Activity of Na⁺,K⁺-ATPase in a ‘freshwater shrimp’, *Palaemonetes argentinus* (Caridea, Palaemonidae): ontogenetic and salinity-induced changes

Romina B. Ituarte¹, ⁴,*, Alejandra A. López Mañanes², ⁴, Eduardo D. Spivak¹, ⁴, Klaus Anger³

¹Laboratorio Zoología Invertebrados, Departamento de Biología, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, Casilla de Correo 1245, 7600 Mar del Plata, Argentina
²Laboratorio Fisiología Bioquímica y Adaptativa, Departamento de Biología, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, Funes 3250, Mar del Plata B 7602 AYJ, Argentina
³Biologische Anstalt Helgoland, Stiftung Alfred-Wegener-Institut für Polar- und Meeresforschung, Meeresstation, 27498 Helgoland, Germany
⁴Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina

ABSTRACT: Embryos, larvae, and adults of *Palaemonetes argentinus* tolerate a wide range of salinities (1 to 25‰). While osmoregulatory capacities have previously been demonstrated in all post-embryonic stages, little is known about the occurrence of osmoregulation during the embryonic phase. We examined ontogenetic and salinity-induced changes in the activity of a key enzyme involved in osmoregulation, Na⁺,K⁺-ATPase. Its activity was studied in: (1) eggs at an early (SI), an intermediate (SII), and a late stage of embryonic development (SIII); (2) in newly hatched larvae (Zoea-I, ZI); and in homogenates of (3) whole adults and (4) isolated gill tissue. All stages were directly exposed to 1, 15, or 25‰, and Na⁺,K⁺-ATPase activity was chemically determined 24 h (embryos, larvae) or 48 h later (adults). Enzyme activity was detected in all developmental stages, being low in SI and SII, maximum in SIII, and intermediate in ZI and adults. Maximum salinity-induced activity changes prior to hatching (SIII) suggest that hyper-osmoregulatory functions are expressed by the end of the embryonic phase. The ontogenetic activity maximum at this stage, however, may also be related to the hatching process. Comparing different salinities, Na⁺,K⁺-ATPase activity in SIII was always highest at 15‰, whereas the activity in gills was higher at both 15 and 25‰ than at 1‰. While gills are absent in the embryonic and early larval stages, ion-transporting cells must be located elsewhere during these early ontogenetic stages, probably in the brachioptegites.

KEY WORDS: Embryos · Salinity tolerance · Na⁺,K⁺-ATPase · Palaemonid shrimp · Gill

INTRODUCTION

Euryhalinity is the ability of an aquatic organism to tolerate wide salinity variations without compromising life processes. It requires physiological, biochemical, morphological, and/or ecological adaptations, which may change during ontogeny. This trait is typically found in organisms living in estuaries, brackish coastal lagoons, mangrove swamps, and tide pools, where short-term temporal as well as small-scale local variations in salinity occur.

In euryhaline species of decapod crustaceans, adaptive strategies and underlying physiological and biochemical mechanisms have mostly been studied in adult life-history stages (reviews in Péqueux 1995, Lucu & Towle 2003, Kirschner 2004). In the larval stages, by contrast, the physiological basis and metabolic implications of salinity tolerance have only re-
to hypo-osmotic media, Na+,K+-ATPase drives active ion trans-cellular osmoregulation. In adult decapods exposed
many additional functions, it also plays a key role in ex-
(Balshaw et al. 2001, Jorgensen et al. 2003). While it has
which is the main focus of the present study, is funda-
integumental permeability (Rainbow & Black 2001).
Osmotic and ionic regulation are possible through
2 different principal mechanisms (Péqueux 1995, Augusto et al. 2007): (1) intra-cellular isosmotic regula-
tion, which is responsible for the maintenance of intra-
cellular fluid composition and cell volume, and (2) anisosmotic extra-cellular regulation, which controls
hemolymph osmolality, ionic composition, and extra-
cellular liquid volume. Moreover, protection of the
internal fluids against potentially detrimental passive
osmotic changes may be achieved through reduced integumental permeability (Rainbow & Black 2001).
The enzyme Na+,K+-ATPase (the ‘sodium pump’),
which is the main focus of the present study, is funda-
mental to osmotic regulation in most eukaryotic cells
(Balshaw et al. 2001, Jorgensen et al. 2003). While it has
many additional functions, it also plays a key role in ex-
tra-cellular osmoregulation. In adult decapods exposed
to hypo-osmotic media, Na+,K+-ATPase drives active ion absorption across transporting epithelia that are com-
monly located in the gills and antennal glands; in hyper-
osmotic media, it mediates ion secretion in the reverse direction (Augusto et al. 2007, and references therein).
The capability of hyper-osmoregulation in dilute media is considered to be a physiological key prerequisite for the invasion of brackish and freshwater environments (e.g. Freire et al. 2003). Although hypo-osmotic stress selects here for an early appearance of osmoregulatory functions, homeostatic ionic regulation processes have rarely been studied in larval and embryonic life-history stages of decapod crustaceans (Charmantier 1998, Charmantier & Charmantier-Daures 2001).

