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[1] Comparison of mass anomalies from the Gravity
Recovery and Climate Experiment (GRACE) to in-situ
ocean bottom pressure (OBP) data is complicated by the
fact that GRACE estimates are representative for
phenomena with scales of hundreds of km, while OBP
measurements are pointwise by nature. Simulations with the
Finite Element Sea-ice Ocean Model (FESOM) indicate that
on a monthly time scale OBP anomalies are coherent over
large areas of complex geometry. A new filtering method
for GRACE-derived ocean mass anomalies is obtained by
applying these coherence patterns on a regular grid. Time
series from OBP recorders all over the world ocean are used
for validation. Compared to Gaussian filtering, the pattern-
filtering method improves the correlation between GRACE
retrievals and in-situ OBP data (max. correlation now 0.87).
Land leakage effects are eliminated almost completely.
Finer scales can be resolved such that highly variable
currents like the Gulf Stream can now be identified.
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1. Introduction

[2] The GRACE satellite mission, launched in 2002,
provides estimates of the variability of Earth’s gravity field.
Monthly solutions for gravity anomalies over the continents
and the ocean represent mass variations of different origin
and very different size. The land signal is dominated by the
hydrological cycle in river basins [Ramillien et al., 2004]
and snow accumulation in high latitudes [Frappart et al.,
2006], the ocean signal by the redistribution of water due to
circulation variability and to the seasonal cycles of river
runoff and net evaporation. Retrieval of the small ampli-
tudes of mass variations in the ocean, compared to the large
hydrological signals over land, require a sophisticated
filtering of GRACE data.
[3] In the open ocean, the different accuracies and spatial

scales of satellite data and point measurements complicate
comparisons between these two datasets. While GRACE
estimates are representative for phenomena with a horizon-
tal scale of several hundreds of km, in situ ocean bottom
pressure (OBP) measurements are pointwise by nature.
Furthermore, spurious meridional patterns are evident in
many GRACE satellite products. Therefore, the application

of an adequate filter is necessary to allow for a comparison
to in situ OBP data.
[4] A first approach is the application of a two dimen-

sional Gauss function with a carefully chosen radius [Wahr
et al., 1998]. However, due to the indiscriminative nature of
the Gauss function, this method mixes land and ocean
signals near the coasts. Furthermore, ocean circulation and
thus OBP variations are strongly affected by bottom topog-
raphy. Negative and positive OBP anomalies are often
separated by topographic features like submarine ridges.
An isotropic filter like the Gauss filter is bound to mix the
signals of such a dipole.
[5] Swenson and Wahr [2006] developed a filtering mech-

anism which is based on the removal of correlated errors in
the GRACE spherical harmonic solutions. Chambers [2006]
improved this technique to study gravity variations over the
ocean using an empirical approach to obtain an optimized set
of parameters. This kind of filtering gives reasonable results
on a global and ocean basin scale [Ponte et al., 2007], but also
yields the risk of attenuation of signals. A comparison to
point measurements or the determination of smaller-scale
signals in general is therefore difficult.
[6] Using an equivalent Gauss filter radius of about

800 km, Rietbroek et al. [2006] found a strong correlation
between GRACE anomalies and OBP measurements in
the Kerguelen and Crozet region. Their success already
indicates that signals from an ocean bottom pressure recorder
(BPR) represent large-scale ocean variability in this area.
Thus, we expect OBP anomalies to be coherent over an area
larger than the immediate vicinity of a BPR.
[7] This paper presents a newly developed GRACE data

filtering algorithm which is based on the determination of an
area of coherent signals around any given point. We will
demonstrate that these patterns vary in size and can have a
rather complex structure which partly follows bottom topog-
raphy. For this purpose, we use results from a finite-element
coupled sea ice – ocean model.

2. Model and Data

2.1. Finite Element Sea Ice Ocean Model

[8] To obtain information about large-scale ocean circu-
lation, its variability, and its relation to OBP anomalies, we
use the Finite Element Sea Ice - Ocean Model (FESOM)
(R. Timmermann et al., On the representation of high
latitudes in a finite-element global sea ice–ocean model,
submitted to Ocean Modelling, 2008). The ocean module
is a hydrostatic primitive-equation model which uses
isopycnic diffusion and the Pacanowski and Philander
[1981] vertical mixing scheme. The sea-ice component is
a dynamic-thermodynamic sea-ice model with a prognostic
snow layer using an elastic-viscous-plastic rheology.
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[9] Atmospheric sea-level pressure variations are consid-
ered in pressure computation throughout the water column.
The ocean bottom pressure pb is computed as follows:

pb ¼
Zh

0

r0gdzþ
Z0

�H

rgdzþ pat;

where H represents the ocean depth, h the sea surface
height, r0 the reference density (1027 kg/m3), r the
density, g the acceleration due to gravity and pat the
atmospheric sea-level pressure. Computation of sea surface
height variations includes contributions from net precipita-
tion P � E, river runoff R, and the total water fluxes F due
the melting/freezing of ice and snow. To ensure the
conservation of mass, we apply a steric correction for h
following Greatbatch [1994], so that

