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Abstract

The coccolithophore Emiliania huxleyi was grown in seawater under different Ba concentrations. The relationship of coc-
colith Ba/Ca ratio and seawater Ba/Ca ratio was found to be linear. The linear regression yields the apparent Ba exchange
coefficient of 0.10. Our data support a recently proposed generic model (Langer G., Gussone N., Nehrke G., Riebesell U.,
Eisenhauer A., Kuhnert H., Rost B., Trimborn S., and Thoms S. (2006) Coccolith strontium to calcium ratios in Emiliania

huxleyi: the dependence on seawater strontium and calcium concentrations. Limnol. Oceanogr. 51, 310–320.) developed for
explaining apparent exchange coefficients of metabolically inert divalent trace metals, such as Sr, in E. huxleyi. This model
represents the first approach combining cell physiological processes and data from inorganic precipitation experiments, which
quantitatively explains coccolith apparent Sr and Ba exchange coefficients.
� 2009 Elsevier Ltd. All rights reserved.

1. INTRODUCTION

The Sr/Ca ratio of coccoliths has been used in the frame-
work of climate reconstruction as a paleo-proxy for cocco-
lithophore growth and calcification rate for almost a decade
(Stoll and Schrag, 2000). The robustness of this, and any
other, proxy depends on the degree to which the underlying
processes are understood. The rate dependence of the Sr ex-
change coefficient as determined from inorganic calcite pre-
cipitation experiments was used to explain the apparent Sr
exchange coefficients of biogenic calcite (Carpenter and
Lohmann, 1992). The trace metal exchange coefficient of
biogenic calcite is termed apparent exchange coefficient, be-
cause the trace metal to calcium ratio of the solution from
which the crystal is precipitated (at the site of calcification
within the organism) is unknown (Langer et al., 2006). A
subsequent study, however, showed that kinetic effects are
not appropriate to explain Sr partitioning in coccolitho-
phores (Stoll et al., 2002). Therefore a generic model was
developed, which explains partitioning of metabolically in-

ert divalent trace metals in Emiliania huxleyi without
including a dependence of the apparent exchange coeffi-
cients on growth or calcification rate (Langer et al., 2006).
In this study we will use the term equilibrium exchange
coefficient for the exchange coefficient determined in inor-
ganic precipitation experiments at low growth rates. It is as-
sumed that values determined at very low growth rates are
not affected by kinetic processes (Tesoriero and Pankow,
1996).

This model combines data from inorganic calcite precip-
itation experiments with cell physiological concepts, thus
including so called vital effects (Langer et al., 2006). The
model was successfully applied to results of Sr partitioning
during calcification of E. huxleyi (Langer et al., 2006). The
basic assumption of the model is that cellular Sr and Ca
transport proceeds via the same route. It is assumed that
cellular Ca and Sr transport commences with a channel-
mediated plasmamembrane passage (Brownlee and Taylor,
2004). Typical Ca-channels do not discriminate between
Ca, Sr, and Ba (Allen and Sanders, 1994). Given that Ba,
Sr, and Ca take the same route inside the cell, the aforemen-
tioned model should also be applicable to Ba partitioning.
Unfortunately, no data exist for Ba partitioning in
coccolithophores. Therefore we conducted batch culture
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experiments with E. huxleyi grown under different Ba/Ca
ratios of seawater.

2. MATERIALS AND METHODS

2.1. Experimental setup

To reliably determine the relationship between Ba/Ca
ratio of coccoliths and Ba/Ca ratio of seawater, we varied
the Ba/Ca ratio of seawater over two orders of magnitude.
We are aware of the fact that such high Ba/Ca ratios are
not to be found in todays sea surface waters. However, to
reveal the underlying mechanisms of trace metal incorpora-
tion into biogenic calcite it is often necessary to alter the
physicochemical conditions beyond the range typically ob-
served in the natural environment. An increase of natural
seawater Ba concentration by a factor of 100 could lead
to the precipitation of BaSO4 (barite) (supersaturation X
is approx. 60 (X = IAP/K, where K is the solubility product
of barite, and IAP = {Ba2+}{SO4

2�} the ion activity prod-
uct of the solution), as calculated by means of the specia-
tion software Visual Minteq V. 2.53 (Gustafsson, 2007).
For that reason, we performed test-experiments with Ba
concentrations of 7 lmol L�1. For reference, the Ba con-
centration of natural sea surface water is 0.06 lmol L�1

(Wolgemuth and Broecker, 1970).
In these experiments barite precipitation could be de-

tected as inferred from (a) lowered Ba concentration in sea-
water at the end of experiment and (b) crystals present in
filtrated seawater showing typical barite morphology, as
imaged by a scanning electron microscope (SEM). There-
fore natural seawater (NSW) was only suitable for the nat-
ural Ba concentration used in the experiments, which
represents the lowest concentration used in the experiments.

