the measured broadband RF (Fig. 8a). The calculated broadband RF does not400

increase towards the east since it has its upper threshold value set at 0.8711401

corresponding to the broadband RF of a snow-covered sea ice endmember. The402

scatter plot of measured versus calculated broadband RF (Fig. 8b) show that403

the measurements coincide around the 1:1 line, with a correlation coefficient404

of 0.94. Measured broadband RF are higher than calculated broadband RF405

for high values (the measured broadband RF frequently exceeds one), with a406

weak tendency of the opposite for small broadband RF values. If the measured407

broadband RF is taken to represent the ground truth reflectance factor, the408

overall root mean square error for the calculated broadband RF is 0.048.409

[Fig. 8 about here.]410

The endmembers for the four sea-ice types were calculated from inverse spec-411

tral unmixing, and have spectral signatures similar to other albedo measure-412

ments (Brandt et al., 2005; Grenfell and Perovich, 2004; Gerland et al., 2004).413

However, the set-up affected the endmembers by giving more noisy (jagged)414

spectras with an unexpected dip at UV wavelengths and substantial noise at415

high wavelength. The endmember curves were averaged with a running mean416
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(over 30 nm) to achieve smoother and more realistic curves (Fig. 5). In addi-417

tion the measured broadband RF were normalized to have the same mean as418

the calculated broadband RF.419

The mean and standard deviations of the broadband RF were calculated for420

each sea-ice type by including only the spectra for those spectrometer foot-421

prints having a fraction larger than 90% of one sea-ice type (Table 5), i.e. not422

more than 10% of the pixels within the spectrometer footprint may belong to423

other classes. For bare thick ice, no spectrometer footprint had a fraction of424

90% or more, so the threshold limit was reduced to 75%, and therefore the error425

in the mean broadband RF for thick bare ice may be high (despite a low stan-426

dard deviation in Table 5). Overall, the broadband RF corresponds well with427

values found in the literature for broadband albedo. The broadband RF for428

open water was slightly higher than corresponding albedo values from Brandt429

et al. (2005), because the open water was mixed with the other sea-ice types,430

all having higher broadband RF. Allison et al. (1993) also determined higher431

open water albedos than usual, due to snow-covered ice in the vicinity of the432

open water scene. The broadband RF of thin ice was 0.23, corresponding to433

values of young grey ice (Brandt et al., 2005), but with extremely large stan-434

dard deviations due to the thin ice broadband RF ranging from snow-covered435

ice to open water in its footprints. Previous measurements show that for bare436

ice, the reflectance factor has a lower value than the albedo (Perovich, 1994).437

However, the thick ice broadband RF was higher than what is reported for the438

snow-free first year ice albedo (Brandt et al., 2005). This is probably due to439

mixing with snow-covered ice (on average 15% of the area within the footprint440

was snow covered). The nadir reflectance factor and albedo should be similar441

at all wavelengths for snow (Perovich, 1994), and this is in fact shown here442

where the snow-covered sea ice has a broadband RF well inside the range of443

expected albedo values for snow (Paterson, 2001), and slightly higher than444

others (Brandt et al., 2005; Grenfell and Perovich, 1984).445

[Table 5 about here.]446

4.3 Sea-ice thickness447

From the total set of ice thickness data obtained, the thickness distribution at448

about 79◦ N exhibits a clear regional gradient from 10◦W to 2◦W; from thicker449

ice with a broad thickness distribution in the west to thinner ice with a more450

narrow thickness distribution in the east (Gerland et al., 2006). The modal ice451

thickness increases from east to west from about 2 m to almost 3 m (Fig. 9c).452

Most of the ocean along the flight line is covered with ice, but leads occur453

regularly. However, the amount of open water of narrow cracks and leads can454

be under-estimated with the EM technique due to the large footprint.455
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Few ridges thicker than 6 m were observed. In general, the thickest ridges456

were found in the western part of the transect, with one ridge reaching a457

thickness of more than 10 m. However, airborne EM derived thicknesses can458

under-estimate thicknesses of ridges by a factor 2 or more (?), indicating that459

real maximum ridge thickness might be at 20 m or more. The probability460

density functions illustrate that the ice is different in the west and east of the461

investigation area (Fig. 10), which is consistent with the regional trend beyond462