@h
@t

þ div

Zh

�H

~udzþ
Zh

�H

1

r
Dr
Dt

dz ¼ P � E þ Rþ F;

where ~u denotes the ocean velocity field.
[10] The model is run on a global grid with a horizontal

resolution of 1.5� and up to 26 z-levels. Atmospheric
forcing data (daily datasets for 10-m winds, 2-m tempera-
ture, specific humidity, net precipitation, total cloudiness
and sea-level pressure) are derived from the NCEP/NCAR
reanalysis [Kalnay et al., 1996].

2.2. GRACE Surface Mass Anomalies

[11] We use mass anomaly fields derived from GRACE
GFZ Release 04 [Schmidt et al., 2007]. The atmospheric
and oceanic de-aliasing GAD products are added back to
the GSM fields (for a detailed description see S. Bettadpur,
Level-2 Gravity Field Product User Handbook, 2007,
http://isdc.gfz-potsdam.de/index.php?name = UpDownloa-
d&req = getit?lid = 400). Solutions are expressed in
spherical harmonic coefficients of degree and order 1 to
50. The degree 1 coefficients are obtained from the geo-
center motion model of Swenson et al. [2008]. A gentle
cut is applied to remove the influence of increasing errors
for higher orders. The gentle cut Wl is a 4th order
polynomial starting at degree 1 with point symmetry at
degree 24. OBP anomalies pG

0 are derived from monthly
means of November 2002 to January 2005 (with data gaps
in January and June 2003, and January and August 2004).
All time series pG were mapped to the global FESOM
model grid as follows:

pG ¼ agrE
3

X50
l¼1

Xl

m¼0

2l þ 1

1þ kl
Wl

~Plm sin qð Þ

� C0
lm cos mFð Þ þ S0lm sin mFð Þ

� �
;

where a is the Earth’s radius, Clm
0 and Slm

0 are the time
dependent components of the GRACE spherical harmonic
coefficients of degree l and order m, ~Plm are the fully
normalized associated Legendre functions, kl is the load
Love number of degree l, rE is the Earth’s average density,
and g the gravitational acceleration. The anomalies pG

0 are
computed with a reference to the mean over the full period.

2.3. Ocean Bottom Pressure Data

[12] To assess the ability of GRACE to measure mass
transport changes, a validation against in-situ OBP time
series from different parts of the World Ocean is essential.
In the framework of this project, all available OBP data that
cover the GRACE operation period 2002–present have
been collected to form an in-situ OBP database. We use
time series from 66 deployments at 37 different locations,
including data from the ASOF, Damocles, GRACE, MOVE,
GLOUP, POL-ACCLAIM, NOAA-DART and NDBC proj-
ects (see auxiliary material1). All data have been quality
controlled; outliers, pre-deployment values and pressure
jumps have been removed.
[13] A common problem with pressure sensors is the

long-term drift, with large trends during the first weeks to
months of the deployment, and a smaller drift later. The
nonlinear trend prohibits a linear interpolation between pre-
and post-deployment calibrations (if these are available at
all). Therefore, sensor drift was eliminated by an empirical
exponential-linear least squares fit. Thus, these data cannot
be used to evaluate annual to interannual OBP trends. On
seasonal and shorter timescales, however, the accuracy of
in-situ measurements is much better. The widely used
pressure sensors from Paroscientific, for example, achieve
a resolution of 0.001 dbar [University of Rhode Island,
2006]. Thus, short-term pressure anomalies of 1 mm SSH
change are detectable. For comparison with GRACE,
monthly averages were calculated using the same time span
as in the corresponding GRACE solutions.

