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1 GENERAL INTRODUCTION 
 

 

 

1.1 Importance of marine phytoplankton 

 

Marine phytoplankton is represented by more than 20,000 microscopic 

unicellular species of marine photoautotrophs (Falkowski et al., 2003) and is 

ubiquitous in the world’s oceans which cover around 70% of the planet’s surface. Its 

contribution to the global primary production is often disregarded because they 

account for less than 1% of the global primary producer biomass (Falkowski et al., 

2004). However, it is responsible for more than 45% of the Earth’s annual net 

primary production, which is roughly equal to the contribution of terrestrial plants 

(Field et al., 1998). Grazing, viral attack, programmed cell death, and sinking into the 

deep ocean balance the phytoplankton production (Falkowski et al., 1998). 

Consequently, the system is characterized by a high turnover rate and a small 

standing stock. Phytoplankton forms the base of the marine food chain and its growth 

is primarily limited by light, nutrients and temperature (Falkowski & Raven, 2007). 

Winter and autumn storms increase the availability of nutrients and thereby 

enhancing the growth in particular of bloom formers including diatoms, 

dinoflagellates and coccolithophores. These blooms can be observed near the coast 

and/or in upwelling ecosystems (Smetacek, 1999, Smayda, 2000). Diatom-dominated 

blooms occur mainly in turbulent, low-stratified waters during springtime (Smayda, 

1997). In contrast coccolithophore-dominated blooms are found in nitrate-rich but 
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phosphate-poor, well stratified waters during late spring and early summer (Haidar & 

Thierstein, 2001). From about 250 coccolithophore species (Winter & Siesser, 1994), 

the two species Gephyrocapsa oceanica and Emiliania huxleyi are the only bloom-

forming coccolithophores. 

The importance of phytoplankton is due to its effect on global climate change 

through its key role in regulating geochemical cycles such as the global carbon and 

sulphur cycle. Hereby, marine phytoplankton is responsible for most of the transport 

of organic matter to the deep ocean and the sediment (Falkowski et al., 2004) thus 

impacting on atmospheric carbon dioxide (CO2) (Westbroek et al., 1993). In this 

context the phytoplankton functional groups including coccolithophores also as well 

as dinoflagellates, diatoms and cyanobacteria are of major importance (Falkowski et 

al., 2004). In the process of photosynthesis carbon dioxide is incorporated into 

particulate organic carbon (POC). Around 45 gigatons of POC are produced annually. 

More than a third is exported to the ocean interior (Falkowski et al., 1998). A 

combination of two fundamental processes, the physical and the biological carbon 

pump, is responsible for the partitioning of CO2 between atmosphere and ocean. The 

physical or so-called solubility pump describes the vertical carbon flux due to 

differences in CO2 solubility of warm and cold water (Ito & Follows, 2003). The 

biological pump can be sub-divided into the organic carbon pump and the carbonate 

pump. The term “organic carbon pump” refers to the photosynthetic production of 

POC in the surface ocean and its sinking to depth (Volk & Hoffert, 1985). The 

carbonate pump includes the production of calcium carbonate (termed calcification) 

by marine organisms (mainly coccolithophores and foraminifera) and its subsequent 

transport to depth (Rost & Riebesell, 2004). Although both biological carbon pumps 

remove carbon from the surface ocean, they have, on the production level, opposite 

effects on the CO2 concentration of surface waters as explained in the following. 

Photosynthesis consumes carbon in the form of CO2, thus reducing the dissolved 

inorganic carbon (DIC) of the water without affecting total alkalinity (TA). This 

shifts the carbonate system towards lower CO2 concentrations and higher pH. 

Calcification consumes carbon in the form of CO3
2-, thus reducing both DIC and TA 

in a 1:2 ratio. This shifts the carbonate system towards higher CO2 concentrations and 

lower pH. Therefore the overall ratio of photosynthesis to calcification determines 

whether a plankton community increases or decreases CO2 concentration of sea 
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surface water. Another important difference of the two biological carbon pumps is the 

preservation of the exported calcium carbonate that is buried in the sediments and 

eventually subducted (Van Capellen, 2003). 

Coccolithophores also play an important role in other element cycles, e.g. the 

calcium cycle (De La Rocha & DePaolo, 2000) and the sulphur cycle (Malin et al., 

1994). When subject to grazing or during viral infection, E. huxleyi, a prolific 

coccolithophore, produces high amounts of dimethylsulfoniopropionate (DMSP), an 

important component in the sulphur cycle (Keller, 1989, Malin et al., 1992). DMSP is 

the precursor of the trace gas dimethyl sulfide (DMS), its emission may contribute to 

marine cloud formation and climate regulation (Andreae, 1990, Malin et al., 1992, 

Liss et al., 1997, Stefels et al., 2007). 

Besides their importance in biogeochemical and nutrient cycles, marine 

phytoplankton is also intensively studied due to its contribution to biodiversity, value 

as a gene pool in times of global biodiversity loss (Pimm et al., 1995), and as a 

potential source of natural products (Shimizu, 1996). 

 

 

1.2 The coccolithophore Emiliania huxleyi 

 

Coccolithophores are unicellular, marine algae belonging to the division of 

Haptophyta and the class Prymnesiophyceae (Edvardsen et al., 2000). One prominent 

feature of the coccolithophores is the ability to produce an exoskeleton formed of 

minute calcite plates, the coccoliths. The life cycle of coccolithophores consists of a 

diploid stage characterized by the production of so called heterococcoliths and a 

haploid stage, in which usually so called holococcoliths are produced (Billard, 1994). 

Heterococcoliths and holococcoliths have very different morphologies, which makes 

it easy to tell the two life cycle stages apart. On rare occasions combination cells are 

found, i.e. cells displaying both types of coccoliths (Geisen et al., 2002). The first 

fossil record of coccolithophores can be traced back to the Late Triassic (~225 Ma) 

(Bown et al., 2004). They first became abundant in the Jurassic (~150 Ma) (Morse & 

Mackenzie, 1990) and reached their greatest abundance in the Late Cretaceous (~80 

Ma), becoming a major factor in the global carbonate cycle (Hay, 2004). Nowadays, 
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they are considered to be, besides foraminifera, the most productive calcifying 

organism on earth (Baumann et al., 2004). 

Emiliania huxleyi ranks among the ten most important coccolithophores in 

terms of calcite export (Baumann et al., 2004). E. huxleyi has evolved from the older 

genus Gephyrocapsa 268.000 years ago (Thierstein et al., 1977) and became 

dominant around 70.000 years ago. It is now the most abundant coccolithophore in 

the marine system except in polar waters (Brand, 1994, Winter et al., 1994, Paasche, 

2002, Marsh, 2003). E. huxleyi has spherical cells of 3-10 µm in diameter and is 

therefore one of the smaller coccolithophores. E. huxleyi is an atypical 

coccolithophore. Firstly, it does not produce holococcoliths. Secondly, its complex 

life cycle includes the coccolith-bearing non-motile (‘C-cell’) stage alternating with 

naked non- motile (‘N-cell’) and scale-bearing flagellated (‘S-cell’) stages 

(Klaveness, 1972). The C-cell and N-cell stages are typically diploid whereas the 

motile S-cell stage is haploid (Green et al., 1996). Both diploid and haploid phases 

are capable of independent asexual reproduction. A third feature that makes E. 

huxleyi an atypical coccolithophore is the fact that it forms immense coastal and open 

ocean blooms. The blooms occur from sub-polar to tropical latitudes (Balch et al., 

1992, Brown & Yoder, 1993) and can cover more than 50.000 km² (Holligan et al., 

1993, Winter et al., 1994, Sukhanova & Flint, 1998). These blooms can be detected 

via satellite imagery due to the reflection properties of the coccoliths (Holligan et al., 

1983, Balch et al., 1991). 

The size and intensity of these blooms makes E. huxleyi important for nutrient 

and CO2 cycling and biogenic sulphur production (in the form of DMS) in the marine 

environment. Consequently it is a key species for current studies on global 

biogeochemical cycles and climate modelling (Westbroek et al., 1994). Since viral 

infection is an important termination factor of the vast blooms of E. huxleyi (Bratbak 

et al., 1993, Jacquet et al., 2002), it is of particular interest to understand this host-

virus interaction. 
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1.3 Marine viruses 

 

Viruses are small, non-cellular particles composed of either DNA or RNA 

(double- or single-stranded) embedded in a protein coat known as capsid that may be 

surrounded by an envelope. They are metabolically inert and do not respire, move or 

grow. Outside their host cells, viruses exist as virus particles also named virions. The 

virion has the function to protect the genome of a virus and to deliver it into a host 

cell for replication and packaging into new virions. Since the viral genome is 

typically small, the question arises how viruses can encode all the information needed 

for their reproduction. They utilize host cell proteins, overlapping viral genes, and 

multifunctional viral proteins. Once introduced in a host cell, viruses utilize the host 

machinery in order to enhance the efficiency of the replication process. Therefore, the 

intracellular environment of their host is modified, which might include production of 

a new membranous structure, reduced expression of cell genes or enhancement of a 

cell process (e.g. transcription and translation). 

In the oceans, viruses are the most abundant biological entities (Fuhrman, 

1999, Suttle, 2000, Wommack & Colwell, 2000) and infect all organisms from 

bacteria to whales (Suttle, 2005). It is estimated that the marine environment contains 

1030 viruses (Suttle, 2007). Most of the viruses described to date are species-specific: 

they infect a single host species and sometimes even a single strain within a species. 

Due to their immobility, viruses depend on passive movement to contact a suitable 

host (Brussaard, 2004, Weinbauer, 2004). Consequently the encounter rate between a 

virus and a host is directly affected by their relative abundances, respectively. 

Several studies have shown the infection of a wide range of aquatic algae 

(Van Etten et al., 1991, Van Etten & Meints, 2003) including bloom-forming marine 

phytoplankton (Jacobsen et al., 1996, Sandaa et al., 2001) like Phaeocystis globosa 

(Brussaard et al., 2005), Heterosigma akashiwo (Nagasaki et al., 1994a, Nagasaki et 

al., 1994b, Nagasaki & Yamaguchi, 1997) and Emiliania huxleyi (Bratbak et al., 

1993). Through their various infection potential viruses are playing important roles in 

nutrient and biogeochemical cycling (Fuhrman, 1999, Wilhelm & Suttle, 1999), and 

influence structure and diversity of microbial and phytoplankton communities 

(Fuhrman, 1999, Wommack & Colwell, 2000). During the last two decades it became 

evident that viruses affect the biogeochemical cycles through the cell lysis of the 



GENERAL INTRODUCTION 6 

hosts. Viral lysis affects the efficiency of the biological pump by increasing or 

decreasing the relative amount of carbon in exported production (Suttle, 2007). This 

so called “viral shunt” moves material from heterotrophic and phototrophic 

microorganisms into particulate organic matter (POM) and dissolved organic matter 

(DOM) (Middelboe et al., 1996, Gobler et al., 1997, Middelboe & Lyck, 2002, 

Middelboe & Jorgensen, 2006), which is mostly converted to CO2 by respiration and 

photodegradation (Fuhrman, 1999, Wilhelm & Suttle, 1999, Weinbauer, 2004, Suttle, 

2005). Furthermore, the accelerated sinking rates of virus-infected cells increase the 

transport of organic molecules from the photic zone to the deep ocean (Lawrence et 

al., 2002, Lawrence & Suttle, 2004). In addition, viral lysis of phytoplankton may 

also be an important source of DMSP and therefore influencing the global climate 

(Charlson et al., 1987). Laboratory studies demonstrated the increase of DMSP in the 

media during viral lysis of Phaeocystis pouchetii, Micromonas pusilla, and Emiliania 

huxleyi (Hill  et al., 1998, Malin et al., 1998, Wilson et al., 2002). 

Because of its importance for the global biogeochemical cycles, the bloom-

former E. huxleyi is the most studied eukaryotic phytoplankton host-virus system to 

date (Bidle et al., 2007). A range of different viruses specific for E. huxleyi (EhV) 

were first isolated from blooms in the English Channel and off Bergen, Norway 

(Castberg et al., 2002, Wilson et al., 2002). These viruses were further analyzed for 

their phylogeny (Schroeder et al., 2002, Allen et al., 2006c), ecological succession in 

mesocosm experiment (Schroeder et al., 2003, Martinéz et al., 2007), and genome 

structure of Emiliania huxleyi virus 86 (EhV-86) (Wilson et al., 2005, Allen et al., 

2006b, Allen et al., 2007). Characterization of their sequences revealed that E. 

huxleyi specific viruses are double-stranded DNA-containing lytic viruses with large 

genomes, approximately 410 kb in size (Wilson et al., 2005) which belong to the 

Coccolithoviruses (Schroeder et al., 2002) a genus within the family Phycodnaviridae 

(Van Etten et al., 2002). 

A recent study shows, that E. huxleyi can escape viral attack by switching its 

life cycle from a diploid to haploid (Frada et al., 2008). This motile, noncalcifying 

haploid stage is impervious to viruses and therefore resistant to EhVs that infect and 

lyse the diploid calcifying phase. Besides this, E. huxleyi strains which are virus 

resistant show higher DMSP-lyase activity than strains that are susceptible to virus 

infection (Schroeder et al., 2002). So far, nothing is known about the genes being 
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expressed in E. huxleyi during the viral infection. It was, therefore, one of the 

objectives of this study to elucidate genes involved in the host-virus interaction, to 

speculate on the infection mechanism. 

 

 

1.4 Genomics 

 

Considering the vital role of coccolithophores in the marine carbon cycle it is 

of great interest to get a deeper insight into their genetic variability, population 

biology and ecophysiological properties in order to be able to evaluate the influence 

of global environmental change. 

Over the last decade genome-based technologies have contributed 

significantly to the understanding of algal ecology and evolution (Grossman, 2005). 

Marine ecological genomics is the study of the genomes of organisms, combining 

molecular biology with computing sciences, statistics and management, with the goal 

to understand the relationship between ecosystem processes and biodiversity 

(Lawton, 1994, van Straalen & Roelofs, 2006, Dupont et al., 2007). The most popular 

genome technologies in this area include (1) whole genome sequencing of key 

organisms such as the red alga Cyanidioschizon merolae (Matsuzaki et al., 2004, 

Nozaki et al., 2007), the green alga Chlamydomonas reinhardtii (Merchant et al., 

2007), and the diatom Phaeodactylum tricornutum (Bowler et al., 2008), (2) 

barcoding, (3) expressed sequence tag (EST) collections and (4) microarrays. The last 

two approaches are the most common methods used to date and will be discussed in 

detail. 

 

 

1.4.1 Expressed sequence tags 

 

Expressed sequence tags (ESTs) are short sub-sequences produced from 

complementary DNA (cDNA) libraries with 200-800 bp length. cDNA libraries are 

constructed from mRNA isolated under specific conditions at a particular time. They 

are cost-effective and provide a robust sequence resource that can be exploited for 
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gene discovery, expression profiling, evolutionary and taxonomy studies, microarray 

design, genome annotation and comparative genomics (Rafalski et al., 1998, Schmitt 

et al., 1999, Rudd, 2003, Dupont et al., 2007). Normalization procedures have been 

used to reduce the abundance of highly expressed genes thereby enriching the 

sampling of rarer transcripts (Soares et al., 1994). More recently, subtraction 

techniques have been used to construct libraries depleted of clones already subjected 

to EST sampling (Bonaldo et al., 1996). 

Up to now, ESTs had helped in the discovering of genes in organisms for 

which genomic data are unavailable (Hackett et al., 2005, Lidie et al., 2005). 

Furthermore, ESTs identified novel genes involved in e.g. salinity or temperature 

stress response (Kore-eda et al., 2004, Reusch et al., 2008). 

Several studies focusing on fungal- and viral-infected plants using ESTs were 

reported (Hsiang & Goodwin, 2003, Ventelon-Debout et al., 2003, Goodwin et al., 

2004, Jantasuriyarat et al., 2005) indicating the usefulness of ESTs for the discovery 

of genes involved in host-pathogen interaction. Once a virus has attached to an E. 

huxleyi cell, there follows a complex propagation strategy that is controlled largely by 

the virus, however, it is a life cycle which is still unknown. The question arises what 

kind of genes are involved in the viral lysis of E. huxleyi blooms. Which genes in E. 

huxleyi are expressed during the host-virus interaction related to the response to 

infection and possible resistance? Furthermore, what kind of viral genes are expressed 

during infection and how is this related to virulence and the ability to grow and 

reproduce in the host? Different scenarios are possible, from complete shutdown of 

the host on infection through to a predominantly host controlled process. These 

extremes are improbable and it is likely the truth lies somewhere in-between. 

Determination of the complete host response to infection is clearly beyond the scope 

of a single project. It was therefore one of the objectives of this thesis to gain more 

information about the response of E. huxleyi to viral infection and the interaction with 

EhV-86 during viral infection by taking advantage of EST libraries. The construction 

of ESTs from E. huxleyi at different stages of viral infection could thus be an 

effective means for expression analysis of virus infected cultures for which the viral 

genome is known. With the draft genome of E. huxleyi CCMP1516 and the complete 

genome of EhV-86 available, it is possible to determine the precise number of ESTs 

from both, the host and virus, in all EST libraries. Results of this study (publication I  
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and II ) provide insights into the infection mechanisms of the virus EhV-86 in E. 

huxleyi. 