Among the Decapoda, palaemonid shrimps may be considered prime models for studies of physiological adaptations associated with limnic invasions by originally marine organisms (Freire et al. 2003). This caridean family represents a particularly diverse and ecologically important group, which can be found in marine, estuarine, as well as freshwater habitats (Bauer 2004). There is general consensus that this taxon evolved in the sea, before it invaded brackish coastal, estuarine, and eventually limnic environments (e.g. Freire et al. 2003, Augusto et al. 2007), and several genera may still be in a process of limnic radiation, showing convergent patterns of adaptation (e.g. Murphy & Austin 2005, Augusto et al. 2007). However, in this family as well, only little is known about the ontogeny of osmoregulation, especially during the embryonic phase (Wild et al. 2001, Huong et al. 2004, Augusto et al. 2007).

Among the Palaemonidae, the so-called ‘freshwater shrimp’ Palaemonetes argentinus Nobili, 1901 should be a particularly good model for studies of physiologi-
al adaptations to brackish and freshwater conditions. This species occurs in limnic inland habitats such as lakes and streams, but also in brackish coastal lagoons connected to the sea, geographically ranging from central eastern Argentina to Uruguay and southern Brazil (Boschi et al. 1992, Spivak 1997). Its entire life cycle can be completed in freshwater or brackish conditions ranging from about 1 to 25‰ (Ituarte 2008). Preliminary laboratory experiments (Cieluch 2000, K. Anger unpubl. data), however, have shown that the larvae of this species prefer brackish conditions (5 to 15‰) for their development, regardless of whether the population originated from a land-locked limnic habitat or a brackish coastal lagoon. This suggests that P. argentinus has only recently invaded freshwater envi-
ronments and may not have fully adapted to fresh-
water (Anger 2001). Consistent with their ecology, all postembryonic life-history stages of this species are strong hyper-osmoregulators in dilute media, but osmo-conformers at high salinities (Charmantier & Anger 1999).

While the embryonic development of the nervous system of Palaemonetes argentinus has been studied in detail (Harzsch et al. 1997), no comparable data have become available for the embryogenesis of the ion-regulating system. When embryos (from a land-locked population) were cultured in vitro (i.e. isolated from potential maternal effects), they were able to sur-
vive and develop until hatching under a wide range of salinities (1 to 25‰), although the lowest and highest salinities caused osmotic swelling or shrinking, respec-
tively (Ituarte et al. 2005). This suggests that at least a limited capability of osmoregulation may appear, for the first time in the ontogeny of this species, already
during the embryonic phase. This physiological function has been shown to be present at hatching and to gradually increase thereafter, throughout the larval and juvenile life-history stages (Charmantier & Anger 1999). In the embryos, however, euryhalinity could also be based on reduced permeability of the egg membrane (cf. Rainbow & Black 2001), while evidence for embryonic osmoregulation has been lacking.

In the present study, we quantified in *Palaemonetes argentinus* both ontogenetic and salinity-induced changes in the activity of Na⁺,K⁺-ATPase, which may be considered an indirect indication of osmoregulation in early life-history stages. The enzyme activity was measured in 3 stages of embryonic development, in first-stage larvae, and in adult shrimps after short-term exposure to 3 different salinities (1, 15, 25‰). In addition, salinity effects on Na⁺,K⁺-ATPase activity were determined in gills of adult shrimps, which are considered the main site of ionic and osmotic regulation (Freire et al. in press).