In order to perform culture experiments at elevated Ba
concentrations, we used artificial seawater (ASW) with a
sulphate concentration of 2.84 mmol L�1, an order of mag-
nitude lower sulphate concentration than natural seawater.
The detailed composition of the artificial seawater is given
in Table 1. Ba concentration over the course of the experi-
ment was constant within analytical error. A monospecific
culture of E. huxleyi (strain PML B92/11) was grown in

sterile filtered (0.2 lm) artificial seawater enriched with
100 lmol L�1 nitrate and 6.25 lmol L�1 phosphate with
trace metals and vitamins according to F/2 (Guillard and
Ryther, 1962).

A 16:8 light:dark cycle was applied. Experiments were
carried out at a constant temperature of 17 �C and a con-
stant photon flux density of 270 lmol photons m�2 s�1,
during light hours, which were maintained by growing the
cells in an adjustable incubator (Rubarth Apparate GmbH,
Germany). Cells were pre-adapted to experimental condi-
tions for approximately seven generations and grown in di-
lute batch culture (also 7 generations, total culturing period
9 days), which ensures insignificant alteration of the car-
bonate system over the course of the experiment (Langer
et al., 2006). CO2 concentration was adjusted to
15.3 lmol L�1 (pH 8.2) through the addition of NaOH
(1 mol L�1). The carbonate system was calculated from
temperature, salinity, concentrations of dissolved inorganic
carbon (DIC), phosphate and pH (NBS scale) using the
programme CO2sys (Lewis and Wallace, 1998). Equilib-
rium constants of (Mehrbach et al., 1973) refitted by (Dick-
son and Millero, 1987) were chosen.

The cells were grown in triplicate in 2.5 L polycarbonate
flasks. Seawater samples for Ba, Sr, and Ca analyses were
filtered (polycarbonate filters, 0.2 lm) and subsequently di-
luted (10 times) with reverse osmosis water (ROW) (con-
ductivity 0.067 lS). Samples for measurement of coccolith

Table 1
Composition of artificial seawater.

Salt Final concentration (mmol L�1)

NaHCO3 2.33
NaCl 394
MgCl2 53.6
Na2SO4 2.84
KCl 10
SrCl2 0.09
KBr 0.84
CaCl2 10
H3BO3 0.4
BaCl2 Variable, see Table 2

Nomenclature

d day
KDSr

equilibrium exchange coefficient for Sr
KDBa

equilibrium exchange coefficient for Ba
KB

DSr
apparent exchange coefficient for Sr

KB
DBa

apparent exchange coefficient for Ba

[Me2+] concentration of free divalent cation Sr, or Ba
[Me]S concentration of divalent cation Sr, or Ba at the

cell surface
[Me]B concentration of divalent cation Sr, or Ba in the

bulk medium
[Me]total total concentration of divalent cation Sr, or Ba

[Me]V concentration of divalent cation Sr, or Ba in the
coccolith vesicle

IAP {Ba2+}{SO4
2�} ion activity product of the

solution
K solubility product of barite
X barite supersaturation
[Ca]S Ca concentration at cell surface
[Ca]Sat Ca concentration at calcite supersaturation = 1
[Sr]V Sr concentration in the coccolith vesicle
[Ca]V Ca concentration in the coccolith vesicle
lcocco cell growth rate of Emiliania huxleyi
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calcium, barium, and strontium were filtered on polycar-
bonate filters (1.0 lm), dried at 60 �C for 12 h and subse-
quently stored at room temperature. For further
processing of the filters see the following section.

For determination of cell density, samples were taken
daily and counted immediately after sampling using a Coul-
ter Multisizer III. Cell growth rate (lcocco, unit d�1) was cal-
culated by means of exponential regression. Growth rate in
general is reported as [per day]. The most intuitive unit is
[cell divisions per day] (growth rate k). However, in the coc-
colithophore literature, growth rate l is usually given: l = k

� ln(2). Calcification rate (P, pg calcite cell�1 d�1) was cal-
culated according to P = lcocco x (cellular calcite content).
Cellular calcite content was calculated from coccolith cal-
cium measurements.