 

 

1.4.2 Microarrays 

 

First applied in the mid 1990s (Schena et al., 1995), microarray technology 

has become a routine and essential tool for gene expression profiling (Leung & 

Cavalieri, 2003). The advantage of microarray technology is the ability to study 

thousands of genes in a single experiment (Li et al., 2002). Therefore DNA 

microarrays have a wide range of applications including gene expression profiling, 

gene discovery, detection of single nucleotide polymorphism (SNPs), comparative 

genomic hybridization (CGH), disease diagnostic, pharmacogenomics, and 

toxicology research (DeRisi et al., 1997, Ye et al., 2001, Li et al., 2002). 

DNA microarrays are based on a minimized, but high throughput form of a 

dot blot, and consist of an arrayed series of thousands of DNA fragments, 

immobilized onto a surface, such as coated glass slide or membrane (Ye et al., 2001, 

Gentry et al., 2006). They can be made either by the mechanical spotting of 

presynthesized DNA products like cDNAs of up to several hundred base pairs 

(DeRisi et al., 1998, Eisen & Brown, 1999) or by the in situ synthesis of 60-mer 

oligonucleotides (Lipshutz et al., 1999, Ye et al., 2001, Li et al., 2002). Following the 

production of a DNA microarray, microarray experiments are performed by sample 

isolation and preparation, hybridization and data analysis. Depending on the 

application either DNA from e.g. two different strains or RNA from e.g. an infected 

and uninfected sample is used as starting material. Prepared samples are labelled with 

two different fluorescent markers and co-hybridized to a microarray under high-

stringency conditions. After hybridization the signal intensities are detected via 

fluorescent excitation by a microarray scanner. 
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1.4.2.1 Gene expression profiling 

 

Comparing ESTs and microarray analysis revealed that the combination of 

both methods is advantageous in estimating the expression level of gene transcripts 

(Munoz et al., 2004). It has been shown that important functions in an organism are 

indicated by highly expressed genes (Dupont et al., 2007). Transcripts of low 

abundance may not occur at all in an EST library but the absence is not necessarily 

evidence for not being expressed under a different condition (Bouck & Vision, 2007). 

Hence, the EST approach for simultaneous discovery and identification of host and 

viral genes involved in viral infection were complemented with microarray analysis 

to enable the detection of even more subtle changes in gene expression (publication 

II ). 

 

 

1.4.2.2 Comparative genomic 

 

Comparative genomic hybridization (CGH) is currently one of the most 

powerful microarray techniques to compare DNA copy numbers between the 

genomes of e.g. closely related taxa, such as sub-species and strains. CGH is used to 

compare the genes present, absent or divergent in the genomes of interest. Therefore, 

two different fluorescently labelled genomic DNA samples are compared by co-

hybridization. Polymorphisms and insertions can be detected as a reduction or 

elevation of a hybridization signal (Gibson, 2002). Whole genome comparisons of 

different strains of various microbes indicate that polymorphism for gene content is 

not uncommon (Riley & Serres, 2000, Pearson et al., 2003, Watanabe et al., 2004), 

suggesting genetic adaptations to different ecological niches. Previous studies have 

reported different genome sizes among different morphotypes of E. huxleyi from 

different geographical regions (Medlin et al., 1996, Iglesias-Rodriguez et al., 2002). 

Results indicate the presence of different ecotypes of E. huxleyi potentially with 

differences in genome organization in response to environmental conditions or to 

potential threats, such as viral infections. For that reason, CGH were applied to 

estimate genetic variation at the genomic level of 16 E. huxleyi strains from different 
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geographic origin with the aim to identify genes correlated to virus susceptibility and 

morphology (publication III ). 

 

 

1.6 Outline of the Thesis 

 

In this thesis, molecular techniques were applied to improve our 

understanding of mechanisms and interactions of Emiliania huxleyi that take place 

during viral infection. Furthermore, genomic differences in several strains of E. 

huxleyi from different geographic origin were investigated to determine key genes in 

respect to viral susceptibility and morphology. Identified genes will be a starting 

point for further investigations using molecular approaches. The results of this thesis 

will improve our understanding of E. huxleyi and Coccolithoviruses as vital 

components of the global carbon cycle. 

 

Publication I reports the first construction of EST libraries of Emiliania huxleyi 

throughout a viral infection process and shows the possibility to determine 

differentially expressed genes using cDNA libraries within this approach. 

 

Publication II  examines the effect of viral infection on E. huxleyi through ESTs in a 

larger way and made it possible to speculate on mechanism of the host-virus 

interaction that occur in the host cell during viral infection in both partners. 

Furthermore, a comparison of two different methods to determine differentially 

expressed genes is provided. 

 

Publication III  investigates the biodiversity of 16 E. huxleyi strains from different 

geographic origin with regard to virus susceptibility and morphology using genomic 

DNA for comparative genomic hybridization on oligoarrays. 

 

In a concluding discussion main results of this thesis are summarized and 

discussed with respect to bloom dynamics, virus-host interactions, and genetic 

diversity. Finally, perspectives are given for future research. 

 



 

 

 

 

 

 

 

 

2 Publications 
 

 

2.1 List of publications 

 

This doctoral thesis is based on the following publications: 

 

 

I. Jessica Kegel, Michael J. Allen, Katja Metfies, William H. Wilson, Dieter 

Wolf-Gladrow and Klaus Valentin. 2007. Pilot study of an EST approach 

of the coccolithophorid Emiliania huxleyi during a virus infection. Gene 

406: 209-216. 

 

II.  Jessica U. Kegel, Mark Blaxter, Michael J. Allen, Katja Metfies, William 

H. Wilson and Klaus Valentin. Transcriptional host-virus interaction of 

Emiliania huxleyi (Haptophyte) and EhV-86 deduced from combined 

analysis of expressed sequence tag and microarrays. Submitted to 

European Journal of Phycology. 

 

III.  Jessica U. Kegel, Uwe John, Stephan Frickenhaus, Katja Metfies and 

Klaus Valentin. Comparative functional genomics of virus-susceptible and 

virus-resistant E. huxleyi strains. To be submitted to BMC Genomics. 

 

 



PUBLICATIONS 13 

2.2 Declaration on the contribution of each 

publication 

 

Publication I 

The experiments were planned together with Klaus Valentin and performed by the 

candidate. The data were interpreted and the manuscript written by the candidate in 

discussion with the co-authors. 

 

Publication II 

The experiments were planned together with Klaus Valentin and performed by the 

candidate. The data were interpreted and the manuscript written by the candidate in 

discussion with the co-authors. 

 

Publication III 

The experiments were planned together with Uwe John and performed by the 

candidate. S. Frickenhaus provided help in bioinformatics analysis and produced the 

R-figures. The data were interpreted and the manuscript written by the candidate in 

discussion with the co-authors. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

Publication I 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

Pilot study of an EST approach of the 
coccolithophorid 

Emiliania huxleyi during a virus infection 
 

 

JESSICA KEGEL1*, MICHAEL J. ALLEN2, KATJA METFIES1, WILLIAM H. 

WILSON3, DIETER WOLF-GLADROW1 AND KLAUS VALENTIN 1 

 

 

 

 

 

 
1Alfred Wegener Institute for Polar and Marine Research, Am Handelshafen 12, 

D-27570 Bremerhaven, Germany 
2Plymouth Marine Laboratory, Prospect Place, The Hoe, Plymouth, PL1 3DH, 
5 Bigelow Laboratory for Ocean Sciences, 180 McKown Point Road, POB 475, Maine 

04575, USA 

 

 

 

Key words: Emiliania huxleyi, coccolithophore, EhV86, EST sequencing 

 

Abbrevations: bp, base pair; cDNA, complementary to RNA; cfu, colony forming 

units; EST, expressed sequence tag; e-value, expectation value; fcp, 

fucoxanthin/chlorophyll binding protein; HSP70, heat shock protein 70; mRNA, 

messenger RNA 



PUBLICATION 1 16 

Abstract 

Blooms of the coccolithophorid Emiliania huxleyi can be infected by viruses, 

which can lead to bloom-termination. This pilot study used an expressed 

sequence tag (EST) approach to get a first view of gene expression changes that 

occur during viral infection of E. huxleyi. cDNA libraries were constructed from 

uninfected cultures and 6, 12, and 24 h after infection with E. huxleyi-specific 

virus 86 (EhV-86). From each library 60 – 90 ESTs were randomly selected and 

annotated manually with PhyloGena. Viral genes were identified using BLAST-

Search of the known viral genome. The data of this study show, that 6 h after 

viral infection the algal transcriptome changed significantly although few viral 

transcripts were present. At this point, changes mainly concerned transcripts 

related to photosynthesis and protein metabolism. However, after 24 h viral 

transcripts were most abundant. Viral transcripts found at this stage of viral 

infection encode proteins involved in protein degradation, nucleic acid 

degradation, transcription and replication. 
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1. Introduction 

Emiliania huxleyi (Lohmann, 1902, Hay et al., 1967) is the most abundant 

coccolithophore and an important member of the marine phytoplankton. It is well 

known for its immense coastal and open ocean blooms ranging from sub-polar to 

tropical latitudes (Balch et al., 1992, Brown and Yoder 1994) that can cover 

10,000 km² or more (Holligan et al. 1993, Winter et al. 1994). E. huxleyi is also 

regarded as a major sink for calcium carbonate carbonate in the ocean (Eide 1990, 

Samtleben and Bickert 1990, Baumann et al. 2004). Due to the reflection of their 

coccoliths blooms can be observed by satellites (Holligan et al. 1983, Balch et al. 

1991). 

The abundance and wide distribution of E. huxleyi and its production of 

calcium carbonate coccoliths and dimethylsulfide (DMS) make it an important 

species with respect to sediment formation and to ocean climate and natural acid 

rain (Charlson et al. 1987, Westbroek et al. 1993, Malin et al. 1994). Furthermore 

it is a key species for current studies on global biogeochemical cycles (Westbroek 

et al. 1994). 

Viral lysis is thought to be one of the main causes for the termination of E. 

huxleyi blooms. Several studies have investigated the role of viruses in 

controlling the bloom-forming of E. huxleyi (Bratbak et al. 1993, 1995, 1996, 

Brussaard et al. 1996, Castberg et al. 2001, Jaquet et al. 2002, Wilson et al. 1998, 

2002a, 2002b). It became evident from these investigations that viruses are 

intrinsically linked to the decline of E. huxleyi blooms. 

Viruses are the most abundant biological agents in marine aquatic 

environments (Bergh et al. 1989, Suttle 2000, Wommack and Colwell 2000) and 

it is likely that most microbial organisms can be infected with a particular viruses. 

Therefore they play important roles in nutrient (Wilhelm and Suttle 1999) and 

biogeochemical (Fuhrmann 1999) cycling, and influence structure and diversity 

of microbial and phytoplankton communities (Fuhrmann 1999, Wommack and 

Colwell 2000). Viruses have also been observed to infect a wide range of aquatic 

algae (van Etten et al. 1991, van Etten and Meints 1999), including bloom-

forming marine phytoplankton (Nagasaki et al. 1994a, 1994b, Jacobsen et al. 

1996, Nagasaki and Yamaguchi 1997, Sandaa et al. 2001). 
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A range of different viruses that infect E. huxleyi (EhV) was isolated from the 

English Channel and off the coast of Bergen, Norway (Castberg et al. 2002, 

Wilson et al. 2002b) and were analysed for their phylogeny (Schroeder et al. 

2002), ecological successions in mesocosm experiment (Schroeder et al. 2003) 

and genome structure (EhV-86) (Allen et al. 2006, 2007, Wilson et al. 2005). 

Characterization of their sequences revealed that the E. huxleyi viruses are large 

double-stranded DNA viruses with genomes approximately 410 kbp in size and 

that they belong to a new virus genus termed Coccolithovirus based on the 

phylogeny of their DNA polymerase gene (Schroeder et al., 2002). 

Coccolithoviruses belong to the Phycodnaviridae (Wilson et al. 2005), a diverse 

family of large icosahedral viruses that infect marine or freshwater eukaryotic 

algae, they all contain dsDNA genomes ranging from 180 – 560 kb (Van Etten et 

al. 2002). 

 

Expressed sequence tag (EST) analysis is a useful tool to study gene expression 

and to discover novel genes. ESTs are small pieces of DNA sequences that are 

generated by sequencing and based on the creation of a cDNA library. By 

statistical evaluation of the frequency of the sequences for specific genes it is 

possible to develop an expression profile at different environmental conditions for 

genes of different cDNA libraries. Thereby it is possible to investigate the up- and 

down regulation of genes (Schmitt et al. 1999) or to compare the gene expression 

under different conditions (Rafalski et al. 1998). The establishment of ESTs from 

E. huxleyi at different stages of viral infection could thus be an effective means 

for expression analysis of virus infected cultures for which the viral genome is 

known. ESTs specify the type and rate of viral and host transcripts at a particular 

time. As a result of that, it is possible to hypothesise on mechanisms of host-virus 

interaction that occur in the host cell during viral infection in both partners. 

The aim of this work was to provide a functionally annotated preliminary 

set of ESTs from E. huxleyi expressed before and during a virus infection in order 

to determine differentially expressed genes. The results of this study made it 

possible to estimate the proportional abundance of viral transcripts in relation to 

the whole transcriptome of the host cell during progression of the infection. 
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2. Material & Methods 

2.1 Strains and Growth Conditions 

Cultures of E. huxleyi CCMP1516 were grown in f/2 medium (Guillard 1975) at 

15°C with a 16:8 light-dark illumination (150 µmol photons m-2 s-1). Because of 

the availability of the complete genome sequence of the virus EhV-86, this 

species was used for the infection of E. huxleyi. Exponentially growing cultures 

(approx. 1.2 x 106 cells/ml) were inoculated with EhV-86 lysate (2 ml per litre of 

culture, approx. 1 x 106 pfu/ml) in the middle of the dark phase. 

2.2 RNA extraction from uninfected cells 

Cultures (50 ml) were harvested on 1.2 µm filters (Millipore), transferred into a 

cryogenic vial (Nalgene), immediately frozen in liquid nitrogen and stored at -

80°C until use for analysis. 

RNA of uninfected cultures was isolated at five different time points in 

series. This approach was chosen because RNA from infected cells (see below) 

was taken at different times after infection and as such at different phases of the 

cell cycle. Starting time was at the late exponential phase (approx. 1 x 106 

cells/ml) and the last point was at the beginning of the stationary phase (approx. 

3.3 x 106 cells/ml) (Fig. 1). Total RNA was isolated with the RNeasy Plant Mini 

Kit (Qiagen) according to the manual including one more washing step with 

buffer RW1 and buffer RPE and a DNase digestion subsequent to the original 

protocol. Afterwards mRNA was isolated with the Oligotex mRNA Mini Kit 

(Qiagen). Before library construction the mRNA from five different time points 

were pooled (Fig. 1) and precipitated with 0.5 volumes of LiCl overnight at -

20°C. Following centrifugation (14,000 rpm, 60 min, 4°C), the supernatant was 

discarded and the pellet was washed three times with 100 µl ice-cold 70% 

ethanol. The pellet was air dried, resuspended in 10 µl DEPC-treated water and 

used for library construction. 

 

2.3 RNA Extraction from Infected Cells 

After 6, 12 and 24 hours of virus-infection cultures (250 ml) were filtered through 

0.45 µm filters (Millipore). The filtrate was discarded and the filters transferred to 

clean petri dishes. Cells from each filter were resuspended in 2 ml of 1 x 

Phosphate buffered saline (PBS), centrifuged (20,000 g, 5 min), resuspended (by 



PUBLICATION 1 20 

vortexing) in 2 ml RNAlater (Qiagen) and stored at -20°C until ready for 

processing. RNA extraction was performed using an RNeasy Midi Kit (Qiagen). 

Samples were centrifuged (20,000 g, 2 min) and the pellet resuspended in 2 ml 

RLT buffer (+ 20 µl 2-mercaptoethanol). Following vigorous vortexing (1 min, in 

5 second bursts), the samples were spun (20,000 g, 5 min) and the supernatant 

transferred to a 15 ml Falcon tube containing 2 ml 70% ethanol. Following 

vigorous mixing the samples were applied to a Qiagen MidiPrep column, 

centrifuged (3,200 g, 5 min) and the flow-through discarded. Columns were 

washed twice with 2.5 ml RPE buffer (3,200 g, 5 min) and transferred to a new 

Falcon tube. RNAse free water (250 µl) was added, the samples incubated (room 

temperature, 1 min) and the RNA eluted by centrifugation (3,200 g, 5 min). 

To precipitate RNA solutions, 0.5 volumes of 7.5 M NH4Ac and 2 

volumes of 100% ethanol was added and the samples incubated at -80°C 

overnight. Following centrifugation (20,000 g, 30 min), the supernatant was 

discarded and the pellet washed twice with 0.5 ml 70% ethanol (20,000 g, 30 

min). The pellet was air dried, resuspended in 50 µl RNase free water and stored 

at -80°C. 

 

2.4 Library construction 

The uninfected library stems from pooled RNA collected throughout the growth 

curve and from 2 independent cultures (Fig. 1). Less than 1 µg of mRNA were 

used to establish a cDNA Library with the CloneMinerTM cDNA Library 

Construction Kit (Invitrogen) according to the manual. First strand synthesis was 

performed using a Biotin-attB2-Oligo(dT) primer with the following sequence: 

Biotin-GGCGGCCGCACAACTTTGTACAAGAAAGTTGGGT(T)19 and 

SuperScriptTM II Reverse Transcriptase. Subsequent to the second-strand 

synthesis using Escherichia coli DNA polymerase, blunt end products were 

ligated with an attB1 adapter through T4 DNA Ligase. After size fractionation (> 

500 bp) cDNA-fragments were cloned into the cloning vector pDONR 222 with 

the BP Clonase enzyme. Plasmids were used to transform ElectroMax DH10B 

competent cells via electroporation, and random clones were picked for quality 

control analysis. 
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2.5 Construction of cDNA libraries after virus-infection 

Total RNA (4 µg each) was used for the construction of cDNA libraries prepared 

by vertis Biotechnologie AG (Munich, Germany). From each total RNA poly A+ 

RNA was prepared. With the poly A+ RNA first-strand cDNA synthesis was 

performed using an oligo(dT)-linker primer and M-MLV-RNase H- reverse 

transcriptase. Synthesis of the second strand was carried out with a random linker 

primer and Klenow exo- DNA-polymerase. The resulting cDNAs were then 

amplified with 17 (6 and 12 hours p.i.) and 16 cycles (24h) of LA-PCR (Barnes 

1994). 

