VALIDATION OF MERIS REMOTE SENSING REFLECTANCE IN ATLANTIC CASE 1 WATERS WITH GROUND BASED IN-SITU MEASUREMENTS

Anja Theis(1), Bettina Schmitt(1), Steffen Gehnke(2), Roland Doerffer(2), Astrid Bracher(1)

(1) Alfred-Wegener-Institute, P.O box 120161, 27515 Bremerhaven, Germany, Email: Anja.Theis@awi.de
(2) GKSS Institute for Coastal Research, Max Planck-Straße 1, 21502 Geesthacht, Germany

ABSTRACT

In this paper MERIS remote sensing reflectances at sea surface for case 1 waters were validated with in-situ measurements. The in-situ data sets were collected during ship cruises across the Atlantic Ocean and taken with a system of three TriOS-RAMES hyperspectral spectroradiometers, measuring above-water upwelling radiance, downwelling irradiance and sky radiance. From these data sets, the water leaving remote sensing reflectance was calculated. Results will help to evaluate the atmospheric correction applied to MERIS case 1 data and are used to interpret the comparisons of in-situ measured chl a and MERIS algal-1 chl a.

1. INTRODUCTION

There are several studies about validation of MERIS products for case 2 waters but data concerning case 1 waters are scarce (e.g. [4]). In this study three hyperspectral spectroradiometers measure above-water upwelling radiance, downwelling irradiance and sky radiance during different ship cruises across the Atlantic Ocean. From these data the in-situ water leaving remote sensing reflectance ρ_w is calculated in order to validate MERIS remote sensing reflectance ρ_w and to estimate errors in the MERIS case 1 water products. Since data evaluation is still going on, in this work we focus on only one of the cruises: ANT XXIV-4 with RV Polarstern in April and May 2008 from Chile to Germany.

2. MATERIALS AND METHODS

2.1. Instruments

The in-situ data were collected with three hyperspectral TriOS-RAMSES radiometers measuring:

- Downwelling irradiance E_d
- Sky radiance L_s at a zenith angle of 40° and an azimuth angle of 135°
- Upwelling radiance L_u at a nadir angle of 40° and the same azimuth angle as L_s

Fig. 1 and 2 show the instruments and an example of the measured spectra.

All three devices have a spectral range of 320 nm to 950 nm and measure approximately every 3.3 nm. Their spectral width is about 10 nm and the field of view 7°.

2.2. Measurement methods

Measurements considered here were carried out during RV Polarstern cruise ANT XXIV-4 (April to May 2008) from Punta Arenas (Chile) to Bremerhaven (Germany) (Fig. 3). To minimize impacts from the ship shadow and reflection, the sensors were mounted in a steel frame as close to the bow of the ship as possible. To prevent the interference of whitecaps, measurements were accomplished while ship was stationary.
2.3. Data processing

Data was processed in three steps:
1. Quality check for the in-situ data
2. MERIS and in-situ data which coincided were considered in the analysis (‘match up stations’).
3. The validation process itself was carried out.

2.3.1. Quality control

All in-situ measurements taken into account fulfilled the following quality requirements:
- nearly clear sky
- wind speed < 10 m/s
- minimum of incoming solar light:
 \[E_d(480\text{nm}) > 20\frac{\text{mW}}{\text{m}^2\text{nm}} \] (described in [3])
- not influenced by dusk or dawn:
 \[E_d(470\text{nm}) > 1 \] (described in [3])
- corresponding pitch and roll-data (measured by the ship’s sensor) > 5°

As defined in the MERIS product, the in-situ water leaving reflectance was then calculated by:

\[
\rho_w = \pi \frac{L_a - \rho_\text{as} L_s}{E_d} \quad (1)
\]

where the air-sea interface reflection coefficient \(\rho_\text{as} \) was estimated to be constantly equal to 0.2.

2.3.2. Match up stations

MERIS data acquired within one day overpassing the in-situ data were considered and averaged (3 by 3 pixels). This lead to several possible collocations per in-situ measurement. Tab. 1 lists the measurement dates, the corresponding collocations and the dedicated MERIS flags.

<table>
<thead>
<tr>
<th>Date</th>
<th>Colloc.</th>
<th>MERIS flags</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>300408</td>
<td>1</td>
<td></td>
<td>Wrong in-situ</td>
</tr>
<tr>
<td>010508</td>
<td>1</td>
<td>Clouds</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>Clouds</td>
<td></td>
</tr>
<tr>
<td>020508</td>
<td>1</td>
<td>H_Glint, PCD1_13</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>H_Glint, PCD1_13</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>PCD1_13</td>
<td>Clouds</td>
</tr>
<tr>
<td>030508</td>
<td>1</td>
<td>PCD1_13</td>
<td>Side of cloud</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>090508</td>
<td>1</td>
<td>H_Glint, PCD1_13</td>
<td>Wrong in situ</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>H_Glint, PCD1_13</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>PCD1_13</td>
<td></td>
</tr>
<tr>
<td>110508</td>
<td>1</td>
<td>H_Glint, PCD1_13</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>H_Glint, PCD1_13</td>
<td></td>
</tr>
<tr>
<td>130508</td>
<td>1</td>
<td>H_Glint, PCD1_13</td>
<td>Negative (\rho_m)</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>150508</td>
<td>1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Match-up stations with clouds visible in the MERIS image and obviously unrealistic high in-situ data were excluded from further analysis and validation as well as significantly negative MERIS remote sensing reflectance \(\rho_w \) (see Tab. 1).