the section selected for this paper (Gerland et al., 2006). For both areas the463

density functions have two main modes, the first one is around zero for open464

water (with uncertainties) and the second one thicker, consisting of multiyear465

and ridged first-year, ice. At the marginal ice zone in the east, the modal ice466

thickness is 1.8 m (Fig. 10a). Further west the distribution indicates thicker467

ice with the main mode at 2.6 m and an additional prominent first-year ice468

mode at 1.1 m (Fig. 10b). The average sea-ice thickness including snow was469

2.1 m with a standard deviation of 1.3 m.470

[Fig. 9 about here.]471

[Fig. 10 about here.]472

4.4 Data fusion473

The combination of measurements from each instrument clearly shows that474

variations in measured broadband RF coincide well with changing sea-ice types475

(Fig. 9), where high broadband RF corresponds to large fractions of snow-476

covered ice and low broadband RF corresponds to large fractions of open477

water. Small fractions of the two intermediate ice types, e.g. at 3.7◦ W, lead478

to a visible reduction in the broadband RF. The correlation coefficient between479

measured broadband RF and fractional coverage from the digital images was480

0.72 for snow-covered ice (Fig. 11a) and -0.61 for open water (Fig. 11b), with481

large scatter of the samples. The correlation coefficient is negative because a482

higher fraction of open water leads to a reduced broadband RF. The mea-483

sured broadband RF is not very dependent on the fractional coverage of thick484

ice nor thin ice (correlation coefficients of -0.16 and -0.30, respectively). Also485

these correlations were negative as an increased fraction results in reduced486

broadband RF (compared against that of snow-covered ice, which was dom-487

inant). The correlations were relatively low because the intermediate sea-ice488

types covered smaller areas and are more vulnerable against small offsets in489

the footprint of the camera and spectrometer.490

[Fig. 11 about here.]491

The correlation between the sea-ice concentration and measured broadband492

RF was 0.69. This was higher than the correlations found by Laine (2004) using493
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remote sensing data in the Arctic Ocean and Northern Hemisphere (0.34 and494

0.56, respectively).495

5 Conclusions496

In this paper a dataset that provides information that can be employed to497

obtain a description of the sea ice regime has been presented. The dataset pro-498

vides information on the sea-ice type, albedo and total ice thickness observed499

along a transect. More importantly, the methods presented allow the different500

components of the dataset to be collected and compared in a consistent man-501

ner to obtain the maximum amount of information. The principal information502

from the three methods described gave sea-ice types from digital photography,503

the spectral and broadband reflectance factor from the spectrometer and the504

total sea-ice thickness from the airborne electromagnetic bird. Together these505

three datasets provide a comprehensive description of the complex sea ice en-506

vironment: the sea-ice concentration, described by combining the sea-ice types507

and separating it from open water; sea-ice volume, the extent multiplied with508

the thickness; and the energy balance determined from the optical measure-509

ments. If one component of the data set is missing, then important information510

may be lost. For example, the east-west ice thickness gradient does not ap-511

pear in the sea-ice types or optical observations. Since most of the sea ice is512

covered by relatively thick snow, and the albedo is completely determined by513

a snow cover of only a few cm thickness (Allison et al., 1993), snow-covered514

multiyear ice and first year ice are difficult, if not impossible, to distinguish515

without thickness measurements. However, if one component is missing (due516

to the lack or failure of instruments) then the necessary information can, to517

some extent, be extracted from the other measurements, albeit with increased518

error. The average root mean square errors for employing spectral unmixing519

for sea ice classification are 0.034, 0.027, 0.021 and 0.028 for snow-covered ice,520

thick bare ice, thin ice and open water, respectively, and for employing inverse521

spectral unmixing for broadband RF is 0.048. The same does not apply for522

the EM measurements. Although the fractional coverage of sea-ice types can523

be extracted from all three components individually, the neural network uses524

textural features for classifying the digital images, spectral unmixing uses the525

optical characteristics for classifying the reflectance measurements, and the526

thresholding technique uses the total sea-ice thickness for classifying the EM-527

measurements, hence the fractions will be biased depending on the property528

used.529

The average sea-ice fractions for the over flown area were 81.0% for snow-530

covered ice, 4.0% for thick bare ice, 5.3% for thin ice and 9.6% for open water,531