MATERIALS AND METHODS

Experimental procedure. Ovigerous females, females with fully developed ovaries, and males of *Palaemonetes argentinus* were collected from Lake Chascomús (35°36'S, 58°W), Province of Buenos Aires, Argentina. The salinity of Lake Chascomús may vary between oligohaline (0.5 to 5‰) and hypohaline conditions (<0.5‰), depending on rain, evaporation, and winds (Ituarte et al. 2005, 2007). During the present study, however, salinity varied only very little around 0.5‰ (conductivity ranging between 0.97 and 1.13 mS cm⁻¹).

Shrimps were transported to the laboratory in water from the sampling site. Before the experiments, ovigerous females were maintained for at least 3 d in aquaria (30 x 30 x 50 cm) with dechlorinated tap water, oxygen supply, a temperature of 22 ± 2°C, an ambient photoperiod (~10 h light:14 h dark cycle), and TetraMin Pro Tropical Crisps provided as food. Non-ovigerous females with fully developed ovaries were kept in separate aquaria, together with males, in order to obtain newly fertilized eggs. The aquaria were examined twice daily.

Under the conditions described above, total embryonic development from egg-laying to hatching took from 26 to 27 d. Prior to experiments, 3 embryonic stages (reached after ca. 2, 12, and 24 d, respectively) were separated after inspection under a stereomicroscope: (1) newly produced embryos with little differentiation, 100% of egg volume occupied by yolk (early embryos, SI); (2) embryos with eyes visible as a reddish line, heartbeat already visible but often irregular, ca. 50 to 60% yolk (intermediate embryos, SII); and (3) embryos with eyes fully developed, heartbeat regular, yolk largely depleted (late embryos, SIII). The same 3 major stages of embryonic development were identified and photographically documented by Harzsch et al. (1997; note, however, that the earliest stage shown in their paper was slightly more advanced than our initial stage SI). Additionally, entire larvae and adult shrimps (both males and females without eggs or developed ovaries) and isolated gill tissue from adult shrimps were used for experiments.

The experimental animals were directly transferred to salinities of 1, 15, and 25‰ (obtained by dilution of filtered seawater with dechlorinated tap water; Schleicher and Schuell filter paper 0859, pore size ca. 7 to 12 µm). Ovigerous females were kept for 24 h in each medium before embryos were carefully detached from the incubation chamber. Freshly hatched larvae (Zoea I, ZI) were obtained from females carrying late embryos. The acclimation time in larvae and adult shrimps was 24 and 48 h in each treatment, respectively (Charmantier & Anger 1999). Gills were removed with delicate tweezers from both the left and right sides of the branchial chamber of adult shrimps, after anesthetizing the shrimps by chilling on ice for at least 5 min. During the acclimation time, experimental animals were maintained without feeding.

Measurement of Na⁺,K⁺-ATPase activity. Na⁺,K⁺-ATPase activity was measured in 5 replicates (only 3 in isolated gills), with 40 to 50 mg of wet weight tissue per determination. Each replicate sample of embryos or larvae comprised pooled materials from 3 broods, while each replicate of adult shrimps was represented by a single individual. Na⁺,K⁺-ATPase activity in gills was measured in pooled samples taken from 10 to 12 adults per each replicate. The preparation of samples for enzymatic determinations was consistently made at 0°C. All samples were rapidly mixed in homogenizing medium (0.25 M sucrose/0.25 mM EGTA-Tris, pH 7.4) and subsequently homogenized in a motor-driven, hand-operated Teflon-glass homogenizer. Glycerol (1.3% v/v) was added before Na⁺,K⁺-ATPase activity was determined (López Mañanes et al. 2002).

Total Mg²⁺,Na⁺,K⁺-ATPase activity was determined by measuring ATP hydrolysis in a reaction medium containing 100 mM NaCl, 30 mM KCl, 10 mM MgCl₂, and 0.5 mM EGTA in 20 mM imidazol buffer (pH 7.4). Basal Mg²⁺-ATPase was determined in the same reaction medium, but without KCl and in the presence of 1 mM ouabain. Na⁺,K⁺-ATPase activity was determined as the difference between both assays. An aliquot of the corresponding sample (5 µg of protein) was added to the reaction mixture and pre-incubated at 30°C for 5 min. The reaction was started by addition of ATP (final concentration 5 mM). Incubation was carried out at 30°C for 20 min. The reaction was stopped by addi-
tion of 2 ml of cooled Bonting reagent (560 mM sulfuric acid, 8.1 mM ammonium molibdate, and 176 mM ferrous sulfate). After 20 min at room temperature, the amount of released phosphate (P_i) was determined by reading the absorbance at 700 nm of the reduced phosphomolibdate complex. In addition, protein was assayed following Bradford (1976), using bovine serum albumin (0.96 mg ml\(^{-1}\)) as a standard.