For cloning, the cDNAs were subjected to a limited exonuclease treatment 

to generate 5’ overhangs at both ends of the cDNAs. After size fractionation on 

an agarose gel and elution of cDNAs > 0,5 kb the cDNAs were directionally 

ligated into the Eco RI and Bam HI sites of the plasmid vector pBS II sk+. 

Ligations were electroporated into T1 Phage resistant TransforMaxTM EC100TM–

T1R (Epicentre) electro-competent cells. After transformation, glycerol was added 

to a final concentration of 15% (v/v). 

 

2.6 EST sequencing 

Plasmid DNA was isolated using a standard alkaline lysis procedure, and 

unidirectional sequencing was accomplished using the M13 HEDGE forward 

primer (TGA GCG GAT AAC AAT TTC ACA CAG) for the uninfected library 

and the M13 forward primer (TGT AAA ACG ACG GCC AGT) for the infected 

libraries, providing sequence from the 5´ end of cDNA clones. Sequencing was 

performed according to the principle of Sanger (1977) using BigDye terminator 

chemistry from Applied Biosystems. 

 

2.7 Data analysis 

For identifying the function of ESTs, sequences were analysed by the program 

PhyloGena (Hahnekamp et al. 2007) on the basis of the SwissProt database. This 

is a system for an automated phylogenetic annotation of ESTs, genes and 

genomes. It automatically constructs phylogenetic trees on a per ORF basis and 

allows annotation on the basis of the function of the neighbouring sequences in 

the tree. This method is more reliable than simply assuming the function of the 
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“best hit” in a BLAST search. As a threshold for a significant similarity we used 

an e-value of 10-7. 

Viral transcripts were identified by BLAST searches of all ESTs against 

the EhV-86 genome A corresponding analysis verified the origin of all other 

transcripts from the alga by similar searches against the E. huxleyi draft genome, 

i.e. the trace files of the sequencing runs (http://www.jgi.doe.gov/).. 

 

3. Results 

The aim of this work was to create an initial dataset of the gene-expression that 

occurs during infection of the E. huxleyi strain CCMP1516 with the virus EhV-

86. Therefore we constructed an EST-library from non infected cells and 

compared it with three EST-libraries after virus-infection (6, 12 and 24 hours). 

3.1 Identification and annotation of the ESTs 

After elimination of vector- and other problematic sequences, high-quality 

ESTs with an average length of 520 nucleotides were used for the identification 

and annotation of the sequences. All ESTs were tested for their origin from the 

alga and from the virus by BLAST searches against the EhV-86 genome and the 

E. huxleyi draft genome. There was no EST present which did not match either 

database. All genes were manually annotated. The annotated ESTs had a BLAST 

e-value smaller than or equal to 10-7. Identification was based on phylogenetic 

analysis of all ORFs using PhyloGena. In all libraries the largest fraction of ESTs, 

both host and virus, were those of unknown function or those not producing any 

significant hit in BLAST searches. 

It was possible to annotate 78 sequences from the uninfected library. A 

proportion of 17% (13 ESTs) of the sequences encoded for fcp or fcp-like 

proteins involved in light harvesting and 50% (39 ESTs) were proteins with 

unknown function. Furthermore, proteins were identified involved in 

photosynthesis, the cell cycle, transcription and protein metabolism (Tab. 1). 

From the library 6 hrs after virus infection 67 sequences were annotated, 

from which 64% (43 ESTs) were encoded for unknown proteins. Most of the 

identified proteins are ribosomal proteins and elongation factors, which are 

responsible for protein synthesis (Tab. 2). In this context, expression of HSP70 

and s-adenosylhomocysteinase are conspicuous because they are an indication for 



PUBLICATION 1 23 

stress. In contrast to the uninfected library, no fcp-like proteins were identified in 

the EST library generated 6 hrs post viral infection. However, three genes of 

unknown function from the virus EhV-86 were identified. 

Twelve hours post infection 82 sequences could be annotated. In this 

EST-library, 58.5% (48 ESTs) of the ESTs had no significant match against the 

SwissProt database in BLAST searches and were classified as proteins of 

unknown function. However, 12% of the 82 ESTs were ribosomal proteins which 

are involved in protein metabolism (Tab. 3). We could identify 5% (4 ESTs) of 

viral genes of unknown function. The expression of stress proteins like rotamase, 

RAS-like protein and HSP70 is also conspicuous. Fcp-like proteins were also 

missing. 

After 24 hours the host viral assemblage transcriptome is dominated by 

the virus. 80 ESTs of 91 annotated sequences were viral genes. Two of the 11 

host genes could be identified as 60S ribosomal protein L8 and GDP-D-mannose 

4, 6-dehydratase. Only 10% of the viral genes had significant matches in 

SwissProt (Tab. 4). All of the viral proteins of unknown function had a length 

between 800 and 1100 bp. 

By comparing the ESTs divided into different functional categories, we 

found that before virus infection photosynthesis-related genes dominate in the 

host, but after 6 hrs post infection their abundance decreases rapidly in the 

libraries (Fig. 2). Furthermore, after 6 hrs virus infection stress-induced host 

genes were identified. 24 hrs post infection the viral genes clearly dominate the 

library. In all libraries a high number of genes of unknown function were found. 

 

4. Discussion 

Our data show that it is possible to determine expression profiles throughout a 

viral infection process using EST libraries. In our case we were lucky to have 

available genome sequences for both partners, i.e. the virus and the host. Thus we 

were able to determine the exact number of ESTs from both partners in the 

libraries. Our data show, that a large proportion of genes active in both partners 

are of unknown function. These genes would have escaped the analysis given we 

had focussed on known genes and using classical approaches. It is one of the 

strengths of the EST approach that also those genes are found that are unknown. . 
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4.1 Possible infection mechanism of the virus EhV-86 by E. huxleyi 

These conclusions are based on approx. 320 annotated EST-sequences, but there 

is still a trend recognizable. Less than 6 hrs post infection the virus seems to 

change the expression pattern of E. huxleyi significantly. Our data indicate down-

regulation of photosynthesis genes, which is also known in the infection cycle of 

Paramecium bursaria Chlorella Virus-1 (Seaton et al. 1995). Viral infection took 

place in the middle of the dark phase and the first sample was taken after 6 hr, i.e. 

early in the light phase. During this phase one would expect photosynthesis genes 

to be upregulated. In E. huxleyi downregulation of photosynthesis genes took 

place on the benefit of up-regulation of genes related to gene expression and 

protein synthesis possibly to enhance the expression of viral proteins. The up-

regulation of transcription and translation genes of the host could be induced by 

the virus to facilitate transcription and translation of its genes. Only a few viral 

transcripts seem to be required for that, because in the 6h EST library only a 

minority of 4.5% of the sequences were found to have a viral origin. 

It is remarkable that after 6 and 12 hrs virus infections only a few viral 

transcripts appear, but that, nevertheless, drastic changes in host gene expression 

patterns were induced. After 24 hrs the transcription of E. huxleyi seemingly 

comes to a standstill. Now the share of viral transcripts in the EST library has 

reached 90%. 

Viral RNA polymerase genes are activated, which may preferably 

transcribe viral genes or host genes required by the virus. Furthermore, 

endonuclease and clp-protease appear which could be responsible for the 

degradation of host DNA and host proteins. The virus has taken over 

transcription at the latest 24 hrs after infection, approximately the doubling time 

of the alga in culture; this could mean that the infection is correlated to the cell 

cycle of E. huxleyi. The reason could be the need of particular host proteins, e.g. 

for transcription, replication or translation, all of which occur in an organised 

form during host cell cycle. 

 

4.2 Outlook 

More sequences are required to be able to draw more reliable conclusions about 

changes of the host expression pattern during viral infection. In the ongoing 
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project we have established EST libraries comprising several thousand sequences 

for E. huxleyi. The next step currently under way is to use the sequence 

information to establish genome arrays for alga and virus and to screen genomes 

of various E. huxleyi and virus strains for genomic differences, and subsequently 

for transcriptome differences. 

Twelve hours after infection, the virus affects the host expression pattern 

of E. huxleyi significantly, but after 24 hrs the effect was drastic. During this 

twelve hour period there seems to occur a lot of change in the expression of the 

host and the virus. To get further insight into the infection cycle, it would be of 

particular interest to construct and analyze a cDNA-library after 14 -18 hours of 

virus-infection, because the virus, described by Castberg et al. (2002) has a 

latency of 12-14 hours. 
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Figure legends 

Figure 1. Growth curve of an uninfected Emiliania huxleyi culture and the time 

points for the pooled mRNA (demonstrated by black arrows). The grey and 

dashed arrow shows the equivalent position where the virus was added to the 

culture (approx. 1.2 x 106 cells/ml) in the separate infection experiment. 

 

Figure 2. EST expression profile of Emiliania huxleyi before and during virus 

infection divided into different functional categories based on their putative 

function in per cent. 
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Tables 

 

Table 1. EST assembly results of E. huxleyi before virus infection 

Sequence name Frequency e value Putative function 

Unknown protein 39 - - 

Fcp-like 10 10-20 Photosynthesis 

Fucoxanthin Chlorophyll a/c binding 

protein (fcp) 

3 10-10 Photosynthesis 

Light harvesting complex (LHC) 3 10-10 Photosynthesis 

Cyclin dependent kinase regulatory subunit, 

putative 

2 10-30 Signal transduction, 

cell communication, 

cell cycle 

Alpha-glucosidase 2 10-51 Galactose metabolism 

Beta-hydocyacyl-ACP dehydratase 2 10-54 Fatty acid synthesis 

Hypothetical conserved protein, 2 10-18 -- 

Chromosome condensation regulator-

like protein 

1 10-8 Regulation of the 

condensation of the 

chromosomes 

Eukaryotic translation initiation factor-

like protein 

2 10-24 Initation of translation 

Trehalose-6-phosphate-synthase 2 10-29 Starch and saccharose 

metabolism 

Ankyrin related protein 1 10-10 Involved in binding of 

spectrin at the plasma 

membrane 

Ferredoxin-NADP+-reductase 1 10-78 Photosynthesis 

Glutarredoxin, mitochondrial 1 10-30 Glutathione 

metabolism 

Glyceraldehyde-3-phosphate 

dehydrogenase (GAPDH) 

1 10-117 Glycolysis, 

gluconeogenese 

N5’-nucleotidase, cytosolic 1 10-20 Transcription 

NADH-dehydrogenase 1 10-12 Respiration, fatty acid 

oxidation 

Protein kinase 1 10-18 Signal transduction, 

phosphorylation 

Putative membrane protein 1 10-12 -- 

Ribosomal protein L3 1 10-37 Protein metabolism 

RNA helicase 1 10-48 Transcription 
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Table 2. EST assembly results of E. huxleyi after 6 hours virus infection. 

Protein Frequency e value Putative function 

40S ribosomal protein S11 2 2.0e-42 Protein metabolism 

40S ribosomal protein S13 2 9.0e-51 Protein metabolism 

60S ribosomal protein L7 2 5.0e-31 Protein metabolism 

60S ribosomal protein L25 1 2.0e-43 Protein metabolism 

60S ribosomal protein L27 1 2.0e-42 Protein metabolism 

Adenylate kinase 1 1.0e-42 
Glycolysis; 

phosphorylation 

Elongation factor 1-alpha-like protein  

(EF1α) 
1 1.0e-66 Protein metabolism 

EF-Tu like protein 1 8.0e-67 Protein metabolism 

Caltractin-like protein 1 1.0e-21 
Calcium binding 

protein 

Eukaryotic translation initiation factor 3 

subunit 7 
1 1.0e-47 Protein metabolism 

Chloroplast ferredoxin-NADP+-reductase 1 9.0e-93 Photosynthesis 

GAPDH cytosolic 1 1.0e-34 
Glycolysis, 

gluconeogenese 

weakly similar to ubiquitin 1 7.0e-23 Amino acid catabolism 

weakly similar to phosphoribulokinase 1 4.0e-30 Calcin cycle 

HSP70-like protein 1 8.0e-38 Stress induced protein 

Phosphoribosylaminoimidazole-

succinocarboxamide synthase 
1 7.0e-32 Transcription 

S-adenosylhomocysteinase 2 8.0e-51 Amino acid catabolism 

unknown protein 43 -- -- 
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Table 3. EST assembly results of E. huxleyi after 12 hours virus infection. 

Protein Frequency e value Putative function 

40S ribosomal protein S19 2 4.0e-21 Protein metabolism 

40S ribosomal protein S19-like 1 6.0e-18 Protein metabolism 

60S ribosomal protein L10 2 1.0e-51 Protein metabolism 

60S ribosomal protein L8 1 2.0e-66 Protein metabolism 

78kd glucose regulating protein 1 1.0e-38 Stress-induced protein 

Adenine phosphoribosyltransferase-like 

protein 
1 1.0e-15 Transcription 

ADP-ribosylation factor (Arf) 1 1.0e-40 Stress-induced protein 

Elongation factor 1-alpha-like protein 

(EF1α) 
1 6.0e-64 Protein metabolism 

Calmodulin 2 1.0e-74 
Signaltransduction; 

calcium sensor 

Calmodulin-like protein 2 8.0e-41 
Signaltransduction; 

calcium sensor 

Similar to cytosolic GAPDH 1 4.0e-20 
Glycolysis, 

gluconeogenese 

Similar to nuclear GAPDH 1 2.0e-42 
Gklycolysis, 

gluconeogenese 

Glycin cleavage protein, mitochondrial 1 2.0e-37 Amino acid catabolism 

HSP70-like protein 1 4.0e-29 Stress-induced protein 

nuclear protein with unknown function, 

transcription regulator? 
1 3.0e-32 -- 

Methionin-aminopeptidase 1 3.0e-44 Protein metabolism 

Peptidyl-prolyl cis-trans isomerise 

(rotamase) 
1 1.0e-70 Stress-induced protein 

Similar to phosphoribulokinase 1 1.0e-49 Calvin cycle 

Mitochondrial processing protease α subunit 1 6.0e-19 
Protein metabolism; 

protein catabolism 

Ras-like protein 1 2.0e-21 Stress-induced protein 

Ras-related protein, GTPase 1 3.0e-21 Stress-induced protein 

S-adenosyl-L homocysteine hydrolase-like 

protein 
1 4.0e-51 Amino acid catabolism 

weakly conserved protein with ATP binding site, 

similar to elongation factor 
1 2.0e-26 Protein metabolism 

Stress-activated protein kinase 1 1.0e-47 Stress-induced protein 

Ubiquitin 1 2.0e-71 Amino acid catabolism 

UDP-N-acetylglucosamine pyrophosphatase 1 5.0e-13 
UDP-N-acetylgalactosamine 

biosynthetic process 

unknown protein 48 -- -- 
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Table 4. Identified viral genes after 24 hours infection and their putative 

function. 

Protein e value Putative function 

Clp protease (Casein lytic protein) 1.0e-12 Degradation of host proteins 

Clp-like protein 4.0e-11 Degradation of host proteins 

DNA topoisomerase II 2.0e-43 Packaging of viral DNA; expression of 

viral genes 

DNA dependent RNA Polymerase I 3.0e-06 Priority of expression of viral genes 

DNA dependent RNA Polymerase II 2.0e-62 Priority of expression of viral genes 

Non histone chromosomal protein 7.0e-09 Packaging of viral DNA 

Flap endonuclease 1.0e-48 Degradation of host nucleic acid 

Deoxyuridin 5’-triphosphate 

nucleotidhydrolase 

6.4e-42 Nucleic acid metabolism 

Protein kinase 1.0e-12 Regulation 
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Abstract 

The cosmopolitan coccolithophore Emiliania huxleyi forms frequent massive blooms 

and thus is important for the global climate and carbon cycle. Lytic viral infection of 

this alga leads to termination of blooms and therefore influences the global climate. 

To understand the host-virus interaction of E. huxleyi, an expressed sequence tag 

(EST) approach was used to determine changes in gene expression during viral 

infection. Three cDNA libraries generated 6, 12 and 24 h post viral infection were 

compared to a library from an uninfected culture by sequencing, clustering and 

manual annotation of 1100-1500 ESTs per library. To verify the gene expression 

results of the ESTs we used two-colour oligonucleotide microarrays. A total of 4480 

ESTs were assembled into 1871 clusters of which 223 clusters are of viral origin. 

Microarray expression analysis indicated that 231 out of 565 oligonucleotides of E. 

huxleyi changed their expression level in at least one time point in response to viral 

infection. Results suggest that viral infection affects the following processes: 

photosynthesis, transcription and translation, carbohydrate and lipid metabolism 

(particularly glycolysis), metabolism, and signal transduction. Results of this study 

provide insights into the infection mechanisms of the virus EhV-86 in E. huxleyi.  