2.2. Sample preparation and determination of Ba/Ca ratios

Ba/Ca ratios of media and coccoliths were analyzed
using matrix-matched standards on a simultaneous dual
ICP-AES (Thermo ICAP DUO 6300).

For determination of coccolith Ba/Ca ratios, polycar-
bonate filters were rinsed with ROW using vacuum filter
holders. Organic matter was oxidized by a 30 min exposure
to 4 mL of a 1:1 (volumetric) solution of 3% NaOCl and
30% H2O2 as described by (Bairbakhish et al., 1999), and
subsequently rinsed using 30 mL of ROW. Samples on
the filters were dissolved in 2% HNO3.

For coccoliths, Ba was measured in axial mode
(455.4 nm) and Ca detection in both radial (315.8 and
317.9 nm) and axial mode (318.1 nm). Calibration was con-
ducted off-line using the intensity ratio method described by
(de Villiers et al., 2002). In this case, four standards were
prepared with variable Ba/Ca ratios of 0.34–34 lmol/mol
and constant Ca concentrations. Aliquots from this stan-
dard set were uniformly diluted to provide calibration
curves for various Ca concentrations. The relationship be-
tween measured Ba/Ca intensity ratio and standard Ba/

Ca mol ratios was linear and independent of the concentra-
tion of the standards from Ca 800 to 1600 ppm, and linear
with a slightly lower slope at standard concentrations (Ca
300 ppm). For the standards run at 800 ppm Ca, counts
on 455.4 Ba were 6.5 times higher than the 2% HNO3 blank
for the lowest standard, and 300 times higher than the
blank for the highest standard. Instrumental uncertainty
for our consistency standard (run at Ba concentrations
6� the 2% HNO3 blank) is 2% rsd over 12 h run.

All samples from artificial seawater were run at concen-
trations from 500-750 ppm Ca, with the exception of one
smaller sample run at 300 ppm Ca. The sample from natu-
ral seawater was smaller, and ran at 100 ppm Ca with and
Ba counts 4.5 times those of the 2% HNO3 blank. Conse-
quently uncertainty on this sample is greater than for those
from artificial seawater.

For coccolith Sr/Ca, sample dissolutions were diluted to
contain 50–100 ppm Ca. Sr was measured in radial mode
(407.7 nm) and Ca in radial mode (315.8 nm). As for Ba/
Ca, calibration was done off-line using the intensity ratio
method with three standards of variable Sr/Ca ratios from
0.5 to 3.0 mmol/mol and constant Ca concentrations. Stan-
dards run at 50 ppm Ca and 100 ppm Ca reveal that the
concentration effect on Sr/Ca ratio is negligible within this
dilution range.

3. RESULTS

The Ba/Ca ratio of coccolith calcite is linearly related to
the Ba/Ca ratio of seawater (Fig. 1). The slope of the
regression curve represents the apparent Ba exchange coef-
ficient with a value of 0.10 (Fig. 1). The lowest data point
represents the only one which was obtained from experi-
ments using natural seawater. However, when omitting this
data point, the slope is not altered. Deviation of the y-axis
intercept from zero is due to analytical precision of the
measurement.
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Fig. 1. The dependence of the Ba/Ca ratio in coccolith calcite on the Ba/Ca ratio in seawater. The slope of the linear regression curve yields an
apparent Ba exchange coefficient of 0.10. The lowest Ba/Ca ratio of seawater represents the Ba/Ca ratio of natural seawater (open circle)
whereas all other data points represent values measured in artificial seawater (closed circles).
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Table 2
Experimental results. n.d. = not determined.

Experiment Type of sea
water (NSW
or ASW)

Ba/Ca
coccolith
(mmol/
mol)

Ba/Ca
seawater
(mmol/
mol)

Ba
exchange
coefficient

Sr/Ca
coccolith
(mmol/
mol)

Sr/Ca
seawater
(mmol/
mol)

Sr
exchange
coefficient

Growth
rate l
(per day)

Calcification
rate (pg calcite/
cell � day)