Statistical analysis. All values were expressed as arithmetic means ± 1 standard error (SE). Differences in Na\(^+\),K\(^+\)-ATPase activity between life-history stages and salinity treatments were tested by 2-way ANOVA. The same method was used to test differences in basal activity (Mg\(^2+\)-ATPase) between life-history stages and salinity treatments. Effects of salinity on Na\(^+\),K\(^+\)-ATPase activity in gill tissue, as well as effects on basal activity, were tested by 1-way ANOVA. All tests were performed after checks for normal distribution and equality of variance (Kolmogorov-Smirnov and Cochran tests, respectively; Underwood 1997). Data were transformed when necessary. When the ANOVA was significant, differences between treatments were tested *a posteriori* with planned comparisons (when there was a significant interaction) or Student-Newman-Keuls (SNK) tests (Underwood 1997).

RESULTS

Activity of Na\(^+\),K\(^+\)-ATPase was detected in all 3 salinity treatments and in all 5 life-history stages of *Palaemonetes argentinus* studied here. At each salinity level, it changed significantly across life-history stages (Fig. 1a, Table 1). At the lowest test salinity (1‰), enzyme activity was detected in newly laid eggs (SI). It subsequently doubled in SII embryos (reaching 17.7 ± 4.3 vs. 6.9 ± 1.4 nmol P_i mg\(^{-1}\) protein min\(^{-1}\); however, due to high variability this difference was not statistically significant. A significant increase occurred prior to hatching (SIII), reaching a maximum of 142.1 ± 9.5 nmol P_i mg\(^{-1}\) protein min\(^{-1}\). In post-embryonic stages (ZI larvala, adult shrimps), the activity of Na\(^+\),K\(^+\)-ATPase was significantly lower than in SIII embryos (53.3 ± 4.9 and 43.4 ± 6.1 nmol P_i mg\(^{-1}\) protein min\(^{-1}\), respectively). At 15 and 25‰, ontogenetic patterns of change in activity were similar to those observed at 1‰ (Fig. 1a).

High ion concentrations (15 and 25‰) induced a significant increase in Na\(^+\),K\(^+\)-ATPase activity, however, there was also a significant interaction between salinity and life-history stages (Table 1). The interaction was due to the fact that salinity significantly influenced the enzyme activity in SIII and post-embryonic stages, but not in the earlier embryonic stages (SI, SII; Fig. 1a).

Gill Na\(^+\),K\(^+\)-ATPase activity was significantly affected by salinity (*F*\(_{2,6} = 25.86, p < 0.01\)), with activity levels being higher at 15 and 25‰ than at 1‰ (Fig. 2a). In addition, high levels of Na\(^+\),K\(^+\)-ATPase activity were observed in gill tissue compared to those in whole shrimps (Figs. 1a & 2a).

<table>
<thead>
<tr>
<th>Source of variation</th>
<th>df</th>
<th>MS</th>
<th>F</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stage</td>
<td>4</td>
<td>28.69</td>
<td>158.68</td>
<td><0.0001</td>
</tr>
<tr>
<td>Salinity</td>
<td>2</td>
<td>2.46</td>
<td>13.62</td>
<td><0.0001</td>
</tr>
<tr>
<td>Stage × Salinity</td>
<td>8</td>
<td>0.45</td>
<td>2.49</td>
<td>0.02</td>
</tr>
<tr>
<td>Error</td>
<td>60</td>
<td>0.18</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Ituarte et al.: Ontogenetic changes in Na⁺,K⁺-ATPase

Basal (Mg²⁺-ATPase) activity varied significantly among life-history stages ($F_{4,60} = 33.77, p < 0.0001$), but there was no significant effect of salinity treatments ($F_{2,60} = 0.79, p = 0.45$) or significant interaction between these factors ($F_{8,60} = 0.21, p = 0.99$). Activity increased significantly from SI to SIII, remaining on a similar level thereafter (no significant differences between SIII, ZI, and adults; Fig. 1b). Likewise, the basal activity in gills was not affected by salinity ($F_{2,6} = 0.39, p = 0.69$) (Fig. 2b).