 

 

 

Key words: Emiliania huxleyi, host-virus interaction, EhV-86, EST, microarray, 

photosynthesis 
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Introduction 

The marine coccolithophore Emiliania huxleyi is highly abundant and widely 

distributed in all marine systems except in polar waters (Paasche, 2001, Marsh, 

2003). E. huxleyi is capable of forming immense coastal and open ocean blooms. The 

blooms occur from sub-polar to tropical latitudes (Balch et al., 1992, Brown & 

Yoder, 1993) and can cover more than 50.000 km² (Balch et al., 1991, Holligan et al., 

1993, Sukhanova & Flint, 1998). These blooms can be detected via satellite imagery 

due to reflection of its calcium carbonate coccoliths (Holligan et al., 1983). Because 

of this bloom formation activity and its distribution and high abundance beyond blooms, 

E. huxleyi influences global climate by affecting the inorganic carbon system of seawater 

(Buitenhuis et al., 1996, Buitenhuis et al., 2001) and by organic carbon pumping. Due to 

the massive calcifying activity, E. huxleyi is considered to be the world’s major producer 

of calcite and one of the largest single carbonate sinks in oceanic carbonate cycling (Eide, 

1990, Samtleben & Bickert, 1990, Baumann et al., 2004). It also plays an important role 

in the global sulphur cycle (Malin et al., 1994). When subject to grazing or during 

viral infection, E. huxleyi produces dimethylsulfoniopropionate (DMSP), the 

precursor of the trace gas dimethyl sulphide (DMS), which is linked to marine cloud 

formation and climate regulation (Liss et al., 1997, Stefels et al., 2007). 

Viral infection is an important termination factor of the blooms of E. huxleyi 

(Bratbak et al., 1993, Jacquet et al., 2002). As major bloom terminators double-

stranded DNA-containing, lytic viruses (Schroeder et al., 2002) have been isolated 

(Castberg et al., 2002, Wilson et al., 2002) and described as Coccolithoviruses 

(Wilson et al., 2005). The interaction of E. huxleyi and these viruses specific to E. 

huxleyi are one of the best studied eukaryotic phytoplankton host-virus systems to 

date (Bidle et al., 2007). To understand the molecular basis of viral lysis of E. huxleyi 

blooms, we need to learn which genes in E. huxleyi are expressed during the host-

virus interaction and how this could be related to the response to infection and 

possible resistance. Furthermore, we need to know the virus genes which are 

expressed during infection in order to identify genes related to virulence and the 

ability to grow and reproduce in the host. Expressed Sequence Tags (ESTs) are one 

way to analyse the genes being expressed under specific conditions. They are cost-

effective and provide a robust sequence resource that can be exploited for gene 

discovery, microarray design, genome annotation and comparative genomics (Rudd, 
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2003). ESTs can be successfully combined with information coming from completely 

sequenced genomes, in which case it is easy to identify which genome an EST 

belongs to. Several studies focussing on fungal- and viral-infected plants using ESTs 

were reported (Hsiang & Goodwin, 2003, Ventelon-Debout et al., 2003, Goodwin et 

al., 2004, Jantasuriyarat et al., 2005). To our knowledge, this technique has only been 

applied to marine alga-virus interaction in our pilot study (Kegel et al., 2007). With 

the draft genome of E. huxleyi CCMP1516 and the complete genome of Emiliania 

huxleyi virus 86 (EhV-86) available, we took advantage of an EST approach 

combined with genome sequence information to gain detailed insights into the host-

virus interaction of this important microalgae. 

In this study we investigated EST-libraries from E. huxleyi during virus 

infection and compared these to a library from a healthy culture. Furthermore, 

changes in gene expression levels, assessed through two-colour oligonucleotide 

microarrays, were compared with the gene redundancy in the EST libraries. 

 

Material & Methods 

Source of host and virus libraries 

Four cDNA libraries from Emiliania huxleyi CCMP1516 constructed by Kegel et al. 

(2007) were compared: one pooled library (T0) from an uninfected culture and three 

libraries from a culture 6, 12 and 24 hours post infection with EhV-86 (in this 

publication referred to as T6, T12 and T24). For this study, between 1100 and 1500 

clones were randomly selected from each library. 

 

EST sequencing 

Plasmid DNA was prepared from recombinant clones using a standard alkaline lysis 

procedure. Unidirectional sequencing was done using the M13 HEDGE (Hegde et al., 

2000) forward primer (TGA GCG GAT AAC AAT TTC ACA CAG) for the 

uninfected library and the M13 forward primer (TGT AAA ACG ACG GCC AGT) 

for the infected libraries, providing sequence from the 5’ end of cDNA clones.  

Sanger sequencing was performed by Max-Planck-Institute for Molecular Genetics of 

Berlin, Germany. 
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Sequence analysis and functional annotation 

All ESTs were compared against the whole genome of EhV-86 (Wilson et al., 2005) 

and the draft genome of E. huxleyi (JGI, http://www.jgi.doe.gov/) using BLASTn 

(Altschul et al., 1990). The analysis was done using PartiGene (Parkinson et al., 

2004). Every EST had more than 86% identity to either E. huxleyi or EhV-86 

genomic sequence. 

ESTs were automatically clustered and annotated using the PartiGene 

software. Sequences were pre-processed concerning vector contamination, low 

complexity and repeat regions like the poly(A) tail. Low quality and very short ESTs 

(< 100 bp) were discarded. Subsequently, ESTs were clustered on the basis of 

sequence similarity into groups that putatively derive from the same gene and 

assembled into consensus sequences (Parkinson et al., 2004). Following the 

clustering and assembling, these consensus sequences were annotated by BLAST 

searches against the UniProt database (http://www.uniprot.org), the whole genome of 

EhV-86, and the publicly accessible ESTs of E. huxleyi. Finally, an HTML summary 

table of all consensus sequences was produced, providing the number and list of 

ESTs for each cluster along with associated BLAST annotation. These are available 

at 

http://www.nematodes.org/NeglectedGenomes/EMILIANIA/Emiliania_huxleyi.html. 

For interpretation of the consensus sequences of the virus we used the best hit of the 

automated annotation against the whole genome of Eh-V86. 

The consensus host sequences were manually analysed with PhyloGena 

(Hanekamp et al., 2007) using the SwissProt database (http://www.expasy.org/sprot/) 

and were compared with Pfam (Bateman et al., 2002) and the NCBI non-redundant 

protein database (http://blast.ncbi.nlm.nih.gov/Blast.cgi, NCBI-nr). As a threshold for 

significant similarity we used an e value of 10-5. Consensus sequences with BLAST 

results above that threshold were assigned as hypothetical proteins. Consensus 

sequences which showed significant similarity only to proteins of unknown function 

were annotated as conserved hypothetical proteins. Sequences which did not produce 

any significant hit in BLAST searches were classified as no significant hit. 

Annotated EST clusters of the host were classified into the functional 

categories of KEGG using the application tool KAAS  (KEGG Automatic Annotation 

Server: http://www.genome.jp/kegg/kaas, (Moriya et al., 2007) with the SBH (single-
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directional best hit) method, whereas EST clusters without any KEGG hit were 

manually assigned. 

 

DNA Microarray Design and Validation 

Based on the consensus sequence information generated in this project, microarrays 

were designed with Agilent’s eArray online application tool version 5.0. Only EST 

clusters of E. huxleyi containing a significant BLAST hit were used to design the 

oligonucleotides for the microarray. The resulting 60-mer oligonucleotide probes and 

standard controls from Agilent were printed on glass slides by Agilent using an Ink 

Jet-based printing method (Agilent’s SurePrint technology). Four arrays were printed 

on each 1 x 3-inch glass slide. 

For the labelling of total RNA an Agilent Low RNA Input Fluorescent Linear 

Amplification kit (Agilent Technologies) was used according to the manufacturer’s 

recommendations. Total RNA (500 ng) from the uninfected culture was labelled by 

fluorescent complimentary RNA (cRNA) synthesis with Cy3-CTP. The RNA of the 

infected culture (500 ng) was labelled with Cy5-CTP. A superscript III reverse 

transcriptase (0.5 µL, Invitrogen) was added to the labelling reaction to increase the 

yield of longer transcripts. Therefore an additional incubation step (30 min, 50°C) 

was inserted prior to heat-inactivation of the enzymes. Amplified cRNAs were 

purified with RNeasy mini spin columns (Qiagen) and quantified by UV 

spectroscopy. Hybridizations were performed with 825 ng of each labelled cRNA at 

65°C for 17 h within a hybridization chamber (Agilent Technologies). After 

hybridization, the microarrays were washed according to the manufacturer’s 

instructions (Wash with Stabilization and Drying Solution, Agilent Technologies). 

Microarrays were imaged using an Agilent microarray scanner in eXtended Dynamic 

Range function mode and a scan resolution of 5 µm. Signal intensities were detected 

by Feature Extraction software version 9.5 (Agilent Technologies). Differential 

expression was analysed using the MeV version 4.0.01 software package from TIGR 

(Saeed et al., 2003). Significance Analysis of Microarray (SAM) analysis described 

by Tusher et al. (2001) was performed using following parameters: (i) One-Class test; 

(ii) 1000 permutations; (iii) Tusher et al. method with calculated q-values; (iv) K-

nearest neighbor, 10 neighbors. Values were not restricted by setting any delta value 

and the resulting significant regulated genes with a q-value < 1% and a fold-change 
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of ≥ 2 were analysed. These data were then clustered by a hierarchical clustering 

algorithm using average linkage for the heuristic criterion and Euclidean distance as 

similarity metric (Eisen et al., 1998). Original data files for all arrays were uploaded 

in MIAME format for expression arrays at GEO (http://www.ncbi.nlm.nih.gov/geo/; 

accession numbers XXXX-XXXX). 

 

Results 

Identification and annotation of the ESTs 

A total of 4480 EST sequences (GenBank accession No. XXX-XXX) with good 

quality (phred 20, min. 100 bp length, no ribosomal RNA) and an average length of 

644 bp were obtained from the uninfected library (T0) and 6, 12 and 24 hours post 

viral infection (in this publication referred to as T6, T12 and T24), clustered and 

assembled into 1871 different clusters. Of those, 1319 clusters comprised of unique 

clones and 552 clusters consisted of up to 135 ESTs. Out of the total 1871 clusters, a 

subset of 223 clusters (12 %) were significantly similar to the EhV-86 genome, of 

which only 44 clusters (20%) showed similarity to known proteins (Tab. S1). In 

addition, 569 (35%) of the remaining 1648 host clusters had significant similarity to 

known proteins or hypothetical proteins. 

The uninfected library (T0) consisted of 1056 ESTs of good quality and could 

be divided into 554 different clusters. Less than half of theses clusters (257) derived 

from 416 ESTs showed significant similarity to known proteins or hypothetical 

proteins. At T6, only 38 out of 985 ESTs were of viral origin and clustered into 26 

viral and 435 host clusters. Twelve hours after viral infection, 1378 ESTs of good 

quality grouped into 626 clusters out of those, 19 clusters derived from 32 ESTs were 

of viral origin. At T24, a total of 946 out of 1061 ESTs showed significant similarity 

to the EhV-86 genome and clustered into 218 different clusters. Only 115 ESTs 

showed significant similarity to the E. huxleyi genome and resulted in 84 clusters. 

ESTs were grouped into 11 gene functional categories derived from KEGG: 

(1) cellular processes; (2) signal transduction; (3) transport; (4) hypothetical; (5) 

transcription and translation; (6) carbohydrate and lipid metabolism; (7) metabolism; 

(8) folding, sorting and degradation; (9) chaperones and folding catalysts; (10) 

genetic information processing; and (11) photosynthesis. ESTs which did not fit in 

any of the categories were assigned to an additional category “other”. 
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In all libraries, the majority of ESTs (both host and viral in origin) showed no 

significant similarity to sequences in the public databases. 

 

The E. huxleyi transcriptome 

The most abundant transcripts prior to infection were related to photosynthesis 

(17.2%), metabolism (4.8%) and transcription and translation (3.4%). After 6, 12 and 

24 hours the percentage of photosynthesis-related ESTs decreased to 2.5, 3.3, and 

0.5%, respectively. In contrast, ESTs related to transcription and translation increased 

to 25.0% and 12.4% at T6 and T12 (Fig.1). In the carbohydrate and lipid metabolism 

category, the percentage of genes increased from 2.1% in the uninfected library to 

3.4% and 6.4% in the infected libraries at 6 and 12 h after viral infection. 

Furthermore, the percentage of genes related to signal transduction increased from 

0.5% in the uninfected library to 4.1% and 5.0% in the infected libraries at 6 and 12 h 

after viral infection, respectively. For example, at T6 and T12 the number of ESTs 

with similarity to ubiquitin was eight times higher than in the uninfected library. 

Furthermore, the number of ESTs with similarity to calmodulin, eukaryotic 

translation and elongation factors increased ten to twenty fold, whereas chloroplast 

light harvesting proteins and fucoxanthin chlorophyll a/c-binding protein, were 16 to 

38 times decreased at T6 and T12 compared to T0 (Tab. 1). At T24, the host viral 

assemblage transcriptome was dominated by the viral transcripts (89.2%). Hence it 

was not possible to detect any obvious changes in the host transcripts. 

 

The EhV-86 transcriptome 

During viral infection 38 different viral genes were identified deriving from 44 

clusters containing 164 ESTs with putative functions (Tab. 2). At T6 two copies of a 

transcript for a DNA-dependent RNA polymerase II largest subunit (EHV064), and 

one for a sialidase (EHV455) and a protease (EHV349) were found. Furthermore, at 

T12 a single transcript for a fatty acid desaturase (EHV061), a HNH endonuclease 

family protein (EHV093), and a proliferating cell nuclear antigen (EHV440) were 

detected. At T24 37 of the identified transcripts were for genes including ehv455, 

ehv349, ehv061, ehv093 and ehv440. The most frequent transcripts (19 ESTs) were 

for an ATP-dependent protease proteolytic subunit (EHV133), a fatty acid desaturase 

(15 ESTs, EHV415), and a deoxyuridine 5’-triphosphate nucleotidhydrolase (12 
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ESTs, EHV397). In addition, we could identify transcripts for three different DNA-

directed RNA polymerase subunits (EHV108, EHV434 and EHV399), two 

endonucleases (EHV041 and EHV018), and two protein kinases (EHV451 and 

EHV402). 

 

Identification of changes in gene expression using microarrays 

A 60-mer oligonucleotide microarray based on the consensus sequences was used to 

investigate gene expression patterns of E. huxleyi during viral infection. To study the 

expression profile at each time point, technical triplicates (duplicate for 24 h) were 

performed comparing the RNA after 6, 12, and 24 hours with the uninfected culture 

as reference. Only features with absolute differential expression ≥ 2-fold were used 

for trending. The ESTs of E. huxleyi from the four libraries were assigned to 569 

clusters showing significant similarity to UniProt. The application tool eArray 

designed 565 oligonucleotides out of the 569 clusters. Due to technical reasons it was 

not possible to design oligonucleotides for the four remaining clusters. 

A total of 231 (41%) out of the 565 gene transcripts were differentially 

expressed at least once for the tested time points. To characterize their expression 

levels, the 231 genes were clustered according to their expression patterns by the 

hierarchical clustering method using the correlation coefficient of average linkage of 

the log2 ratio (Fig. 2). We could identify 204 differently expressed gene transcripts at 

T6, 139 at T12, and 27 at T24. T6 and T12 had 112 transcripts in common including 

all 27 transcripts of T24 and three oppositional expressed transcripts at T6 and T12. 

The biggest change in transcript expression was found for a hypothetical protein 

(EVC00294) with a fold-change of 242.18, which was highly expressed in all viral 

stages. At T6 109 (53%) genes were up-regulated, whereas 95 (47%) were down-

regulated. The number of up-regulated genes at T12 decreased to 79 (71%) and the 

number of down-regulated genes to 60 (29%). All of the 27 expressed transcripts at 

T24 were up-regulated (Tab. S3). 

The category of metabolism showed similar up- and down-regulation pattern 

at T6 and T12 (Fig. 3A). Most genes involved in carbohydrate and lipid metabolism 

were up-regulated at T6 (25) and T12 (14). However, only four genes of this category 

were down-regulated at T6 and six at T12 (Fig. 3B). On the other hand, genes 

involved in photosynthesis were more down-regulated at T6 (21) than at T12 (4) 



PUBLICATION 2 46 
 

whereas the numbers of up-regulated genes were nearly equal for T6 (9) and T12 (8) 

(Fig. 3C). Genes involved in transcription and translation showed 15 up-regulated 

compared to two down-regulated genes at T6, and two up-regulated compared to five 

down-regulated at T12 (Tab. S2). 

Among the hypothetical proteins, five genes were consistently up-regulated 

after 6, 12 and 24 hours of viral infection. In the category carbohydrate and lipid 

metabolism, we identified an up-regulation of enolase, glyceraldehyde-3-phosphate 

dehydrogenase and N-acetylneuraminic acid phosphate synthase at all three time 

points of viral infection. Moreover, among the genes involved in photosynthesis, only 

ferredoxin I was consistently up-regulated during viral infection with a fold-change 

between 10 and 12 (Tab. S3). Most of the consistently up-regulated genes at T6, T12 

and T24 belong to the category metabolism and show similarity to acetyltransferase, 

beta-ketoacyl synthase, methyltransferase, farnesyl pyrophosphate synthetase, and 

NAD (P) H quinone oxidoreductase (Fig. 3A, Tab. S3). 

 

Comparison of ESTs and Microarrays 

Clusters of E. huxleyi with a total abundance of 15 ESTs or more were compared to 

the changes in gene expression identified with the microarrays (Fig. 4). A total of 25 

clusters were used for trending. It was not possible to detect any changes at T24 

because only 10% of the mRNA was of host origin. Therefore, only ESTs of T0, T6 

and T12 were compared to the microarray analysis. At T6 and T12 21 genes were 

found (present) and 4 were not (absent). At T0 only 7 genes were present and 18 were 

absent. Microarray results displayed no differential expression for one of the absent 

genes at T6 and for four of the absent genes at T12. Moreover, 11 genes from the T6 

library and 9 genes from the T12 library were differentially expressed.  