The remaining match-up stations were divided into a set of “good” (highlighted in Tab. 1 in green font colour) and a set of “alternative” (Tab. 1: blue font) match-up stations because of their visual agreement with the MERIS data and their ambient conditions.

2.3.3. Validation Process

In order to validate MERIS remote sensing reflectance with collocated in-situ data, the spectra are plotted for each collocation and the corresponding relative deviation is calculated. For all five “good” and the three “alternative” match-up stations the plots are given in Fig. 4 and Fig. 5, respectively.

3. RESULTS AND DISCUSSION

There is a rather good agreement between in-situ (Fig. 4 blue graphs) and MERIS remote sensing reflectance (Fig. 4 green graphs) in short wavelengths. For longer wavelengths the in-situ \(\rho_w \) are higher than the corresponding MERIS \(\rho_m \). This can be due to the air-sea interface reflection coefficient \(\rho_\text{as} \) that was estimated to be constant, but in fact is a function of wind speed [1] and wavelength [see Doerffer et al, this proceedings]. Another reason might be that the height of the instruments above the water was not considered. Also an overestimation of atmospheric correction for MERIS L2 data is possible.
Figure 4. Comparisons of MERIS (green) and in-situ (blue) remote sensing reflectances as a function of wavelength for the five “good” match-up stations

Figure 5. Comparisons of MERIS (green) and in-situ (blue) remote sensing reflectance as a function of wavelength for the three “alternative” match-up stations
The graphs for the “alternative” match up stations (Fig. 5) show a larger offset between the in-situ ρ_w and the MERIS ρ_m, what could be due to the rougher ambient conditions like larger wind speed.

After plotting the mean and the standard deviation of the relative deviations over all collocations are determined and plotted in Fig. 6. The analysis contains either only the good data (see Fig. 6 blue graph) or also the data set considering the good and the alternative data (see Fig. 6 green graph).

In general, the relative deviation and the standard deviation increase with wavelength, as can be seen in Fig. 6.

Taking the “alternative” match-up data with high glint and PCD1_13 in MERIS images into account, the standard deviation for most wavelengths is slightly increasing with respect to the standard deviation for only “good” match-up data, indicating that high glint flagged MERIS data are usable. It follows that the according threshold for high glint and PCD1_13 is too conservative.

Fig. 7 shows overall a better agreement at short wavelengths than at longer wavelengths: Shown are scatterplots from MERIS ρ_m versus in-situ ρ_w for the eight smallest MERIS wavelengths. The solid line in the plots is equal to the angel bisector and thereby is a visual reference for the agreement of both plotted vectors (MERIS ρ_m and in-situ ρ_w). The in-situ remote sensing reflectance is consequently larger than the MERIS remote sensing reflectance for long wavelengths. Possible reasons for that were discussed before.

Calculating the covariance and the correlation coefficient between both vectors gives a statistical quantity. For the two smallest wavelengths (413 nm and 443 nm) the correlation coefficient is nearest to one and
positive in contrast to the three largest wavelengths (620 nm, 665 nm and 680 nm) where the correlation coefficient is rather small and negative. A linear fit between in-situ and satellite data is not performed due to the rather poor agreement for longer wavelength.

4. CONCLUSION AND OUTLOOK

Although improvements in flagging and atmospheric correction are needed in order to increase the usability of MERIS L2 data, it is also necessary to enhance in-situ data processing by considering the instrument’s height above the water and adapt the air-sea interface reflection coefficient to the local conditions. There will also be a validation of the MERIS L2-product chl a by calculating chl a concentration from in-situ data. Finally, this validation process will be applied to data from other ship cruises across the Atlantic Ocean, such as RV Polarstern November 07 and November 08, RV M. S. Merian July – August 08, to get a comprehensive and consistent analysis of MERIS data quality.

5. ACKNOWLEDGEMENTS

We thank AWI and Helmholtz Impulse Fond for funding and ESA for delivering MERIS level-2 data and BEAM software. Our thanks also go to Wolfgang Schönfeld and Hajo Krasemann from GKSS, Wolfgang von Hoymil-Huene and Tilman Dinter from IUP University of Bremen, Jill Schwarz from the National Institute of Water & Atmospheric Research (New Zealand) for data handling and Oliver Zielinski from Hochschule Bremerhaven for measurement devices.

6. REFERENCES