DISCUSSION

In our experiments with *Palaemonetes argentinus*, a species of palaemonid shrimp that lives in both brackish and freshwater habitats, we showed that the activity of the ion-regulating key enzyme Na⁺,K⁺-ATPase varies both ontogenetically and after variations in salinity. The latter response was similar in SIII embryos and in adult gill tissue, indicating that mechanisms, which are typical of euryhaline adults (i.e. active ion transport based on Na⁺,K⁺-ATPase activity) may become functional in early life-history stages, most probably during the final phase of embryogenesis. This is consistent with the finding that all life-cycle stages co-occur in habitats, where low salt concentrations prevail. As an additional mechanism, a reduced ion permeability of the egg membranes may aid in embryonic osmo-protection.

An increasing activity of this key enzyme during the course of embryonic development has also been observed in several other species of decapod crustaceans. In embryos of *Palaemonetes argentinus*, the activity of Na⁺,K⁺-ATPase increased up to 18-fold, depending on salinity conditions (Fig. 1a), and in those of a closely related species of freshwater shrimp, *Macrobrachium rosenbergii* de Man, 1879, it was almost 15-fold higher prior to hatching than in early embryos (Wilders et al. 2001). In an estuarine ghost shrimp, *Callianassa jamaicensae* var. *lousianensis* Schmitt, 1935, the activity of Na⁺,K⁺-ATPase increased 12-fold during embryonic development (Felder et al. 1986), and Taylor & Seneviratna (2005) reported a 50-fold increase in embryos of an intertidal crab, *Hemigrapsus crenulatus* Milne Edwards, 1837.

Independent of their habitat (freshwater, brackish water, intertidal), all these species showed a high Na⁺,K⁺-ATPase activity close to hatching. While this pattern suggests that osmoregulatory structures become functional during late embryogenesis, subsequently decreasing Na⁺,K⁺-ATPase activities in larvae and adults (a similar result was reported for *Callianassa jamaicensae*; Felder et al. 1986) may be associated with other functions of this key enzyme (see Balshaw et al. 2001, Jorgensen et al. 2003). Maximum activity in late embryos (SIII) may be related to mechanisms of hatching, which involve numerous biochemical and ultrastructural reconstruction processes (Saigusa 1996). High enzyme activity should cause rapid Na⁺ uptake and, as a consequence, increased osmotic pressure, followed by passive water influx, which may then lead to rupturing of the egg membrane and hatching.

Na⁺,K⁺-ATPase activity is concentrated in specialized ion-regulatory cells and tissues, which are mostly found in gills (Péqueux 1995, Charmantier 1998, Torres et al. 2007). In *Palaemonetes argentinus*, as in several other decapod taxa, however, the function of hyper-osmoregulation is already present at hatching, although functional gills are absent in the early larval stages (Felder et al. 1986, Charmantier 1998, Anger 2001). Hence, ion-transporting cells must be located elsewhere during these early ontogenetic stages.
histological and electron-microscopic investigations, ion-transporting tissues have been detected in the dorsal organ of crab embryos (Seneviratna & Taylor 2006) as well as in larval structures associated to the branchial chamber (Felder et al. 1986, Cieluch et al. 2005, 2007). In larvae of *P. argentinus*, Cieluch (2000) found ultrastructural evidence for an occurrence of ion-transporting cells in the branchiostegites. The localization of ionocytes in embryos, however, remains to be evaluated in future studies.

In adult *Palaemonetes argentinus*, a suddenly increasing salt concentration induced in isolated gills an increase in the activity of Na⁺,K⁺-ATPase, while it did not influence basal enzyme activity (Fig. 2). Moreover, higher levels of activity in gills than in whole shrimps show that Na⁺,K⁺-ATPase is more concentrated in these transporting organs than in other regions of the body. These observations corroborate a linkage between Na⁺,K⁺-ATPase activity, gill tissue, and ion transport. In addition, however, Na⁺,K⁺-ATPase has also been located in 2 other epithelia of the branchial chamber of adult caridean shrimps, in the branchiostegites and epipodites (Martinez et al. 2005). Immunolocalization and molecular studies of the expression of mRNA coding for Na⁺,K⁺-ATPase should confirm our present biochemical evidence that gill tissue in *P. argentinus* also plays an essential function in ion transport.