At T6, four genes which were present in the library showed conflicting results. 

Three gene transcripts encoding for calmodulin were up-regulated according to the 

EST analysis. They were found 18 (EVC00667), 11 (EVC0450), and 3 (EVC00375) 

times in the library and were absent in the library generated from the healthy culture 

(Tab. 1). However, microarray results indicated that they were down-regulated at T6 

with a fold-change of 3.56, 2.93 and 3.56, which means that calmodulin was more 

expressed in the healthy culture than at T6. The fourth gene transcript encoded for 

ubiquitin (EVC00050) and showed at both T6 and T12 contradictory results. The EST 
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analysis indicated an up-regulation of the gene, whereas the microarray analysis 

indicated a down-regulation. In the libraries it was found 5 times at T6 and 11 times 

at T12, but not in the healthy culture. Results of the microarray revealed that ubiquitin 

was down-regulated at both time points with a fold change of 4.9 (T6) and 2.6 (T12). 

In three cases where the gene was absent in the library at T6, microarray results could 

show that chloroplast light harvesting protein (EVC01904), fucoxanthin chlorophyll 

a/c-binding protein (EVC01939) and calmodulin (EVC00069) were down-regulated 

with a fold-change of 3.29, 2.11 and 2.96. These ESTs were found 38, 37 and 2 times 

in the healthy culture (Tab. 1 and S1). 

 

Discussion 

This study aimed at the identification of genes involved in the host-virus interaction 

of E. huxleyi and EhV-86 by taking advantage of EST libraries and DNA 

microarrays. Both methods contributed to the identification of many genes involved 

in the host’s response to viral infection. We have demonstrated the power of EST 

libraries and DNA microarrays to obtain data on gene expression and regulation 

during viral infection. The differential expression of certain genes during viral 

infection suggests their involvement in the interaction between the host and the virus. 

This makes them suitable targets for further investigation. ESTs with a total 

abundance of 15 and above were selected for the comparison between EST 

redundancy and microarray analysis. 

Since the genome sequences of both the virus and the host were available, it 

was possible to determine the precise number of ESTs from both in all four libraries. 

Consequently we are able to speculate on both, the host and virus mechanisms that 

occur in the host cell during viral infection. 

 

The host transcriptome 

The most prominent effect of the viral infection on the host transcriptome is the 

change in the expression of genes involved in photosynthesis, transcription and 

translation, glycolysis, fatty acid metabolism, and protein degradation. 

The break-down of photosynthesis is of particular importance to 

photosynthetic organisms. During viral infection of E. huxleyi, EST and microarray 

results revealed significant reduction of genes involved in photosynthesis. Our 
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findings are in accordance with previous studies that observed the reduction of 

photosynthesis in aquatic communities following viral enrichment (Suttle et al., 1990, 

Suttle, 1992, Hewson & Fuhrman, 2006). Similar results were also observed in 

Chlorella NC64A (Seaton et al., 1995), E. huxleyi (Evans et al., 2006, Llewellyn et 

al., 2007), Micromonas pusilla (Waters & Chan, 1982), and Heterosigma akashiwo 

(Juneau et al., 2003). 

For viral replication the biosynthetic machinery of the host cell must be 

modified for the benefit of viral proteins. Hence, the up-regulation of genes related to 

protein and ATP synthesis in the mitochondria, genes involved in glycolysis and fatty 

acid synthesis, and genes involved in RNA-synthesis and translation of the host could 

be an indication for a boost in the expression of viral proteins which require large 

amounts of energy. Another indication for enhanced viral protein expression is the 

down-regulation of host genes involved in photosynthesis, protein degradation, 

signalling, pigment synthesis, RNA processing, the citric acid cycle, and protein 

import to the mitochondria (Tab.S2). In general, both organelles (chloroplast and 

mitochondria) of E. huxleyi seem to be down- regulated for the benefit of an 

increased transcription and translation used for viral replication. It seems that just a 

few viral proteins are required to alter the biosynthetic machinery of the host, as after 

6 hours of viral infection only 38 (3.9%) ESTs were of viral origin. 

A previous study has shown that host cells release virus particles between 4 

and 48 h after infection while remaining intact (Allen & Wilson, 2006). Furthermore, 

it has been demonstrated that coexistence of host and virus is possible and that both 

can replicate during infection (Thyrhaug et al., 2003). Supporting these findings, 

microarray results showed an up-regulation of several genes involved in 

photosynthesis during viral infection, which indicates, that at least some cells were 

intact and perform photosynthesis. In addition, the low abundance of viral ESTs at 

T12 (2.3%) indicates that perhaps many host cells remained intact and only a few 

infections took place. However, the change to 89.2% viral ESTs at T24 suggests that 

between 12 and 24 hours post infection the virus took over the biosynthetic 

machinery of the entire E. huxleyi population. 
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The virus transcriptome and putative infection mechanism 

The virus drastically changes host transcription already after 6 hours, when only 38 

(3.9%) viral ESTs are present. A good candidate gene to cause this effect is ehv064, 

encoding a putative DNA-dependent RNA polymerase II subunit which could be used 

for transcription of viral genes. Two ESTs for this gene were only found at T6 and 

not in any other library. The up-regulation of host genes involved in the protein 

synthesis at T6 and T12 suggest a favoured synthesis of viral proteins. In addition, at 

T6 a putative protease (EHV349) was identified which might be responsible for the 

degradation of host proteins. The down-regulation of host genes involved in protein 

degradation at T6 and T12 such as ubiquitin indicate the takeover of the host 

machinery. A HNH endonuclease family protein (EHV093) was found at T12 which 

could lead to the degradation of host DNA. Furthermore, a putative proliferating cell 

nuclear antigen (EHV440) was identified and which could help in DNA binding 

during transcription of viral genes. The occurrence of a putative fatty acid desaturase 

(EHV061) could be involved in membrane lysis, i.e. the lysis of host cells. 

At 24 hours post infection 89.2% of mRNA is of viral origin. A putative major 

capsid protein (EHV085) whose function is well known and defined in viral systems 

(Allen et al., 2008), and a putative DNA ligase (EHV158) which could be used for 

DNA replication were identified. These two genes could be involved in the packaging 

and the following release of new viruses. One copy of a Longevity-assurance (LAG1) 

family protein (EHV014) was identified which is involved in the ceramide synthesis. 

Ceramide can act in regulating apoptosis suggesting that LAG1 could be involved in 

the lysis of host cells. Another indication for the releasing of new viruses could be the 

up-regulation of host genes involved in the exchange with vacuoles such as Vacuolar 

ATP synthase catalytic subunit A and V-ATPase subunit d at T6 and T12 (Tab. S2). 

These suggestions are in accordance with previous studies (Wilson et al., 2005, Allen 

et al., 2006, Allen & Wilson, 2006). It was shown that at 4 h post infection viruses 

just started being released. However, at 33 h post infection the host cell is still in a 

steady stage of virus releasing and re-infection until the host finally lyses after around 

48 h. 
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Gene expression - one goal two approaches 

Combining and comparing ESTs and microarray analysis revealed that the 

combination of both methods is advantageous in estimating the expression level of 

gene transcripts (Munoz et al., 2004). It has been shown that important functions in 

an organism are indicated by highly expressed genes (Dupont et al., 2007). 

Transcripts of low abundance may not occur at all in an EST library but the absence 

is not necessarily evidence for not being expressed under a different condition (Bouck 

& Vision, 2007). In most of these cases, our microarray analysis proved helpful by 

revealing the presence of these genes. Several genes overrepresented within a library 

and not present at T0, showed a down-regulation in the microarray analysis at T6 and 

T12. This could be due to the fact that at T0 these genes were underrepresented in the 

EST library because of the high abundance of e.g. photosynthesis genes. This could 

be overcome by sequencing more clones to obtain weakly expressed genes. 

 

In summary, we have demonstrated the advantages of an EST approach for 

simultaneous discovery and identification of host and viral genes involved in viral 

infection. We have also shown that complementing this approach with microarray 

analysis enables the detection of even more subtle changes in gene expression. The 

expression of E. huxleyi and EhV-86 genes changed significantly between 12 and 24 

hours after infection. Further functional investigations of this infection period are 

required. 
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Figure legends 

Figure 1. Distribution of functional categories derived from KEGG and percentage of 

E. huxleyi ESTs: (A) healthy culture; (B) 6 hours, (C) 12 hours and (D) 24 

hours post infection. 

 

Figure 2. General overview on the differentiell expression of genes in E. huxleyi 

during viral infection with a fold change ≥ 2 in at least one timepoint. (A) 

Heat map generated by hierarchical clustering identifies overall up-

regulated (red) and down-regulated (green) patterns of gene expression. 

The graphs in B and D show the number of the genes up- (B) and down-

regulated (D) responding to viral infection after 6 (T1) and 12 h (T2) or 

both. (C and E) Distribution of up- (C) and down-regulated (E) genes at T1 

(black bars), T2 (grey bars) and T3 (white bars) based on their fold change. 

 

Figure 3. Differential expression of genes involved in (A) metabolism, (B) 

carbohydrate and lipid metabolism, and (C) photosynthesis during viral 

infection. (I) Heat maps generated by hierarchical clustering identifies 

overall up-regulated (red) and down-regulated (green) patterns of gene 

expression. (II) Positive values of barplots indicates the number of 

significantly up-regulated genes, whereas negative values shows the down-

regulated genes at 6 (black bars), 12 (grey bars) and 24 hours (white bars) 

post infection. (III) Examples for up- (↑) and down-regulated (↓) gene 

transcripts during viral infection. 

 

Figure 4. Individual ESTs (black bars) compared to microarray results (grey bars) of 

E. huxleyi after 6 h (T1) and 12 h (T2) viral infection. ESTs showing 

significant similarity to UniProt with a total abundance of 15 and above 

were selected for the comparison between EST abundance and microarray 

analysis. For the ESTs, a 1 indicates that at least one EST is present in the 

library and a 0 indicates absence from the library. For the microarray, a 1 

indicates up-regulation of the gene; a -1 indicates down-regulation and a 0  

indicates no differential expression. 
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Tables 

Table 1. The 20 most abundant ESTs in the E. huxleyi EST collection deduced 
from manual annotation. 

 

Abundance Cluster 
ID 

Total 0 6 12 24 
Description Process e-value 

EVC00004 47 0 2 44 1 
N-acetylneuraminic acid 
phosphate synthase 

Carbohydrate 
metabolism 

1.4e-71 

EVC01904 38 38 0 0 0 
Chloroplast light harvesting 
protein 

Photosynthesis 4.5e-21 

EVC01939 37 37 0 0 0 
Fucoxanthin chlorophyll a/c-
binding protein, chloroplast 
precursor 

Photosynthesis 1.2e-23 

EVC00115 44 1 26 15 2 60S ribosomal protein L7a Translation 4.8e-76 

EVC00069 25 0 0 25 0 Calmodulin (CaM) 
Signal 
transduction 

3.1e-75 

EVC00071 36 0 24 10 2 40S ribosomal protein S11 Translation 9.9e-45 

EVC00067 25 0 4 21 0 
alpha-1,4-N-
acetylglucosaminyltransferase 
EXTL3 

Glycan 
biosynthesis 
and 
metabolism 

2.7e-18 

EVC00210 38 0 19 19 0 
Elongation factor 1-alpha 
(EF-1-alpha) 

Translation 0.0 

EVC00024 23 0 3 19 1 60S ribosomal protein L3 Translation 6.9e-99 

EVC00667 23 0 18 1 4 Calmodulin (CaM) 
Signal 
transduction 

1.2e-74 

EVC00014 38 2 17 15 4 Ubiquitin 
Folding, 
sorting and 
degradation 

3.2e-35 

EVC01892 16 16 0 0 0 
Chloroplast light harvesting 
protein 

Photosynthesis 1.5e-21 

EVC00025 24 1 15 8 0 40S ribosomal protein S13 Translation 4.6e-58 

EVC00375 19 0 3 15 1 Calmodulin (CaM) 
Signal 
transduction 

1.2e-74 

EVC00045 22 2 14 6 0 Adenosylhomocysteinase 
Amino acid 
metabolism 

0.0 

EVC01249 15 0 14 0 1 60S ribosomal protein L27 Translation 9.2e-42 

EVC00200 19 0 13 5 1 
Eukaryotic translation 
initiation factor 1A (EIF-1A) 

Translation 6.2e-39 

EVC00172 21 0 7 13 1 Hypothetical protein Hypothetical  

EVC00457 19 0 12 5 2 Acetyltransferase-like Metabolism 2.5e-11 

EVC00054 17 0 4 12 1 NmrA family protein Other 1.2e-17 

0 = uninfected library; 6, 12 and 24 = hours after viral infection. 
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Table 2. EhV-86 genes in the virus infected EST libraries with known function 
and their putative process in viral infection. 

 

Cluster 
ID 

Abundance Description Putative 

 6 12 24  process 

EVC00969 0 0 19 ehv133 putative ATP-dependent protease proteolytic subunit A 

EVC01295 0 0 1 ehv361 putative serine protease A 

EVC00898 1 0 3 ehv349 putative protease A 

EVC00833 0 0 15 ehv15 putative fatty acid desaturase  B 

EVC00358 0 1 5 ehv061 putative fatty acid desaturase B 

EVC01280 0 0 1 ehv028 putative lipase B 

EVC00896 0 0 7 ehv108 putative DNA-directed RNA polymerase subunit C 

EVC00899 0 0 6 

EVC01004 0 0 1 
ehv434 putative DNA-directed RNA polymerase II subunit C 

EVC01069 0 0 2 ehv399 putative DNA-directed RNA polymerase subunit C 

EVC01347 2 0 0 
ehv064 putative DNA-dependent RNA polymerase II largest 
subunit 

C 

EVC01224 0 0 1 ehv105 transcription factor S-II (TFIIS) family protein C 

EVC01054 0 0 2 

EVC01011 0 0 1 
ehv041 putative endonuclease D 

EVC00938 0 0 5 ehv018 putative endonuclease D 

EVC00177 0 1 8 ehv093 HNH endonuclease family protein  D 

EVC00936 0 0 4 ehv430 putative helicase D 

EVC00835 0 0 12 

EVC01104 0 0 2 
ehv397 putative deoxyuridine 5'-triphosphate 
nucleotidhydrolase 

E 

EVC00838 0 0 7 
ehv459 putative nucleic acid independent nucleoside 
triphosphatase 

E 

EVC00818 0 0 4 ehv026 ribonucleoside-diphosphate reductase small chain E 

EVC01059 0 0 2 

EVC00999 0 0 1 
ehv030 putative DNA polymerase delta catalytic subunit E 

EVC00830 0 0 2 ehv428 putative ribonucleoside-diphosphate reductase protein E 

EVC00871 0 0 2 ehv136 putative nucleic acid-binding protein F 

EVC00891 0 0 2 

EVC01089 0 0 1 
ehv020 putative proliferating cell nuclear antigen F 

EVC00506 0 1 4 ehv440 putative proliferating cell nuclear antigen F 

EVC00911 0 0 5 ehv152 putative DNA-binding protein G 

EVC00926 0 0 1 ehv184 putative DNA-binding protein G 

EVC01199 0 0 1 ehv431 putative thymidylate kinase G 

EVC00963 0 0 1 ehv451 putative protein kinase H 

EVC01201 0 0 1 ehv402 putative protein kinase H 

EVC00852 0 0 3 ehv179 Major Facilitator Superfamily protein I 

EVC00812 0 0 4 ehv444 putative DNA topoisomerase J 

EVC01114 0 0 2 ehv085 mcp putative major capsid protein K 

EVC00836 0 0 4 ehv158 putative DNA ligase L 

EVC00977 0 0 2 ehv014 Longevity-assurance (LAG1) family protein M 

EVC01106 0 0 2 ehv166 putative RING finger protein 

EVC01230 0 0 1 ehv110 putative RING fnger protein 
N 
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EVC00829 0 0 1 ehv023 putative deoxycytidylate deaminase O 

EVC00831 0 0 4 ehv103 putative vesicle-associated membrane protein P 

EVC00907 0 0 5 

EVC01694 1 0 0 
ehv455 putative sialidase - 

A: degradation of host proteins; B: membrane lysis; C: virus gene transcription; D: degradation of host 
DNA; E: DNA replication; F: DNA binding; DNA polymerase processivity factor activity; G: viral 
DNA replication; H: signal transduction; I: membrane transport; J: insertion of viral DNA; K: capsid 
synthesis; L: DNA replication and host lysis; M: cell lysis; N: mediating protein-protein interactions; 
O: hydrolase activity, zinc ion binding; P: virus release, transport of capsid proteins. 
 

Supplemental 

Table S1. Excel-file of all ESTs used in this study separated into three different 

sheets. The first sheet contains all ESTs of E. huxleyi with a BLAST hit 

and its description and involved process, including their array and cluster 

ID, their oligo sequence for the microarrays, their abundance, their e-value 

and length, KEGG and EC numbers, and the species of their closest 

BLAST hit and its swissprot ID. The second sheet contains all host ESTs 

with no significant hit in BLAST searches. The third sheet contains all 

ESTs of EhV86 identified in this study, including their cluster ID, e-value, 

length, and description. 