1 NSW 0.00 0.01 0.11 3.10 8.16 0.38 1.10 n.d
2 ASW 0.02 0.21 0.08 4.26 11.69 0.36 0.92 34
3 ASW 0.03 0.17 0.19 3.55 11.69 0.30 0.93 33
4 ASW 0.05 0.26 0.18 4.05 11.69 0.35 0.92 32
5 ASW 0.04 0.23 0.19 3.97 11.69 0.34 0.95 33
6 ASW 0.04 0.25 0.17 3.98 11.69 0.34 0.95 37
7 ASW 0.07 0.52 0.13 3.98 11.69 0.34 0.97 37
8 ASW 0.08 0.52 0.16 4.10 11.69 0.35 0.98 30
9 ASW 0.07 0.52 0.13 4.00 11.69 0.34 0.97 40

10 ASW 0.11 0.98 0.11 4.13 11.69 0.35 0.97 38
11 ASW 0.12 0.99 0.12 4.56 11.69 0.39 0.97 42
12 ASW 0.11 0.98 0.11 3.99 11.69 0.34 0.97 41
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Fig. 2. The dependence of calcification rate (upper panel) and growth rate (lower panel) of Emiliania huxleyi on the Ba/Ca ratio of artificial
seawater.
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The mean apparent Sr exchange coefficient of all mea-
sured samples was 0.35, standard deviation 0.02 (Table 2).

Growth rates of cells grown in artificial seawater show
negligible variability (less than 10%; lowest value divided
by highest value, Fig. 2, Table 2). The variability of calcifi-
cation rates (29%) is higher than the growth rate variability,
but is not related to seawater Ba/Ca ratios (Fig. 2). How-
ever, neither the Ba nor the Sr apparent exchange coeffi-
cient is correlated to cell growth rates or calcification
rates of E. huxleyi (Fig. 3).

Since it was necessary to reduce the sulphate concentra-
tion of artificial seawater to prevent barite precipitation, it
was tested whether cells were sulphate limited when grown
under 2.84 mmol L�1 sulphate (lowest concentration used
in the experiments). Therefore an experiment was con-
ducted in which the growth rate of E. huxleyi grown in arti-
ficial seawater under 2.84 mmol L�1 sulphate was

compared to the growth rate under 28.4 mmol L�1 (normal
seawater sulphate concentration). Growth rate under
2.84 mmol L�1 sulphate was 0.92 ± 0.02, as opposed to a
growth rate of 1.4 ± 0.02 under 28.4 mmol L�1 sulphate
(standard deviations were calculated from triplicate incuba-
tions), indicating sulphate limitation. Unfortunately, no
data exist on the effect of sulphate limitation on trace metal
incorporation in coccolith calcite. However, the natural
seawater data point lies within the 95% confidence interval
of the linear regression (Fig. 1), demonstrating that sul-
phate limitation has no significant effect on the apparent
Ba exchange coefficient.

For Sr, an effect of sulphate limitation on the apparent
exchange coefficient is unlikely too, since the apparent ex-
change coefficients calculated for the experiments using nat-
ural and artificial seawater show no significant difference
(0.38 compared to 0.35 ± 0.02, Table 2).
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Fig. 3. The dependence of the apparent Ba (open squares) and Sr (closed circles) exchange coefficient of coccolith calcite on calcification rate
(upper panel) and growth rate (lower panel) of Emiliania huxleyi.
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4. DISCUSSION

The Ba exchange coefficient determined for coccoliths
(0.10) is high compared to the one of inorganically precip-
itated calcite (0.012) (Fig. 1, Tesoriero and Pankow, 1996).
The same holds true for the Sr exchange coefficient (Table
2, Nehrke et al., 2007; Tesoriero and Pankow, 1996). In a
previously published study (Langer et al., 2006) it could
be shown that the discrepancy between the coccolith Sr ex-

change coefficients and the respective inorganic equilibrium
exchange coefficients (Tesoriero and Pankow, 1996) can be
explained by a model which takes into account physiologi-
cal transport processes. In the following we will first sum-
marize the basic features of the model and then discuss
the application of the model to Ba partitioning.