thus the average sea-ice concentration was 90.3%. The provided techniques are532

quite general so only minor changes are required to include for example melt533
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ponds or other necessary sea-ice types if the transects are conducted during534

summer time. The average measured broadband RF was 0.73 with standard535

deviation 0.33, and the average total sea-ice thickness (including snow) was 2.1536

m with standard deviation 1.3 m. The average sea-ice volume is thus 2.1 times537

the area. Further, relative high correlations were found between the measured538

albedo and sea-ice concentration (0.69).539

This initial study sheds light on the enormous potential of integrated airborne540

surveys over sea ice with modern methods. Improvements of the individual541

set-ups and steps will reduce the temporal and spatial bias. This particularly542

concerns the optical measurements. Future solutions will include optimizing543

systems so that all measurements can be performed from the same flight. The544

optical sensors will be mounted outside the helicopter to avoid effects from545

windows, and the problem introduced by varying incoming solar radiation will546

be addressed by direct measurements of the incoming radiation, parallel to the547

nadir reflectance measurements. Other improvements include: co-location pro-548

cedure, storage of raw images and the installation of a tilt-meter to correct for549

the angle and tilt of the helicopter. Some of these improvements are already550

under development and will be applied during campaigns as a part of projects551

in the International Polar Year 2007-2009. With such an improved set-up, large552

amounts of sea ice measurements processed with the described methodology553

will be an extremely valuable dataset for the validation of general circula-554

tion models and remote sensing products. In addition, for applications with555

unmanned aerial vehicles such an integrated airborne approach is required.556
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List of Figures668

1 (a) Sea-ice concentration (in percent) in the Fram Strait669

on 3rd June 2005 from passive microwave data with 10 km670

resolution from The Ocean and Sea Ice Satellite Application671

Facility (OSI-SAF-http://www.osi-saf.org), with Svalbard to672

the east and Greenland to the west (grey is land area and673

white is no data). The rectangle marks the investigated area674

78.00◦-79.05◦ N and 2.8◦-4.8◦ W. (b) Flight track for the two675

helicopter flights on 3rd June 2005 in the Fram Strait. The red676

track is for the optical and photography measurements, while677

the green is for the electromagnetic measurements. The SAR678

image is from 07.31 GMT, the optical flight was compiled679

between 07:27-08:19 GMT, and the electromagnetic flight680

between 11:08-12:32 GMT. The sea ice in the Fram Strait681

drifts relative fast in S-SW direction. Therefore, while the two682

tracks coincide in position, they did not cover the same area683

relative to the ice. 23684

2 Set up for the two different helicopter flights. One being the685

optical flight with digital camera and spectrometer fore-optics686

mounted on the floor of the helicopter. The cameras and687

spectrometers field-of-view are shown relative to each other.688

The other being the electromagnetic (EM) flight, using an689

EM-bird with transmitter and receiver coils and a laser690

altimeter. The ice thickness is obtained from the difference of691

the bird’s height above the water and ice surface. 24692

3 Sea ice image example where each of the four sea-ice types are693

represented. The colors correspond to the spectra in Fig. 5. 25694

4 The standardizing procedure for getting a homogeneous time695

series of the airborne images. The upper panels show two696

overlapping images with different brightness and contrast. The697

two sub-images (of 100 pixels width, marked with a frame)698

were cross-correlated, giving the matrix in the middle left. The699

black dot marks the maximum in the cross-correlation matrix,700

giving the best alignment between the two sub-images (shown701

in the middle-right). The second sub-image was scaled to have702

the same mean (µ) and standard deviation (σ) as the first.703

The bottom image shows the two overlapping images after the704

standardization procedure. 26705
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5 An example of the co-location procedure of the data, with706