 

Table S2. Excel-file of all host gene transcripts which were differentially expressed 

after 6 or 12 hours viral infection. The array and cluster ID, the redundancy 

of the ESTs for each library, the description of the gene resulting from the 

EST analysis and its involvement in a process, and the fold-change at T6 

and T12 are included. 

 

Table S3. Excel-file of all consistently up-regulated genes at T6, T12 and T24 

including their array and cluster ID, gene description and process involved, 

and their fold-change. 
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Abstract 

 

Background 

Emiliania huxleyi is the most studied coccolithophore with respect to biogeochemical 

cycles, climatology, and host-virus interactions. Our aim was to investigate genomic 

diversity and plasticity of 16 E. huxleyi strains of different geographic origin and 

furthermore we emphasized to identify genes related to virus susceptibility and 

morphology, such as coccolith production and coverage. A microarray-based 

comparative genomic hybridization (CGH) was set up using 565 genes derived from 

an EST study of E. huxleyi strain CCMP1516 and 37880 genes from the ongoing 

genome project of the same strain. Gephyrocapsa oceanica and Isochrysis galbana 

were taken as out-groups. 

Results 

After normalisation and ANOVA test a total of 32395 genes had significant 

hybridization patterns. Comparisons with the sequenced E. huxleyi strain CCMP1516 

revealed that 27% (8740 genes) to 57% (18581 genes) of the genes showed a pattern 

of hybridization concordant with deletion, nucleotide divergence or gene duplication 

within the species and up to 83% (26881 genes) between the genera. The largest 

variation was observed among the species for E. huxleyi strain 92F. Regarding 

variation with respect to virus susceptibility and morphology the most abundant genes 

with known function were associated with metabolism, transport, and transcription 

and translation. In addition, we identified two membrane receptors and two proteins 

related to ubiquitin which show significant differences between virus susceptible and 

resistant strains. 

Conclusions 

The results we have obtained by using CGH demonstrate that this method is 

appropriate to compare genome plasticity and the gene content of different E. huxleyi 

strains. We have successfully applied this method to identify genes related to virus 

susceptibility and morphology. Among others, the membrane receptors and the 

ubiquitin-related proteins that possibly play a role in virus infection deserve further 

attention. 
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Background 

The prolific coccolithophore Emiliania huxleyi is distributed worldwide and has the 

ability to form immense coastal and open ocean blooms ranging from sub-polar to 

tropical latitudes [1,2] that can cover more than 50.000 km² [3-5]. These blooms can 

be detected via satellite imagery due to the reflection of the coccoliths [6,7]. This 

makes E. huxleyi an important factor influencing the global biogeochemical cycles of 

carbon and sulphur and one of the most important species on earth with respect to 

sediment formation and ocean climate [8,9]. Therefore, it is a key species for current 

studies on global biogeochemical cycles [10]. It is also of interest to scientists from 

fields as diverse as geology, biogeography, paleoclimatology, ecophysiology, 

material science, and medicine [11]. Whereas the bloom formation is stimulated from 

abiotic environmental factors, the bloom control and termination is highly influence 

by viral infection [12,13]. Consequential, a range of viruses specific to E. huxleyi 

(EhVs) have been isolated [14,15] and were further analyzed for their phylogeny 

[16,17], ecological succession in mesocosm experiment [18,19], and genome 

structure of Emiliania huxleyi virus 86 (EhV-86) [20-22]. Hence, it is one of the most 

studied eukaryotic phytoplankton host-virus systems to date [23]. 

Microarray-based comparative genomic hybridization (CGH) is well 

established in microbial and human (cancer) research, to determine DNA copy 

number variants in healthy subjects [24,25], genomic aberrations associated with 

various diseases and syndromes [26], and between the genomes of e.g. closely related 

taxa, such as species and strains [27-29]. CGH is used to compare the genes present, 

absent or divergent in the genomes of interest. Polymorphisms and insertions can be 

detected as a reduction or elevation of a hybridization signal [30]. Whole genome 

comparisons of different strains of various microbes indicate that polymorphism for 

gene content is not uncommon [27,31,32], suggesting genetic adaptations to different 

ecological niches. Previous studies have reported different genome sizes among 

different morphotypes of E. huxleyi from different geographical regions via DNA 

microsatellites and restriction fragment length polymorphism (RFLP) analysis 

[33,34]. Results indicate the presence of different ecotypes of E. huxleyi potentially 

with differences in genome organization in response to environmental conditions or 

to potential threats, such as viral infections. Furthermore, an example for a connection 

between genetic variation and virus susceptibility has been demonstrated [16]. It was 
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found that virus resistant strains of E. huxleyi display a higher 

dimethylsulfoniopropionate lyase (DMSP-lyase) activity than strains that are 

susceptible to virus infection. One reason for the different enzyme activities could be 

variations in the expression of the gene coding for the enzyme due to either a change 

in transcriptional regulation or a change of the copy number in the genomes. 

 

In this study, we constructed and used a whole genome microarray comprising unique 

probes for each gene of the sequenced strain E. huxleyi CCMP1516 (reference strain) 

to examine the genetic diversity among 16 different strains of E. huxleyi of different 

geographic origin. We aimed not only at assessing the genetic diversity of E. huxleyi 

but also at the elucidation of genes responsible for the differential virus susceptibility 

and morphology of the different E. huxleyi strains. 

 

Results 

In order to generate a comprehensive DNA-microarray of E. huxleyi, we designed 

37880 oligonucleotides by using the application tool eArray (Agilent technologies). 

The design was based on 39125 gene transcripts, mostly based on automated 

predicted gene models, of the whole genome of E. huxleyi strain CCMP1516. Due to 

technical reasons it was not possible to design oligonucleotides for all gene 

transcripts of the whole genome. In addition to the newly designed probes, the 

microarray contained 565 oligonucleotides based on sequence information previously 

generated in an expressed sequence tag (EST) study (Kegel et al. manuscript 

submitted). To investigate genetic diversity of E. huxleyi, genomic DNA from 15 

different strains were compared with genomic DNA of the sequenced E. huxleyi 

strain CCMP1516 by co-hybridization to the microarray. Gephyrocapsa oceanica and 

Isochrysis galbana as phylogenetic closely related taxa were used as out-groups. By 

comparing the log2-ratios (LR) of the hybridization signals from the different strains, 

it can be deduced whether a gene is present or absent in the genomes compared to the 

reference strain due to the variation in copy numbers of the genes. 

As a first step an ANOVA test was performed (see methods) to assure the 

quality of our analysis. It resulted in a total of 32395 significant mean signals with p-

values < 0.01. A threshold of the log2-ratio (LR = sample/reference) for no 

significant difference between sample and reference (E. huxleyi CCMP1516) was 
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determined by a self-versus-self hybridization of the reference. The density of the 

reference LR showed an approximate normal distribution (data not shown) around 0. 

The boundaries for the threshold for the identification of genetic divergence were 

taken by computing a 99% interval of the reference LR, resulting in a positive cut-off 

of 0.48696 and a negative cut-off of -0.8270 for the LR. The number of genes 

possessing a LR ranging from -0.8270 to 0.48696 in each E. huxleyi strain showed 

between 42.6% and 70.7% homology to the reference strain (Fig. 1). The majority of 

differences in genome structure (19.6-36.9%) among these strains were in the LR ≥ 

0.48696 category, indicating increased copy number. The LR ≤ -0.8270 indicating 

reduced copy numbers, deletion, or mismatches between probe and gene sequence 

were in a range between 10.3% and 20.5%. E. huxleyi strain 92F showed the highest 

degree of variability to the reference (57.4%), whereas E. huxleyi strain 12-1 and 

strain EH2 had the highest similarity to the reference strain (73.2% and 70.5%). G. 

oceanica showed 31.5% and I. galbana only 17.0% homology to the reference. 

 

A neighbor-joining consensus dendogram of the sixteen E. huxleyi strains and the two 

out-groups G. oceanica and I. galbana based on the CGH data is depicted in the 

dendogram with bootstrap values in Figure 2. As expected, the two out-groups 

clustered perfectly outside of all E. huxleyi strains with 100% bootstrap support. The 

E. huxleyi strains grouped into two main clusters. The strains Van556, 92D, 92F and 

373 showed the highest degree of divergence to all other E. huxleyi strains and 

clustered into one of the main groups. The second main cluster can be subdivided into 

two sub-groups. The strains EH2 and 12-1 were most similar to the reference strain 

and clustered into one of the two sub-groups. It is interesting to note that EH2 

clustered directly with the reference whereas 12-1, which showed a higher similarity 

to the reference, clustered with the group of EH2 and the reference. The second sub-

group consists of two well supported sub-clusters. The bootstrap values within the 

main clusters of the 16 E. huxleyi strains were higher (92-100%) than the support for 

the clustering into the two main clusters (49%). 

 

To identify genes involved in virus susceptibility and morphology a non-parametric 

Wilcoxon exact rank-sum test was applied. Prior to analysis, all mean signals that 

failed to produce a positive result above the threshold of the reference (LR > 0.48696) 
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in at least one of the 16 different E. huxleyi strains (excluding G. oceanica and I. 

galbana) were removed from the data set. This resulted in 21371 signal 

combinations. Significance was defined as p-value < 0.01. The resulting genes were 

manually analysed by BLAST searches against the NCBI non-redundant protein 

database (http://blast.ncbi.nlm.nih.gov/Blast.cgi, NCBI-nr) and the SwissProt 

database (http://www.expasy.org/sprot/) and were compared with Pfam [35]. 

 

The analysis of the genes concerning virus susceptibility or resistance yielded in 141 

candidate gene transcripts (Fig. 3). Almost half of these gene transcripts (69) showed 

no significant similarity to any sequences in the public database or were of unknown 

function (Tab. S1). We found proteins involved in metabolism (25), transport (13), 

carbohydrate and lipid metabolism (6) (especially glycolysis, 3x), transcription and 

translation (11), protein interaction (2), cellular processes/cytoskeleton proteins (3), 

replication and repair (3), signal transduction (4), and chaperone and folding catalysts 

(1). Furthermore, we identified two ubiquitin-related proteins involved in folding, 

sorting and degradation and two membrane receptor proteins; one scavenger receptor 

protein and one receptor L domain-containing protein. 

 

The identification of genes responsible for morphology resulted in 125 candidate 

gene transcripts (Fig. 4). A total of 72 out of the 125 gene transcripts showed no 

significant similarity to any sequences in the public database or were of unknown 

function. We could identify genes involved in metabolism (15), transcription and 

translation (7), transport (6), carbohydrate and lipid metabolism (6), amino acid 

metabolism (4), signal transduction (4), photosynthesis (3), proteolysis (2), 

replication and repair (2), cellular processes (1), folding, sorting and degradation (1), 

protein interaction (1), and RNA processing and modification (1). A 

glycosyltransferase could be identified within the group of metabolism. In addition, 

an elongation of very long chain fatty acids like-protein was identified within the 

group of lipid metabolism and a CASP-like protein involved in transport. 
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Discussion  

The transcriptome of 16 E. huxleyi strains of different geographic origin were 

compared in order to identify genomic differences in terms of plasticity and possible 

relation to virus-susceptibility and morphology. Comparative genomic hybridization 

was used to characterize the 15 strains with respect to gene content similarities with 

the sequenced reference strain E. huxleyi CCMP1516. Hybridization intensities were 

compared to determine the relative copy number of each gene transcript. 

 

The results of the DNA microarray-based CGH method revealed phylogenetic 

relationships between E. huxleyi strains and the two out-groups G. oceanica and I. 

galbana based on cluster analysis of the log2-ratios. The analysis of the hybridization 

patterns showed the genetic distance between strains and ranged from 27% (8740 

genes) to 57% (18581 genes). These genes were concordant with deletion, nucleotide 

divergence or gene duplication. When comparisons were made with the reference and 

the two out-groups, the genetic distance increased up to 83% (26881 genes). 

The genetic distances between strains of E. huxleyi are in accordance with 

previous reports that demonstrated different genome sizes among different 

morphotypes of E. huxleyi from different geographical regions based on DNA 

microsatellites and restriction fragment length polymorphism (RFLP) analysis 

[33,34]. 

CGH has been extensively utilized to elucidate genetic diversity mainly in 

bacterial systems like Helicobacter pylori, Campylobacter jejuni, Entamoeba 

histolytica, Francisella tularensis, Mycobacterium tuberculosis, [32,36-39] but also 

in the eukaryotic systems of yeast [27]. Microarray analysis had indicated a limited 

genetic variation within the species and strains. Strain comparisons showed 

differential hybridization between 0.17 and 16.7% of the gene transcripts. The genetic 

diversity increased at most up to 90% within the subspecies. In contrast, our results 

revealed between 27% and 57% genetic variation within the species and up to 69% to 

the older genus G. oceanica. As E. huxleyi has evolved from G. oceanica only 

268.000 years ago [40] and became dominant around 70.000 years ago, this high 

genetic diversity could indicate that E. huxleyi is still in its evolutionary radiation. 

The highest variability amongst the strains was observed in the case of strain 

92F (57.4%). This strain is virus susceptible and possesses the ability to produce 
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coccoliths, both suggesting a higher similarity to the reference strain (CCMP1516). 

An explanation for the high genomic deviation from the reference could be their 

geographic origin. The reference strain was isolated near the coast of Ecuador 

whereas 92F was obtained from the English Channel (Tab. 2). Another strain 

collected in the English Channel, 92E, showed 70.3% similarity to the reference 

strain. Both English Channel strains possess coccoliths but show different virus 

susceptibility. Our genomic comparisons support earlier findings of blooms being 

dominated by a succession of different populations [41]. During a bloom the 

community composition of E. huxleyi is affected by viruses in the role of a population 

controlling factor. One specific population is decimated by viruses making blooms of 

succeeding populations possible [41]. Affected populations induce a life-cycle 

transition to a haploid (1n) stage to escape viral infection as the haploid phase has 

been demonstrated to be resistant to viral infection [42]. At the time of isolation in 

1992 during a bloom in the English Channel, the strain 92F was in a haploid stage 

while strain 92E was in a diploid (2n) stage. This suggests that 92F was escaping 

viral infection, as it was shown that virus attack could be one reason to induce life-

cycle changes from 2n to 1n [42]. Consequently in this scenario 92E (2n) was 

blooming due to resistance to specific viruses. One reason of the genetic distance 

between these two strains could be still differences in the morphotypes and genome 

size. 

Differences in the ecological strategies of E. huxleyi strains (e.g. bloom 

dynamics) could also cause these genetic differences [43]. Genome size differences 

can have different reasons and hence several hypothesis have been formulated 

[44,45]. Species with smaller genomes are streamlined to survive in stable 

environments. On the other hand, larger genomes provide organisms with a broader 

range of metabolic capabilities allowing them to take advantage of more complex and 

variable environments. However, more strains/ecotypes of this rather young species 

[46] should be analyzed before drawing definite conclusions on their genetic 

variation. 

 

The Wilcoxon rank-sum test was used to elucidate whether a lack of certain genes, 

copy number changes or sequence divergence between reference and tester strain may 

explain the different biological properties of virus susceptibility or morphology. 
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We identified two receptor proteins; one scavenger receptor protein and one receptor 

L domain-containing protein which showed a decreased log2-ratio in the virus 

susceptible group than in the resistant group. The first step of virus infection involves 

attachment of virus particles to host-specific cell surface receptors [47,48]. This 

prepares the way for the viruses to enter the host cell. Once inside the host cell, 

viruses utilize the host machinery in order to enhance the efficiency of its replication 

process. Consequently, the expression of the receptor on the outer surface of the host 

is a major determinant of the route of entry of the virus into the host and of the 

patterns of virus spread and pathogenesis in the host [47]. Viruses have evolved to 

exploit these receptors to gain entry into cells. As each virus is looking for a specific 

receptor that fits its attachment protein, the host receptor will, in part, determine the 

susceptibility of different hosts to the same virus. Previous studies have demonstrated 

that the lack of receptor expression restrict virus entry [49-51]. The identified 

scavenger receptor is a transmembrane glycoprotein and reminiscent of members of 

the immunoglobulin (Ig) superfamily [52]. Members of this family are known to be 

involved in entry of more than one virus into cells ([48] and references herein). The L 

domain of the second identified membrane receptor is also found in insulin receptor 

(IR) which is closely related to members of the tyrosine-kinase receptor superfamily. 

Members of this family play a role in different cellular processes, including division, 

proliferation, apoptosis, and differentiation [53]. Moreover, it has been shown that 

protein kinases are activated by viral infection [54], suggesting that the L domain-

containing membrane receptor could be involved in virus susceptibility or infection. 

Different virus susceptibility could be due to differences in copy numbers or 

modifications of these two receptors. Therefore, the identified receptors are suitable 

targets for further investigations regarding virus susceptibility. Quantitative PCR 

(qPCR) can be used to determine the absence, presence and the real copy number of 

the target genes in each genome. Furthermore, sequence analysis of these receptors 

will be conducted among the studied strains and the two out-groups in order if 

sequence variation (deletion, insertion and base substitutions) can be determined and 

linked to virus susceptibility. 

 

The occurrence of an ubiquitin and an ubiquitin-conjugation enzyme E1 might 

indicate its involvement in virus infection. Previous results of an EST study combined 
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with gene expression analysis by using microarrays had indicated the down-

regulation of three ESTs related to the ubiquitin protein family and the up-regulation 

of two of them during viral infection (Kegel et al. manuscript submitted). Ubiquitin 

and its relatives regulate processes in eukaryotic cells by covalent attachment to other 

cellular proteins, thereby changing the stability, localization, or activity of the target 

protein [55]. The most prominent function of ubiquitin is the mediated proteolysis of 

labelled target proteins. Moreover, ubiquitin modifications are also involved in virus 

budding [56] indicating the importance of ubiquitin and its relatives for virus 

susceptibility or infection. 