3. Pattern Filtering Method

[14] We use FESOM simulations to identify patterns of
coherent OBP variability. While modeled time series of
monthly OBP anomalies from 1958 to 2005 were available,
we only used data for the period 2002–2005 to be consis-
tent with the start of the GRACE mission. To eliminate the
seasonal cycle (which yields the dominant signal but on a
much larger, hemispheric scale), a five months high-pass
filter has been applied to the anomalies. From the resulting
dataset pF

0, we determine areas of high coherency by
calculating the cross-correlation between the time series at
fixed positions (positions of BPRs for the validation against
in-situ measurements, model grid points for the global
analysis) and time series at all points of the model domain
within a 20� radius. The correlation between an anomaly at
a position~x0 and one at a position~x is defined as

r ~x;~x0ð Þ ¼
E p0F ~xð Þ � p0F ~x0ð Þ
� �
sp0

F
~xð Þ�s

p0
F

~x0ð Þ
;

where the pF
0 are the high-pass filtered FESOM OBP

anomalies, E is the expected value and s is the standard
deviation. The pattern of high coherency (‘‘coherence
pattern’’) is then defined as the area with correlations larger
than 0.7.
[15] It turns out that OBP anomalies on a time scale of 1–

5 months are spatially coherent over large areas which are

1Auxiliary materials are available in the HTML. doi:10.1029/
2008GL034974.
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strongly related to bottom topography. For a BPR position
close to Amsterdam Island for example, we find a coher-
ency pattern with a diameter of approximately 1500 km, for
a position in the NOAA/DART Array we find a pattern
diameter of approximately 1000 km (Figure 1). OBP
measurements at these positions are representative for the
areas defined by the coherence patterns.
[16] We use these coherence patterns to filter the GRACE

data by weighting the data for each position inside the 20�
circle with the pre-computed correlation coefficient. The
weighting function r* is defined with a cut-off at a corre-
lation of 0.7 as

r* ~x;~x0ð Þ ¼ r; ~x;~x0ð Þ; for r ~x;~x0ð Þ � 0:7
0; for r ~x;~x0ð Þ < 0:7:

�

[17] In order to generate a smooth transition in areas
where the maximum distance criterion holds and the corre-
lation is still above 0.7, a monotonically decreasing cut-off
function centered at a distance of 18� is additionally
applied:

z ~x;~x0ð Þ ¼
1� tanh

D ~x;~x0ð Þ�18	

2	

� 	
2

;

where D is the distance [in degrees] between~x0 and~x. The
filtered GRACE solution pG* (~x0) is then calculated by

p
G ~x0ð Þ ¼

R
C

p0G ~xð Þ � r
 ~x;~x0ð Þ � z ~x;~x0ð ÞdA
R
C

r
 ~x;~x0ð Þ � z ~x;~x0ð ÞdA ;

where C is a circle with a radius of 20� around~x0. The result
for every~x0 is a time series that is comparable to the point
measurement of anOBP recorder. By applying this procedure
to every point of the oceanic 1.5�� 1.5� grid, we obtain maps
of GRACE-derived mass anomalies.

4. Results

[18] As a reference dataset, we use GRACE data that
have been smoothed with a 750 km Gauss filter. The radius
has been determined from studies in which OBP anomalies
derived from GRACE data were filtered with different
Gauss radii and then compared to in situ data. It was found
that a radius of 750 km yields the best results.
[19] Even with the optimized radius, a comparison with

BPR data reveals that OBP anomalies derived from the
GRACE solutions and filtered with a Gauss filter fail to

Figure 1. Two examples of model-derived patterns of high spatial coherency (‘‘coherence patterns’’),
defined by the areas with correlations larger than 0.7 inside a circle with 20� radius. Examples refer to
(left) the BPRs close to Amsterdam Island and (right) the NOAA Dart Array. White dots indicate the
reference points (BPR positions), white lines the cut-off edge.

Figure 2. Time series of OBP anomalies at 77.58�E, 37.9�S (CNES, Amsterdam Island) and 164�W,
51.07�N (NOAA DARTArray). Black line indicates in situ observations, red line the Gauss-filtered GFZ
RL04, green line pattern-filtered GFZ RL04.
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reproduce the characteristic extremes of the in situ time
series in many cases. Data filtered with the coherence
pattern method feature a better agreement. Two typical
examples are shown in Figure 2. Close to Amsterdam
Island, the Gauss-filtered solution fails to reproduce the
observations in amplitude and phase. The course of minima
and maxima is much better captured in the pattern-filtered
time series. Gauss-filtering in the NOAA Dart Array causes
a slight underestimation of the amplitude for most of the
time. The characteristic extremes are not well captured. The
pattern-filtered solution features a higher amplitude and
reproduces a larger part of the observed variability. Corre-
lations between GRACE and in situ time series increase
from �0.01 to 0.4 for the Amsterdam Island position and
from 0.02 to 0.32 for the BPR in the NOAA Dart Array. For
both positions, the correlation is only significant (at a level
of at least 85%) when the pattern filter is applied.
[20] Applying the pattern-filtering algorithm to GRACE