This model is based on the assumption that metaboli-
cally inert divalent cations are transported inside the cell
via the Ca transport pathway. Since Sr and Ba can be re-

Ca cytosol

[Ca] cell surface

[Ca] cocco. vesicle

[Ba], [Sr] 

relative concentrations
of [Ba], [Sr] and [Ca] 

cytosol

cell surface

bulk medium

coccolith vesicle

[Ba], [Sr]

Fig. 4. Proposed mechanism for the partitioning of Sr, Ba and Ca during calcification in Emiliania huxleyi yielding the KB
DSr

, and KB
DBa

.
Depicted are the relative concentrations of Sr, Ba, and Ca in the two involved cellular compartments (coccolith vesicle and cytosol) and the
cell surface. The Sr and Ba concentrations (dashed lines) at the cell surface and in the coccolith vesicle increase until the thermodynamical
limit of the concentration gradient between the cytosol and adjacent compartments is reached. The same holds for the Ca concentration (solid
lines) at the cell surface. However, the Ca concentration in the coccolith vesicle is determined by the saturation product. All variations of the
Sr and Ba concentrations at the cell surface are reflected by variations of the Sr and Ba concentrations in the coccolith vesicle (as indicated by
the double-headed arrows).

Fig. 5. Comparison of the ratio cSr/cBa derived from our data using Eq. (7) (dotted line) with calculated c ratios as a function of the
polysaccharide concentration C using Eq. (6). The latter includes the dissociation constants of the ion-exchange reaction KMe

diss (defined in Eq.
(4)) which were derived from a gelation experiment with an alginate system (Yuryev et al., 1979). The KMe

diss values for the upper (lower)
boundaries of the gelation region (gray area) are given by: KSr

diss ¼ 0:068� 0:012ð0:031� 0:007Þ and KBa
diss ¼ 0:039� 0:002ð0:013� 0:001Þ, KMe

diss

in mol2 L�2.
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garded as metabolically inert (e.g. Salisbury and Ross,
1992), Ba can be substituted for Sr in the model. The Ca
transport pathway inside the cell is comprised of Ca-chan-
nels in the plasmamembrane and Ca pumps in the endo-
membrane system. Neither Ca-channels nor pumps are
assumed to fractionate for or against Sr. Calcite precipita-
tion at the site of calcification (coccolith vesicle), however,
fractionates against Sr (Tesoriero and Pankow, 1996). As
a consequence, the Sr concentration in the fluid of the coc-
colith vesicle ([Sr]V) rises during coccolith growth. The [Sr]V
can only rise up to a maximum value, which is determined
by the thermodynamical limit of the Ca pump. It should be
noted that this consideration applies also to the Ca pumps
in the plasmamembrane, i.e. the gradient of Sr is the same
over the coccolith vesicle membrane and the plasmamem-
brane. According to the model, the maximum [Sr]V is
reached within the first 6 seconds of coccolith growth (the
time needed to precipitate a coccolith was estimated being
0.7 h).

The Ca concentration in the coccolith vesicle ([Ca]V) is
assumed to be close to the saturation value ([Ca]Sat), i.e.
the lowest Ca concentration which still ensures calcite pre-
cipitation. Considering the small volume of the coccolith
vesicle fluid, it follows that the Sr/Ca of a coccolith is deter-
mined by the steady state concentrations of Sr and Ca. A
further consequence of this mechanism is that the Sr con-
centration in the coccolith vesicle ([Sr]V) and the Sr concen-
tration at the cell surface ([Sr]S) are similar (due to the
thermodynamical limit of the Ca pumps in the coccolith
vesicle membrane and the plasmamembrane, see above).
Therefore, [Sr]V mirrors all changes of [Sr]S. According to
the model the KB

DSr
is calculated by means of the following

equation:

KB
DSr
¼ KDSr

½Sr�V
½Ca�V

½Ca�B
½Sr�B

¼ KDSr

½Sr�V
½Ca�Sat

½Ca�S
½Sr�S

¼ KDSr

½Ca�S
½Ca�Sat

¼ const: ð1Þ

where [Ca]S is assumed to be seawater concentration.
It has to be noted that a small amount of polysaccha-

rides, the so called coccolith associated polysaccharides
(CAP) (Henriksen et al., 2004), is always present at the cell
surface of E. huxleyi. Divalent cations bind to polysaccha-
rides by a complexation mechanism called egg-box model
(Braccini and Perez, 2001), The binding strength is depen-
dent on the species of divalent cation (Me2+). Although
no data on binding affinities of different cations are avail-
able for CAP, such data do exist for the alginate system.
In the latter case the affinity of the polysaccharides to the
divalent cations increases in the series: Ca2+ < Sr2+ < Ba2+,
i.e. Ba is bound more strongly to polysaccharides than Sr
(Yuryev et al., 1979). Therefore the free Sr concentration
at the cell surface ([Sr2+]S) is reduced compared to the Sr
concentration in the bulk medium ([Sr2+]B), an effect which
is more pronounced for Ba.