the original RGB image (upper panel, left), and the footprint707

of the spectrometer co-located within the grey-leveled,708

down-sampled image (upper panel, right). The classified subset709

of the image (bottom panel, right) gives a fraction of 75.8%,710

5.5%, 16.0% and 2.7% for snow-covered ice, thick bare ice,711

thin ice and open water, respectively, with the corresponding712

characteristic curves (endmembers) for the four sea-ice types713

(in color) together with the measured and calculated spectral714

reflectance factor (RF) (bottom panel, left). 27715

6 Fractional coverage of open water, thin ice, bare thick ice716

and snow-covered ice as a function of longitude bands of717

0.05◦. (a) neural network classification from photography, (b)718

neural network classification from photography within the719

footprint of the spectrometer (only a subset of the image720

is used), (c) spectral unmixing from optical measurements,721

(d) classification based on EM thickness measurements. The722

bottom panel only has three classes (open water (black), thin723

ice (grey) and thick, snow-covered ice (light grey)). 28724

7 Scatter plot between sea-ice fractions as calculated from725

neural network (fNN) and spectral unmixing (fSU). The 1:1726

line indicates linear correlation. (a) is for snow-covered ice727

(ρ = 0.90), (b) thick bare ice (ρ = 0.51), (c) thin ice (ρ = 0.58)728

and (d) open water (ρ = 0.91), where ρ is the correlation729

coefficient. 29730

8 (a) Measured and calculated broadband reflectance factor731

(broadband RFm and broadband RFc, respectively) as a732

function of longitude bands of 0.05◦. (b) Scatter plot of733

measured broadband RFm against calculated broadband RFc.734

The correlation coefficient is 0.94. 30735

9 (a) Average fractional coverage of the individual sea-ice types736

from the classified photographies and (b) average measured737

broadband reflectance factor (RF) as a function of longitude738

for 0.05◦ longitude bands. (c) Total sea-ice thickness (ice plus739

snow) as measured from the electromagnetic bird. 31740

10 Probability density function (Pdf) of the total sea-ice thickness741

(sea ice plus snow) from the two transects 3.0-3.8◦ W in (a)742

and 3.8-4.6◦ W in (b) from the electromagnetic bird. 32743
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11 Scatter-plots of measured broadband reflectance factor744

(broadband RF) and fractional snow-covered ice in (a) and745

fractional open water in (b), with correlation coefficients of746

0.72 and -0.61, respectively. 33747
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Fig. 1. (a) Sea-ice concentration (in percent) in the Fram Strait on 3rd June 2005
from passive microwave data with 10 km resolution from The Ocean and Sea Ice
Satellite Application Facility (OSI-SAF-http://www.osi-saf.org), with Svalbard to
the east and Greenland to the west (grey is land area and white is no data). The
rectangle marks the investigated area 78.00◦-79.05◦ N and 2.8◦-4.8◦ W. (b) Flight
track for the two helicopter flights on 3rd June 2005 in the Fram Strait. The red
track is for the optical and photography measurements, while the green is for the
electromagnetic measurements. The SAR image is from 07.31 GMT, the optical
flight was compiled between 07:27-08:19 GMT, and the electromagnetic flight be-
tween 11:08-12:32 GMT. The sea ice in the Fram Strait drifts relative fast in S-SW
direction. Therefore, while the two tracks coincide in position, they did not cover
the same area relative to the ice.
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Fig. 2. Set up for the two different helicopter flights. One being the optical flight with
digital camera and spectrometer fore-optics mounted on the floor of the helicopter.
The cameras and spectrometers field-of-view are shown relative to each other. The
other being the electromagnetic (EM) flight, using an EM-bird with transmitter and
receiver coils and a laser altimeter. The ice thickness is obtained from the difference
of the bird’s height above the water and ice surface.