It would be of great importance to show that there are significant differences 

in the degree of variation in the genes associated with ubiquitin. However, more 

strains should be analyzed and other quantitative methods like qPCR should be 

applied before drawing definite conclusions on its involvement in virus infection. 

 

The identification of genes related to morphology, i.e. the formation of coccoliths, 

revealed potential genes for further applications. We identified a protein for 

elongation of very long chain fatty acids which is in accordance with the discovery of 

a similar gene in a previous study associated with biomineralization [57]. As 

coccolith precursors are synthesized in the Golgi-derived structures [58,59], the 

identified CASP-like protein would be of interest due to its possible role in intra-

Golgi transport. In addition, it has been shown that in the species Pleurochrysis, the 

coccolith formation is mediated by acidic polysaccharides [58,60]. These 

polysaccharides show a significant level of homology to glycosyltransferases. 

Therefore, our discovery of a glycosyltransferase in E. huxleyi could be possibly 

linked to coccolith formation. Several hypotheses about coccolith formation exist (for 

overview see [61]). Furthermore, novel genes possibly involved in calcification and 

coccolithogenesis were identified by EST approaches, microarrays for gene 

expression analysis, and suppressive subtractive hybridization [11,57,62]. 

Nevertheless, the process of coccolithogenesis and the exact genes involved in remain 

to be elucidated. 
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Conclusions 

We successfully applied microarray-based CGH to compare the genomic content of 

different Emiliania huxleyi strains regarding virus susceptibility and morphology. 

Among others, the membrane receptors and the ubiquitin-related proteins that 

possibly play a role in virus infection deserve further attention. Future work will 

include the use of microarrays transcript profiling experiments and knock-out mutants 

to focus on the expression of the identified key genes. This will extend our 

understanding of virus susceptibility and viral infection of E. huxleyi. 

 

Methods 

Strains and culture conditions 

Emiliania huxleyi strains (Tab. 1) and Gephyrocapsa oceanica were cultured in f/2 

medium and Isochrysis galbana in K media at 15°C with a 16:8 light-dark cycle and 

150 µE . m-2 . s-1. EH2 and NZEH were treated with 1000 µg/mL Kanamycin because 

they were too sensitive against the antibiotic mixture. All other cultures were treated 

with a mixture of Ampicillin, Gentamycin, Streptomycin, Chloramphenicol and 

Ciprofloxacin (Tab. 2). Antibiotic treatment took place over 10-12 days. After 5-6 

days cultures grown in 200 mL treated with antibiotics were transferred to 800 mL 

antibiotic treated f/2 media. Five to six days later cells were harvested on 1.2 µm 

RTTP ISOPORE filters Millipore. Cultures were checked against bacteria with 

acridine-orange staining. Only samples with no observed bacteria were used for 

analysis, although we cannot reduce a highly reduced bacterial background. 

 

Genomic DNA labelling 

All steps were performed in technical triplicates in order to avoid methodological 

errors in the hybridisation patterns interpretation. Genomic DNA was isolated from 

the samples using Qiagen DNeasy Plant Mini Kit (Qiagen, Hilden, D) and were then 

subjected to amplification according to Agilent’s protocol for oligonucleotide array-

based CGH for genomic DNA (version 5.0, June 2007). Restriction digestion was 

performed with 200 ng of genomic DNA for 8 h at 37°C. Digested DNA from each 

test strain and species was labelled with Cy5-dUTP whereas E. huxleyi strain 

CCMP1516 was labelled with Cy3 as reference. Labelled DNA sample yields and 

dye incorporation efficiencies were assessed photometrical (Nanodrop ND-1000, 
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PecLab). Specific activity (pmol dyes per µg genomic DNA) were calculated as 

[pmol per µL dye/µg per µL genomic DNA] from the results of photometry. 

 

Microarray hybridizations 

Labelled samples were then co-hybridized with the reference E. huxleyi strain 

CCMP1516 in triplicates to Agilent oligonucleotide-based 44k custom-made 

microarrays. One Array contained 37880 different transcripts derived from the E. 

huxleyi CCMP1516 genome project conducted by the U.S. department of Energy Joint 

Genome Institute (http://www.jgi.doe.gov/) using the best gene model for each locus and 

565 transcripts from our EST study (Kegel et al. manuscript submitted). Microarrays 

were designed with Agilent’s eArray online application tool version 5.0. 

A self-versus-self hybridization was performed in triplicates for determining 

probe specificity, array reproducibility, and microarray feature uniformity. 

Hybridizations were done for 24 h with 20 rpm using a hybridization chamber 

(Agilent technologies). After hybridization, the microarrays were washed according 

to the manufacturer’s instructions (Wash with Stabilization and Drying Solution, 

Agilent Technologies). 

 

Data acquisition and analysis 

Microarrays were scanned using a G25005B Agilent microarray scanner with 100% 

photomultiplier tube (PMT) settings for both channels and 5 µm scan resolution. 

Signal intensities were detected and normalized by Feature Extraction software 

version 9.5 (Agilent Technologies) using the GE protocol and matrix. Spots which 

were not well above background in the self-self hybridization were removed before 

further analysis. Results were first analyzed using the MeV software package from 

TIGR [63]. An ANOVA test was performed for all groups with a p-value < 0.01 and 

a standard Bonferroni correction. The average intensity from the significant genes of 

the triplicates was used for further analysis. Neighbor-joining trees of microarray data 

using Euclidean distance metrics (n = 1.000 bootstrap iterations) was performed in R 

with the ape-package (http://www.r-project.org, http://ape-mol.ird.fr/). 

The exact Wilcoxon rank-sum test from the R-package exactRankTests [64] 

was used to compare log2-ratios (LR) between groups of samples to identify genes 

regarding virus susceptibility and morphology. The reference strain (CCMP1516) and 
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the two out-groups G. oceanica and I. galbana were excluded in this analysis. Strains 

were grouped according to their virus susceptibility (Tab. 1) and morphology (Tab. 

3), i.e. formation of coccoliths. Significance was assumed for as p-value < 0.01. For 

visualization, LR of significant gene transcripts were used in a heatmap clustering 

[65] which reorders rows (signals) and columns (strains) according to dissimilarity by 

a Manhattan metric and a hierarchical clustering by Ward’s method [66]. The 

resulting heatmaps were drawn with a colour-scale from red (minimum) to white 

(maximum). 

Original data files for all arrays were uploaded in MIAME format for 

expression arrays at GEO (http://www.ncbi.nlm.nih.gov/geo/; accession numbers 

XXXX-XXX). 
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Figure legends 

 

Figure 1  - Similarity plot of the 15 tested E. huxleyi strains and the two out-

groups G. oceanica and I. galbana compared to the reference (E. huxleyi 

CCMP1516). 

E. huxleyi strains and out-groups plotted in a 2D-map of amounts of log2-ratios above 

0.48696 (x-axis) and below -0.8270 (y-axis), respectively. The number of the log2-

ratios above the threshold of 0.48696 indicates increased copy number. The number 

of the log2-ratios below the threshold of -0.8270 indicates reduced copy number, 

deletion, or low homology to the reference strain (E. huxleyi CCMP1516). The closer 

a strain or species is to the origin of the graph the higher the similarity to the 

reference strain. 

 

Figure 2  - Dendogram of all 16 E. huxleyi strains and the two out-groups G. 

oceanica and I. galbana based on the CGH data for all genes derived from the 

ANOVA analysis. 

The dendogram was produced by taking Euclidean distances of the CGH data (log2 

ratios) in a neighbor-joining tree (n = 1.000 bootstrap iterations) in R with the ape-

package. 

 

Figure 3  - Heat map of the Wilcoxon test analysis concerning virus susceptibility 

of the 15 E. huxleyi strains. 

Strains were grouped according to their virus susceptibility (Tab. 1). Significance was 

determined as p-value < 0.01. From the resulting log2-ratios of these significant 

signals a heat map was generated by hierarchical clustering. The heat map identifies 

overall high (white) and low (red) signal intensities. Virus-susceptible strains are 

indicated as green leafs in the hierarchical clustering above the heat map. The 

reference strain E. huxleyi CCMP1516 was excluded in the analysis but drawn in the 

heat map to visualize the variation in log2-self-self-ratios. 
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Figure 4  - Heat map of the Wilcoxon test analysis concerning the 

morphology/morphotypes of the 15 E. huxleyi strains. 

Strains were grouped according to their morphology (Tab. 3). From the resulting 

log2-ratios of these significant signals a heat map was generated by hierarchical 

clustering. The heat map identifies overall high (white) and low (red) signal 

intensities. Strains which possess coccoliths are indicated as green leafs in the 

hierarchical clustering above the heat map. The reference strain E. huxleyi 

CCMP1516 was excluded in the analysis but drawn in the heat map as described in 

figure 3. 

 

 

 

 

 

Tables 

Table 1  - Virus susceptibility and resistance of E. huxleyi strains derived from 

Allen et al. [20] 

 Emiliania huxleyi virus (EhV) strain 
Emiliania huxleyi host strain 86 84 88 163 201 205 202 208 207 

92 (English Channel) - - - - - - - - - 
92A (English Channel) - - - - - - - - - 
92D (English Channel) - - - - - - - - - 
92E (English Channel) - - - - - - - - - 
92F (English Channel) + + + + + + + + + 
CCMP379 (Unknown) - - - - - - - - - 
CCMP374 (Gulf of Maine) + + + + + + + + + 
CCMP373 (Sargasso Sea) - - - - - - - - - 
12-1 (Sargasso Sea) - - + + + + + + + 
CCMP1516 (South Pacific) + + + - + + + + + 
Van 556 (North Pacific) - - - - - - - - - 
CH 24/90 (North Atlantic) - - - - - - - + - 
CH 25/90 (North Atlantic) - - - - - - - - - 
L (Oslo Fjord) + + + + + - + + + 
NZEH (South Pacific) - - - - - - - - - 
EH2 (South Pacific) + + + - + + + + + 
+, culture lysis; -, no evidence of lysis after 14 days of viral infection cultures were not lysed and 
considered to be non-susceptible to the virus strain [20]. 
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Table 2  - Antibiotic treatment mixture 

Antibiotic Concentration in culture [mg/mL] 

Ampicillin 0.05 

Gentamycin 0.003 

Streptomycin 0.025 

Chloramphenicl 0.001 

Ciprofloxacin 0.010 

 

 

Table 3  - Isolation sites and morphology of the 16 E. huxleyi strains 

Emiliania huxleyi strain coccoliths Collection site 

92 (English Channel) N 49°19N 07°26W 

92A (English Channel) 

N 50.1669N 4.2504W 1mile west of the 

Eddystone 

92D (English Channel) Y 50°02N 4°22W 

92E (English Channel) Y 49°52N 06°12W 2m depth 

92F (English Channel) Y 49°52N 06°12W 2m depth 

CCMP379 (= 92A) 

N 50.1669N 4.2504W 1mile west of the 

Eddystone 

CCMP374 (Gulf of Maine) N  42.5000N 69.0000W Gulf of Maine (5 meters) 

CCMP373 (Sargasso Sea) N 32.1667N 64.5000W 

12-1 (Sargasso Sea) Y 32.0000N 62.0000W (50 meter depth) 

CCMP1516 (South Pacific) Y 02.6667S 82.7167W (surface) 

Van 556 (North Pacific) N 49°05N 144°40W 

CH 24/90 (North Atlantic) Y 57°20N 01°09E 

CH 25/90 (North Atlantic) Y 57°26N 6°13E 

L (Oslo Fjord) N 60°N 11°E 

NZEH (South Pacific) Y Big Glory Bay, NZ 

EH2 (South Pacific) Y Great Barrier ‚Reef 

Y, strain possesses coccoliths; N, strain has no coccoliths. 
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Supplementals 

Table S1 – Identified genes of E. huxleyi by a Wilcoxon-Test in respect to virus 

susceptibility and virus resistance. 

Excel-file including array, gene and protein- ID, html-link to the genome website of 

the reference strain E. huxleyi CCMP1516, description and function of the identified 

genes and the log2-ratios means of the 16 E. huxleyi strains. 

 

Table S2 – Identified genes of E. huxleyi by a Wilcoxon-Test in respect the 

existence of coccoliths. 

Excel-file including array, gene and protein- ID, html-link to the genome website of 

the reference strain E. huxleyi CCMP1516, description and function of the identified 

genes and the log2-ratios means of the 16 E. huxleyi strains. 
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Figure 2 
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Figure 3 
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Figure 4 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

3 GENERAL DISCUSSION 
 

 

The publications presented in this thesis focused on the identification of genes 

involved in the virus infection of Emiliania huxleyi by taking advantage of EST 

libraries and DNA microarrays. Furthermore, genomic differences of several E. 

huxleyi strains from different geographic origin were determined by comparative 

genomic hybridizations concerning virus susceptibility and morphology. Experiments 

yielded in a diverse range of new information on E. huxleyi. Perspectives for future 

research that arise from this thesis are given at the end. 

 

 

3.1 Effects of viral infection on Emiliania huxleyi 

 

Emiliania huxleyi is of great importance for nutrient and biogeochemical 

cycles of sulphur and carbon in the marine environment due to its ability to form 

immense blooms. Lytic viral infection of this alga leads to termination of blooms and 

therefore influences the global climate. For this reason it was of particular interest to 

get more knowledge about this complex alga and especially into the host-virus 

interaction. 

Publication I provides the first cDNA libraries of a host-virus interaction in 

the marine microalgae community, a first view into the gene expression throughout a 

virus infection of E. huxleyi by taking advantage of ESTs and the basis for 

publication II . The results of publication I  and II  identified many genes involved in 
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the host’s response to viral infection. The differential expression of certain genes 

during viral infection suggests their involvement in the interaction between the host 

and the virus. This makes them suitable targets for further investigation. Publication 

I  and II  investigated EST libraries from E. huxleyi during viral infection. Three 

cDNA libraries generated 6, 12 and 24 hours post infection with EhV-86 (in this 

thesis referred to as T6, T12 and T24) were compared to a library from an uninfected 

culture (T0) by sequencing, clustering and manual annotation. Since the genome 

sequences for both, the virus and the host were available, it was possible to determine 

the precise number of ESTs from both in all four libraries, respectively. Results of 

publication I  and II  provide insights into the infection mechanisms of the virus EhV-

86 in E. huxleyi. Furthermore, changes in gene expression levels, assessed through 

two-colour oligonucleotide microarrays, were compared with the gene frequency in 

the EST libraries (publication II ). The use of ESTs coupled with microarray analysis 

has shown that it is a powerful tool to study gene expression of an organism under 

different conditions. 

The results of publication I show that by the sequencing of only around 90 

ESTs per library a trend was already recognizable. The genes of E. huxleyi involved 

in photosynthesis were down-regulated for the benefit of an increased transcription 

and translation. Less than 5% ESTs were of viral origin at 6 (T6) and 12 (T12) hours 

post viral infection. In addition, at 24 hours (T24) post infection only 10% of the 

mRNA was of host origin. Publication II  confirmed the tendencies of publication I  

and discovered more genes involved in the host’s response to viral infection. The 

results demonstrated the power of EST libraries and DNA microarrays to obtain data 

on gene expression and regulation during viral infection. 

The most prominent effect of the viral infection on the host transcriptome is 

the change in the expression of genes involved in photosynthesis, transcription and 

translation, glycolysis, fatty acid metabolism, and protein degradation (Fig. 1). For 

viral replication the biosynthetic machinery of the host cell must be modified for the 

benefit of viral proteins. The virus drastically changes host transcription already after 

6 hours, when only 38 (3.9%) viral ESTs are present (publication II ). Hence, the up-

regulation of genes related to protein and ATP synthesis in the mitochondria, genes 

involved in glycolysis and fatty acid synthesis, and genes involved in RNA-synthesis 

and translation of the host could be an indication for a boost in the expression of viral 
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proteins which require large amounts of energy. Another indication for enhanced viral 

protein expression is the down-regulation of host genes involved in photosynthesis, 

protein degradation, signalling, pigment synthesis, RNA processing, the citric acid 

cycle, and protein import to the mitochondria. In general, both organelles of E. 

huxleyi seem to be down- regulated for the benefit of an increased transcription and 

translation used for viral replication. 

 

 
Figure 1. Differential expression of genes involved in carbohydrate and lipid metabolism 
(including glycolysis and fatty acid metabolism), photosynthesis, transcription and 
translation, and folding, sorting and degradation during viral infection. Positive values of 
barplots indicates the number of significantly up-regulated genes, whereas negative values 
shows the down-regulated genes at 6 (black bars), 12 (grey bars) and 24 hours (white bars) 
post infection in comparison to a healthy culture. 

 

 

 

The break-down of photosynthesis is of particular importance to 

photosynthetic organisms. During viral infection of E. huxleyi, EST and microarray 

results revealed significant reduction of genes involved in photosynthesis. Prior 

infection 17.2% of ESTs were related to genes involved in photosynthesis. After 6, 12 

and 24 hours viral infection the percentage of photosynthesis-related ESTs decreased 

to 2.5, 3.3, and 0.5%, respectively. The observation of a reduction of photosynthesis 
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during viral infection has been previously reported for E. huxleyi cultures by 

measuring photochemical capacity (FV/FM), carotenoids and chlorophyll composition, 

and intracellular reactive oxygen species (ROS) production (Evans et al., 2006, 

Llewellyn et al., 2007). 