While our findings may reflect consistent ecosphysiological relationships between ontogeny, Na⁺,K⁺-ATPase activity, hyper-osmoregulation in dilute media, and life under brackish and limnic conditions, the response to enhanced salinities is less clear. *Palaemonetes argentinus* is a strong hyper-osmoregulator in salinities from 1 to 17‰, but osmoconforming at levels >20‰ (Charmantier & Anger 1999). An increasing gill Na⁺,K⁺-ATPase activity at 15‰ is thus consistent with the ability to hyper-regulate at moderate to low salinities. High activity measured at 25‰, by contrast, where this species is an osmoconformer, should be associated with some other functions of this enzyme, e.g. in intracellular volume regulation. Enhanced Na⁺,K⁺-ATPase activity in gills of *P. argentinus* exposed to high salinity (Fig. 2a) is contrary to the patterns observed in euryhaline crabs (e.g. Péqueux 1995, Lucu & Towle 2003, Kirschner 2004), but consistent with increasing levels of Na⁺,K⁺-ATPase activity in the gills of anadromous fish transferred to seawater (Deane & Woo 2004, Bystriansky et al. 2006). In the gills of another palaemonid freshwater shrimp, *Macrobrachium rosenbergii*, hyper-osmotic conditions did not significantly affect the activity of Na⁺,K⁺-ATPase (Wilder et al. 2000). In the congener *M. olfersii* Wiegmann, 1836, in contrast, high salinity induced a reduction of the apical surface of ionocytes in gill tissue, so that ionic permeability and, probably, Na⁺,K⁺-ATPase activity may have decreased (Lima et al. 1997, McNamara & Lima 1997). These inconsistent response patterns suggest that the tolerance of high osmotic pressures and related mechanisms of hypo-osmoregulation have not fully been understood and deserve further attention in future studies of comparative crustacean physiology.

In freshwater-tolerant species, lower isosmotic points are believed to reflect better osmotic adaptation (Augusto et al. 2007). The isosmotic point in adults of *Palaemonetes argentinus* (500 mOsm kg⁻¹ or 17‰; Charmantier & Anger 1999) is quite similar to that measured in fully limnic palaemonids, which complete their whole life cycle in freshwater, e.g. *Macrobrachium brasiliense*, *M. equidens*, and *M. potiuna* (521, 529, and 552 mOsm kg⁻¹, respectively; Augusto et al. 2007 and references therein). However, *P. argentinus* from the limnic population of lake Chascomús shows a capability to also cope with suddenly increasing salinities, possibly based on increasing Na⁺,K⁺-ATPase activity. Regulation of this key enzyme may thus allow this ‘freshwater shrimp’ to survive and reproduce in a wide range of salinities. This extremely euryhaline species may thus be a suitable invertebrate model for studies of physiological processes involved in salinity tolerance (e.g. Deane & Woo 2004). For instance, future studies should reveal if Na⁺,K⁺-ATPase activity is modulated through activation of pre-existing proteins and/or the synthesis of novel proteins, and if significant ontogenetic changes occur in major molecular and biochemical processes.

Acknowledgements. We thank S. Pinoni and C. del Valle for their assistance in the laboratory during the experiments. We also appreciate the constructive criticism from the editor and 3 reviewers, who helped to improve this manuscript. R.B.I. had a fellowship from the Consejo Nacional de Investigaciones Científicas y Técnicas de la República Argentina (CONICET). The present paper is based on work done by R.B.I. in partial fulfillment of the requirements for a PhD degree at the UNMdP and funded by grants from the University of Mar del Plata E15/149 and the Agencia Nacional de Promoción Científica y Tecnológica (PICT04 No. 21757).

LITERATURE CITED

brachium amazonicum and M. olfersi (Decapoda). J Crustac Biol 27:626–634
Freire CA, Onken H, McNamara JC (in press) A structure–function analysis of ion transport in crustacean gills and excretory organs. Comp Biochem Physiol A
Spivak ED (1997) Life history of a brackish-water popula-

Editorial responsibility: Victor Benno Meyer-Rochow, Bremen, Germany

Submitted: April 18, 2008; Accepted: July 29, 2008
Proofs received from author(s): August 27, 2008