24



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

Fig. 3. Sea ice image example where each of the four sea-ice types are represented.
The colors correspond to the spectra in Fig. 5.
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Fig. 4. The standardizing procedure for getting a homogeneous time series of the air-
borne images. The upper panels show two overlapping images with different bright-
ness and contrast. The two sub-images (of 100 pixels width, marked with a frame)
were cross-correlated, giving the matrix in the middle left. The black dot marks the
maximum in the cross-correlation matrix, giving the best alignment between the
two sub-images (shown in the middle-right). The second sub-image was scaled to
have the same mean (µ) and standard deviation (σ) as the first. The bottom image
shows the two overlapping images after the standardization procedure.
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Fig. 5. An example of the co-location procedure of the data, with the original RGB
image (upper panel, left), and the footprint of the spectrometer co-located within
the grey-leveled, down-sampled image (upper panel, right). The classified subset of
the image (bottom panel, right) gives a fraction of 75.8%, 5.5%, 16.0% and 2.7%
for snow-covered ice, thick bare ice, thin ice and open water, respectively, with
the corresponding characteristic curves (endmembers) for the four sea-ice types (in
color) together with the measured and calculated spectral reflectance factor (RF)
(bottom panel, left).
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Fig. 6. Fractional coverage of open water, thin ice, bare thick ice and snow-covered
ice as a function of longitude bands of 0.05◦. (a) neural network classification from
photography, (b) neural network classification from photography within the foot-
print of the spectrometer (only a subset of the image is used), (c) spectral unmixing
from optical measurements, (d) classification based on EM thickness measurements.
The bottom panel only has three classes (open water (black), thin ice (grey) and
thick, snow-covered ice (light grey)).
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Fig. 7. Scatter plot between sea-ice fractions as calculated from neural network
(fNN ) and spectral unmixing (fSU). The 1:1 line indicates linear correlation. (a) is
for snow-covered ice (ρ = 0.90), (b) thick bare ice (ρ = 0.51), (c) thin ice (ρ = 0.58)
and (d) open water (ρ = 0.91), where ρ is the correlation coefficient.
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Fig. 8. (a) Measured and calculated broadband reflectance factor (broadband RFm
and broadband RFc, respectively) as a function of longitude bands of 0.05◦. (b)
Scatter plot of measured broadband RFm against calculated broadband RFc. The
correlation coefficient is 0.94.
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Fig. 9. (a) Average fractional coverage of the individual sea-ice types from the clas-
sified photographies and (b) average measured broadband reflectance factor (RF)
as a function of longitude for 0.05◦ longitude bands. (c) Total sea-ice thickness (ice
plus snow) as measured from the electromagnetic bird.
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Fig. 10. Probability density function (Pdf) of the total sea-ice thickness (sea ice
plus snow) from the two transects 3.0-3.8◦ W in (a) and 3.8-4.6◦ W in (b) from the
electromagnetic bird.
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Fig. 11. Scatter-plots of measured broadband reflectance factor (broadband RF) and
fractional snow-covered ice in (a) and fractional open water in (b), with correlation
coefficients of 0.72 and -0.61, respectively.
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Information Instrument Sampling frequency

Fractional sea-ice types Canon EOS 350D digital camera 5 s

Reflectance ADS FieldSpec Pro spectrometer 2 s

Ice thickness Electromagnetic bird 0.1 s

Table 1
Airborne measurements
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Class index Description of sea-ice types

I Snow-covered sea ice

II Thick bare sea ice

III Thin ice (combined brash ice)

IV Open water

Table 2
Observed sea-ice types in the Fram Strait in spring 2005 before the onset of summer
melt.
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Features

1 Red intensity

2 Green intensity

3 Blue intensity

4 Grey-level intensity

5 Mean intensity

6 Variance

7 Skewness

8 Kurtosis

9 Entropy

10 Energy

11 Coefficient of variance

12 GLCM contrast

13 GLCM energy

14 GLCM homogeneity

Table 3
Textural features for sea ice classification. Features 5-11 are based on first order
statistics, while features 12-14 are from second-order statistics and the grey-level-
co-occurrence matrix (GLCM) (Theodoridis and Koutroumbas, 1999)).
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Snow-covered ice Thick bare ice Thin Ice Open water

Snow-covered ice 98.4 1.3 0.2 0.1

Thick bare ice 1.0 98.3 0.5 0.2

Thin Ice 0 0.6 99.2 0.2

Open water 0 0 0.2 99.8

Table 4
The confusion matrix for neural network classification on the test set, when the best
feature combination (the three RGB intensities, coefficient of variance, entropy and
GLCM homogeneity) was used. The confusion matrix gives the number of times a
feature vector belonging to class i (along the rows) is classified to class j (along the
columns). The correct classified pixels are in bold along the diagonal.
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Snow-covered ice Thick bare ice Thin ice Open water

Mean(broadband RF) 0.86 0.63 0.23 0.09

σ(broadband RF) 0.22 0.16 0.36 0.16

♯ of samples 1058 7 7 99

Table 5
The mean and standard deviation (σ) of broadband reflectance factor (broadband
RF). The bottom row gives the number of samples used for the calculations.
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