GFZ RL04 monthly solutions for other BPR positions all
over the globe yields an improved correlation with in situ
OBP time series in comparison to the Gauss filtered data in
many cases (Figure 3). Especially in the Crozet/Kerguelen/
Amsterdam Islands region and in the southwestern and
tropical Atlantic the agreement between GRACE and in
situ measurements is enhanced. The correlation increases by
0.1–0.2 at these locations, and even switches from a
correlation close to zero to a significant positive correlation
in the Crozet/Kerguelen/Amsterdam Islands region. Apply-
ing a Gauss filter to the GRGS solution, Rietbroek et al.
[2006] found an even higher correlation in the Crozet/
Kerguelen region; however, a comparison to other BPRs
shows that the agreement strongly varies with location and
is weaker than for the GFZ solution in other places. For 18
positions, the correlation between pattern-filtered GFZ data
and in situ measurements is significant at the 85 % level; for
7 of them the correlation is significant even at the 95 %
level. Compared to the Gauss-filtered data with only 14 (3)

positions significant at the 85 % (95 %) level, the improve-
ment is obvious.
[21] Global maps of root-mean-square (RMS) monthly

variability of the GRACE solutions filtered with a 750 km
Gauss filter (Figure 4, left) show a high variability in and
adjacent to the seasonally ice-covered areas. The ocean
signal in coastal regions is highly influenced by the large
hydrologic cycle over land due to the indiscriminative
nature of the Gauss filter; the signature of land leakage
effects is evident. In low and mid latitudes the signals are
very smooth, but spurious meridional patterns are still
visible. Due to the smoothness of the variability patterns
it is difficult to identify circulation patterns or other ocean-
ographic signals correlated to OBP anomalies.
[22] Monthly RMS variability derived from pattern-

filtered solutions (Figure 4, right) shows a similar struc-
ture with high variability in the high latitudes. However,
the an-isotropy of the pattern-filtering does not smooth
out local gradients and features on a much smaller scale
can be clearly identified. Specifically, most of the currents
with high variability are well pronounced. Western
boundary currents like the Gulf Stream or the Kuroshio
are as clearly visible as for example the Zapiola Eddy (a
stationary quasi-barotropic anticyclonic eddy centered at
45�S 42�W east of South America) and the Agulhas
Return Current. The clear representation and sharp bound-
aries of these features, especially the boundary currents,
and the reduced variability along the coast indicate a
good reduction of land leakage effects – which is
particularly well visible close to Amazon Basin.
[23] Averaging the filtered data over the entire global

ocean yields a seasonal cycle with a maximum in Sept./
Oct. and a minimum in April, which is very similar in the two
datasets (not shown). While an amplitude of less than 0.5 cm
equivalent water column height is found in the Gauss-filtered
data, the pattern-filtered data feature an amplitude of about

Figure 3. Correlations between in situ and GRACE-derived OBP anomalies. (left) Gauss-filtered
GRACE data. (right) Pattern-filtered GRACE data. Large dots indicate a correlation that is significant at
an 85% level.

Figure 4. RMS monthly variability (in dbar) of GRACE GFZ RL04-derived OBP. (left) Gauss-filtered
with 750 km radius. (right) Using the newly developed pattern-filtering algorithm.
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0.7 cm, which agrees well with results from Lombard et al.
[2007].
[24] An analysis on the damping effects shows that the

biases of the pattern filter and of the Gaussian filter are of
the same order of magnitude. The gentle cut applied to the
spherical harmonic coefficients reduces the noise but yields
anomalies which still have a ten times higher amplitude than
the in-situ data. When, in the second step, the pattern filter
is applied, damping varies with regions due the different
shapes of the patterns. On average, damping introduced by
the pattern filtering matches that of a gauss filter with a
radius of 750 km.

5. Conclusions

[25] We have presented a newly developed pattern-
filtering method to obtain global fields of ocean mass
anomalies from GRACE monthly solutions. The algorithm
is based on the detection of patterns of coherent ocean
bottom pressure variability; it uses information frommodeled
circulation patterns. We have demonstrated that the new
method yields improvements for the correlation between
GRACE-derived and in situ OBP anomalies. Not only is this
true for the high latitudes where the Gauss-filtered solutions
were already good at many locations, but also in the tropics
and close to the coasts the pattern-filtered GRACE-derived
OBP signals get closer to the observations, so that the number
of positions with a significant correlation between GRACE
and in situ data increases. Signatures of boundary currents are
now very clear; land leakage effects are strongly reduced.
The new pattern-filtering method thus provides the ability to
extract features of oceanic water mass movements in more
detail. It therefore promises to be an appropriate tool to use
GRACE solutions to quantify ocean mass variations on a
local as well as on a global scale.
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