The alteration of [Me2+] due to the binding of this diva-
lent cation species to the polysaccharides can be described
by the ratio of [Me2+] to the total concentration of this
divalent cation, cMe = [Me2+]/[Me]total. Then, the effect of
polysaccharides on [Me2+] at the cell surface is taken into

account by introducing the factor cMe (= [Me]S/[Me]B;
[Me2+] = [Me]S S: cell surface, [Me]total = [Me]B B: bulk
medium) in the equation for the apparent exchange coeffi-
cient (Eq. (1)):

KB
DMe
¼ KDMe

½Me�V
½Ca�V

½Ca�B
½Me�B

¼ KDMe
cMe

½Me�V
½Ca�Sat

½Ca�S
½Me�S

¼ KDMe
cMe

½Ca�S
½Ca�Sat

ð2Þ

The factor cMe can assume values between 0 and 1. In case
of no polysaccharides at the cell surface cMe equals 1.

The ratio cSr/cBa can be estimated from the equilibrium
of the ion-exchange reaction of a sodium alginate–calcium
chloride system (Yuryev et al., 1979):

2RCOONaþMe2þ
�ðRCOOÞ2Meþ 2Naþ ð3Þ

where the dissociation constant is defined as:

KMe
diss ¼

½RCOONa�2½Me2þ�
½ðRCOOÞ2Me� ð4Þ

In Eqs. (3) and (4) RCOO represents a carboxyl group of
the polysaccharide backbone R.

Using the dissociation constant and the conservation
law for the total concentration of the divalent ions [Me]total:

½Me�total ¼ Me2þ� �
þ ½ðRCOOÞ2Me�; ð5Þ

the following relationship for the ratio cSr/cBa can be de-
rived for the alginate system:

cSr

cBa

����
alginate

¼ ½Sr2þ�=½Sr�total

½Ba2þ�=½Ba�total

¼
KSr

diss C2 þ KBa
diss

� �

KBa
diss C2 þ KSr

diss

� � ð6Þ

where C is the concentration of the polysaccharides. For
estimating the effect of CAP on the apparent exchange coef-
ficients, the ratio cSr/cBa for the alginate system described
by Eq. (6) is compared with the ratio cSr/cBa derived from
Eq. (2) by using our results for the coccolith Me:Ca ratios
(Table 2):

cSr

cBa

����
CAP

¼ ½Sr�S=½Sr�B
½Ba�S=½Ba�B

¼ ½Sr�V=½Sr�B
½Ba�V=½Ba�B

¼
KB

DSr
=KDSr

KB
DBa
=KDBa

ð7Þ

with apparent Sr exchange coefficient KB
DSr

= 0.35 (this
study, Table 2), equilibrium Sr exchange coefficient
KDSr

= 0.021 (Tesoriero and Pankow, 1996), apparent Ba
exchange coefficient KB

DBa
= 0.1 (this study, Fig. 1), equilib-

rium Ba exchange coefficient KDBa
= 0.012 (Tesoriero and

Pankow, 1996).
The ratio cSr/cBa for the alginate system (Eq. (6)) fits the

ratio cSr/cBa for CAP (Eq. (7)) (see Fig. 3). This match sup-
ports the notion that different binding strength of Sr and Ba
to CAP lead to different ratios of apparent exchange coeffi-
cient to equilibrium exchange coefficient for Ba and Sr,
respectively.

To summarize, we have presented the first data on Ba
partitioning of coccoliths, which show that the apparent
Ba partitioning coefficient of coccoliths is firstly indepen-
dent of the Ba/Ca ratio of seawater and secondly high com-
pared to the equilibrium partitioning coefficient determined
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in inorganic precipitation experiments. Assuming that CAP
alters the Ba and Sr concentrations at the cell surface with
respect to bulk concentrations in the way described above,
than the model (Langer et al., 2006) can explain both Sr
and Ba partitioning in E. huxleyi (see Figs. 4 and 5).

This model represents the first approach combining cell
physiological processes and data from inorganic precipita-
tion experiments, which quantitatively explains coccolith
apparent Sr and Ba exchange coefficients. Explaining differ-
ences between exchange coefficients of inorganic systems
and apparent exchange coefficients of biological systems is
crucial to the development of a mechanistic understanding
of proxies used in paleo-climate reconstruction.
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