ESTs of E. huxleyi related to transcription and translation increased from 3.4% 

at T0 to 25.0% at T6 and 12.4% at T12 suggesting a favoured synthesis of viral 

proteins. The changes of host transcription already after six hours viral infection, 

when only 38 (3.9%) viral ESTs are present, could be indicated by the occurrence of 

a putative viral DNA-dependent RNA polymerase II subunit (EHV064). RNA 

polymerase II is essential for transcription of viral genes. In addition, at T6 a putative 

viral protease (EHV349) was identified which might be responsible for the 

degradation of host proteins. The down-regulation of host genes involved in protein 

degradation at T6 and T12 such as ubiquitin indicate the takeover of the host 

machinery. A viral HNH endonuclease family protein (EHV093) was found at T12 

which could lead to the degradation of host DNA. Furthermore, a putative viral 

proliferating cell nuclear antigen (EHV440) was identified and which could help in 

DNA binding during transcription of viral genes. The occurrence of a putative viral 

fatty acid desaturase (EHV061) could be involved in membrane lysis, i.e. the lysis of 

host cells. 

A previous study has shown that host cells release virus particles between 4 

and 48 h after infection while remaining intact (Allen & Wilson, 2006). Furthermore, 

it has been demonstrated that coexistence of host and virus is possible and that both 

can replicate during infection (Thyrhaug et al., 2003). Supporting these findings, 

microarray results showed an up-regulation of several genes involved in 

photosynthesis during viral infection, which indicates, that at least some cells were 

intact and perform photosynthesis. In addition, the low abundance of viral ESTs at 

T12 (2.3%) indicates that perhaps many host cells remained intact and only a few 

infections took place. However, the change to 89.2% viral ESTs at T24 suggests that 

between 12 and 24 hours post infection the virus took over the transcriptional 

machinery of the entire E. huxleyi population. 

At T24, a putative viral major capsid protein (EHV085) whose function is 

well known and defined in viral systems (Allen et al., 2008), and a putative viral 

DNA ligase (EHV158) which could be used for DNA replication were identified. 
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These two genes could be involved in the packaging and the following release of new 

viruses. One copy of a Longevity-assurance (LAG1) family protein (EHV014) was 

identified which is involved in the ceramide synthesis. Ceramide can act in regulating 

apoptosis suggesting that LAG1 could be involved in the lysis of host cells. Another 

indication for the releasing of new viruses could be the up-regulation of host genes 

involved in the exchange with vacuoles such as Vacuolar ATP synthase catalytic 

subunit A and V-ATPase subunit d at T6 and T12. These suggestions are in 

accordance with previous studies (Wilson et al., 2005, Allen et al., 2006a, Allen & 

Wilson, 2006). It was shown that at 4 h post infection viruses just started being 

released. However, at 33 h post infection the host cell is still in a steady stage of virus 

releasing and re-infection until the host finally lyses after around 48 h. 

 

• the virus drastically changed the host transcriptome already six hours post 

infection 

• host genes involved in photosynthesis were down-regulated during viral 

infection 

• host genes involved in energy production like glycolysis and fatty acid 

synthesis were up-regulated during viral infection 

• after 24 hours post infection only 10% of the mRNA was of host origin 

• between 12 and 24 hours post infection the virus took over the transcriptional 

machinery of the entire E. huxleyi population 

 

 

 

3.2 Biodiversity in several strains of E. huxleyi 

 

The influence of viruses is well recognized on marine geochemical cycles by 

regulation of host populations. As stated above Emiliania huxleyi plays an important 

role in global biogeochemical cycles and its blooms are often terminated by viruses. 

But the algae survives the termination by escaping the virus through life-cycle 

transition (Frada et al., 2008). In addition, previous studies have reported different 

genome sizes among different morphotypes of E. huxleyi from different geographical 
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regions via DNA microsatellites and restriction fragment length polymorphism 

(RFLP) analysis (Medlin et al., 1996, Iglesias-Rodriguez et al., 2002). The same 

studies revealed the presence of different ecotypes of E. huxleyi potentially with 

differences in genome organization in response to environmental conditions or to 

potential threats, such as viral infections. Furthermore, an example for a connection 

between genetic variation and virus susceptibility has been demonstrated (Schroeder 

et al., 2002). It has been shown that virus resistant strains of E. huxleyi display a 

higher DMSP-lyase activity than strains that are susceptible to virus infection. One 

reason for the different enzyme activities could be variations in the expression of the 

gene coding for the enzyme due to either a change in transcriptional regulation or a 

change of the copy number in the genomes. So far, research was focused on 18S 

rRNA, microsatellites and a limited number of functional genes. To assess role of 

ecological diversification, virus susceptibility, and morphology (e.g. formation of 

coccoliths) in determining intra-species genetic differences, whole genome analysis is 

required. 

Publication III  describes the first attempt to apply microarray-based 

comparative genomic hybridization (CGH) on E. huxleyi strains. The goal of 

publication III  was the detection of genetic diversity and of genes possibly related to 

virus susceptibility and morphology of E. huxleyi strains from different geographic 

origin. Genomic DNA of 15 different E. huxleyi strains was compared by co-

hybridization with the sequenced strain CCMP1516. The two species Gephyrocapsa 

oceanica and Isochrysis galbana were taken as out-groups. The relative copy number 

of each gene transcript was determined by the signal intensity of the two samples 

described by the log2-ratio (LR = sample/reference). The results of publication III  

revealed the genetic distance between E. huxleyi strains and the two out-groups G. 

oceanica and I. galbana based on cluster analysis of the log2-ratios (LRs). A self-

versus-self hybridization was used to determine the threshold for the identification of 

genetic divergence. Divergent genes concordant with reduced copy numbers, deletion 

or nucleotide divergence were below the threshold of LR < -0.8270. Gene 

duplications were indicated by LRs above 0.48696. The genetic distances between 

strains of E. huxleyi are in accordance with previous reports that demonstrated 

different genome sizes among different morphotypes of E. huxleyi from different 
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geographical regions based on DNA microsatellites and restriction fragment length 

polymorphism (RFLP) analysis (Medlin et al., 1996, Iglesias-Rodriguez et al., 2002). 

CGH has been extensively utilized to elucidate genetic diversity mainly in 

bacterial systems like Helicobacter pylori, Campylobacter jejuni, Entamoeba 

histolytica, Francisella tularensis, Mycobacterium tuberculosis, (Salama et al., 2000, 

Kato-Maeda et al., 2001, Broekhuijsen et al., 2003, Pearson et al., 2003, MacFarlane 

et al., 2005) but also in the eukaryotic systems of yeast (Watanabe et al., 2004). 

Microarray analysis had indicated a limited genetic variation within the species and 

strains. Strain comparisons showed differential hybridization between 0.17 and 

16.7% of the gene transcripts. The genetic diversity increased at most up to 90% 

within the subspecies. In contrast, the results of publication III  revealed huge genetic 

variation between 27% and 57% within the species and up to 69% to the older genus 

G. oceanica (Fig. 2). As E. huxleyi has evolved from G. oceanica only 268.000 years 

ago (Thierstein et al., 1977) and became dominant around 70.000 years ago, this high 

genetic diversity could indicate that E. huxleyi is still in its evolutionary radiation. 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
Figure 2. Genetic diversity in per cent of the 15 different E. huxleyi strains and the two out-
groups G. oceanica and I. galbana in comparison to the reference strain E. huxleyi 
CCMP1516. The number of the log2-ratios above the threshold of 0.48696 indicates 
increased copy number. The number of the log2-ratios below the threshold of -0.8270 
indicates reduced copy number, deletion, or low homology to the reference strain. Log2-
ratios between the two thresholds indicate no significant difference between sample and 
reference. 
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The highest genetic variation amongst the strains in comparison to the 

reference was observed in the case of strain 92F (57.4%). This strain is virus 

susceptible and possesses the ability to produce coccoliths, both suggesting a higher 

similarity to the reference strain (CCMP1516). The geographic origin of the strains 

could be an explanation for the high genomic deviation from the reference. The 

reference strain was isolated near the coast of Ecuador whereas 92F was obtained 

from the English Channel. Another strain collected in the English Channel, 92E, 

showed 70.3% similarity to the reference strain. Both English Channel strains possess 

coccoliths but show different virus susceptibility. As the reference strain is virus 

susceptible, the genetic differences between these two strains could not be caused by 

virus susceptibility. The genomic comparisons support earlier findings of blooms 

being dominated by a succession of different populations (Bratbak et al., 1995). 

During a bloom the community composition of E. huxleyi is affected by viruses in the 

role of a population controlling factor. One specific population is decimated by 

viruses making blooms of succeeding populations possible (Bratbak et al., 1995). 

Affected populations induce life-cycle transition to a haploid (1n) stage to escape 

viral infection as the haploid phase has been demonstrated to be resistant to viral 

infection (Frada et al., 2008). At the time of isolation 1992 during a bloom in the 

English Channel, the strain 92F was in a haploid stage while strain 92E was in a 

diplod (2n) stage. This suggests that 92F was escaping viral infection whereas 92E 

was blooming due to resistance to specific viruses. Reasons for the genetic distance 

between these two strains could be still differences in the morphotypes, genome size 

or ecological strategies (Thyrhaug et al., 2002). 

So far, the strain 92E is regarded as virus resistant against 9 different EhVs. 

As viruses are the most abundant biological entities in the ocean (Fuhrman, 1999, 

Suttle, 2000, Wommack & Colwell, 2000) it is likely that viruses specific for this 

strain exist but have not been isolated yet. 

However, more strains of this rather young species (Saez et al., 2003) should 

be analyzed before drawing definite conclusions on their genetic variation. 
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3.2.1 Virus Susceptibility of Emiliania huxleyi 

 

To elucidate whether a lack of certain genes, copy number changes or 

sequence divergence between reference and tester strain may explain the different 

biological properties of virus susceptibility a Wilcoxon rank-sum test was applied 

(publication III ). The test compared the log2-ratios (LR) between groups of samples 

to identify genes regarding virus susceptibility. The reference strain (CCMP1516) and 

the two out-groups G. oceanica and I. galbana were excluded in this analysis. Strains 

were grouped according to their virus susceptibility. Prior to analysis, all mean 

signals that failed to produce a positive result above the threshold of the reference 

(LR > 0.48696) in at least one of the 16 different E. huxleyi strains (excluding G. 

oceanica and I. galbana) were removed from the data set. This resulted in 21371 

signal combinations. Significance was defined as p-value < 0.01. The resulting genes 

were manually analysed by BLAST searches against the NCBI non-redundant protein 

database (http://blast.ncbi.nlm.nih.gov/Blast.cgi, NCBI-nr) and the SwissProt 

database (http://www.expasy.org/sprot/) and were compared with Pfam (Bateman et 

al., 2002). Among others, two membrane receptors were found to be different 

between the susceptible and the resistant strains: one scavenger receptor protein and 

one receptor L domain-containing protein. The first step of virus infection involves 

attachment of virus particles to host-specific cell surface receptors (Norkin, 1995, 

Baranowski et al., 2001). This prepares the way for the viruses to enter the host cell. 

Once inside the host cell, viruses utilize the host machinery in order to enhance the 

efficiency of its replication process. Consequently, the expression of the receptor on 

the outer surface of the host is a major determinant of the route of entry of the virus 

into the host and of the patterns of virus spread and pathogenesis in the host (Norkin, 

1995). Viruses have evolved to exploit these receptors to gain entry into cells. 

Previous studies have demonstrated that the lack of receptor expression restrict virus 

entry (Ren et al., 1990, Ejrnaes et al., 2006, Erbar et al., 2008). The identified 

scavenger receptor is a transmembrane glycoprotein and reminiscent of members of 

the immunoglobulin (Ig) superfamily (Resnick et al., 1994). Members of this family 

are known to be involved in entry of more than one virus into cells ((Baranowski et 

al., 2001) and references therein). The L domain of the second identified membrane 

receptor is also found in insulin receptor (IR) which is closely related to members of 
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the tyrosine-kinase receptor superfamily. Members of this family play a role in 

different cellular processes, including division, proliferation, apoptosis, and 

differentiation (Manning et al., 2002). Moreover, it has been shown that protein 

kinases are activated by viral infection (Monick et al., 2001), suggesting that the L 

domain-containing membrane receptor could be involved in virus susceptibility or 

infection. Different virus susceptibility could be due to differences in copy numbers 

or modifications of these two receptors. Therefore, the identified receptors are 

suitable targets for further investigations regarding virus susceptibility. 

The occurrence of an ubiquitin and an ubiquitin-conjugation enzyme E1 might 

indicate its involvement in virus infection. Publication II  combined an EST study 

with gene expression analysis by using microarrays. Results had indicated the down-

regulation of three ESTs related to the ubiquitin protein family and the up-regulation 

of two of them during viral infection (publication II ). Ubiquitin and its relatives 

regulate processes in eukaryotic cells by covalent attachment to other cellular 

proteins, thereby changing the stability, localization, or activity of the target protein 

(Pickart & Eddins, 2004). The most prominent function of ubiquitin is the mediated 

proteolysis of labelled target proteins. Moreover, ubiquitin modifications are also 

involved in virus budding (Woelk et al., 2007) indicating the importance of ubiquitin 

and its relatives for virus susceptibility or infection. 

It would be of great importance to show that there are significant differences 

in the degree of variation in the genes associated with ubiquitin. However, more 

strains should be analyzed and other quantitative methods like qPCR should be 

applied before drawing definite conclusions on its involvement in virus infection. 

 

• CGH revealed a huge intra-species diversity in E. huxleyi 

• high genetic diversity between two strains from the same geographic origin 

suggests difference in morphotypes, genome size or ecological strategy 

• CGH made it possible to identify genes in relation to virus susceptibility 

• identification of two membrane receptors, possibly playing a key role in virus 

susceptibility 

• identification of proteins related to ubiquitin (also found in the EST study) 

indicating their possible involvement in virus infection 
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3.3 Perspectives of future research 

 

In summary, the advantages of an EST approach for simultaneous discovery 

and identification of host and viral genes involved in viral infection have been 

demonstrated. Moreover, CGH based on microarrays was proven extremely useful for 

phylogenetic reconstruction and pinpointing single gene differences between closely 

related strains of Emiliania huxleyi with respect to virus susceptibility and 

morphology, i.e. existence of coccoliths or not. 

While the aim of publication I  was to provide a first insight into the host-

virus interaction of E. huxleyi, the aim of publication II  was to broaden the basis of 

available sequence information. Publication II  has also shown that complementing 

this approach with microarray analysis enables the detection of even more subtle 

changes in gene expression. Viral infection affects the transcriptional machinery of E. 

huxleyi within a few hours by decreasing the expression of genes involved in 

photosynthesis and protein degradation at the benefit of fatty acid metabolism, 

glycolysis, and transcription and translation. The expression of E. huxleyi and EhV-86 

genes changed significantly between 12 and 24 hours after infection, indicating 

further functional investigations during this infection period. Quantitative RT-PCR 

(qPCR) could be used to follow the expression of identified genes during the 

infection period mentioned before with higher sampling resolution (e.g. every hour). 

Since the infection process is not synchronized between single cells, bulk samples 

from any given time point have no resolution power for the infection stage on a single 

cell level. However, up to now little is known about the processes involved in the 

viral infection of E. huxleyi. But the numbers of highly expressed but functionally 

uncharacterized sequences have the potential of yet unknown proteins relevant in 

viral infection. Therefore future investigations should regard the quantification of 

relative transcript abundances by using qPCR to validate microarray analysis. 

Another consideration would be the study of ratio of variable to mean fluorescence 

(FV/FM) and the effect of abiotic factors like nutrient availability, pH or CO2 during 

viral infection. 

In publication III  microarray-based CGH was successfully applied to 

elucidate genetic diversity among different strains of E. huxleyi of different 

geographic origin. As a strain specific microarray can only tell what kind of genes are 
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present or not in relation to the genome studied, the construction of an additional 

microarray of a resistant strain would be appropriate. However, results revealed that 

up to 57% of the genes showed a pattern of hybridization concordant with deletion, 

nucleotide divergence or gene duplication within the species compared to the 

reference strain E. huxleyi CCMP1516. One reason of the genetic differences between 

strains could be differences in the morphotypes and genome size. Therefore, further 

investigations should regard measurements of genome size by flow cytometry. 

Moreover, a Wilcoxon rank-sum test was used to compare log2-ratios between groups 

of samples to identify genes related virus susceptibility and morphology. 

Among others, the two membrane receptors and the ubiquitin-related proteins 

that possibly play a role in virus infection are suitable targets for further 

investigations. qPCR can be used to determine the real copy number in each genome. 

Future work should also include the use of microarrays transcript profiling 

experiments and knock-out mutants to focus on the expression of the identified key 

genes. To identify more genes regarding virus susceptibility, gene expression analysis 

should be considered during viral infection, e.g. after 4 hours viral infection. 

Furthermore, recent findings revealed a novel virus-escaping strategy of E. huxleyi 

during blooms (Frada et al., 2008). Virus mediated termination of E. huxleyi blooms 

induces life-cycle transition of affected populations. Hence, further investigations should 

also focus on the life-cycle stage. The proposed further investigation outlined above 

can extend our understanding of virus susceptibility and viral infection of E. huxleyi. 
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5 SUMMARY 
 

 

This thesis aimed at the identification of genes involved in the host-virus 

interaction of the coccolithophore Emiliania huxleyi and the virus EhV-86 by taking 

advantage of EST libraries and DNA microarrays. Microarray-based comparative 

genomic hybridization (CGH) was used to investigate the genetic variation of several 

E. huxleyi strains and to identify genes with respect to virus susceptibility and 

morphology, e.g. formation of coccoliths. 

Analysis of expressed sequence tags (ESTs) was performed to gain insights 

into the host-virus interaction of E. huxleyi. Three complementary DNA (cDNA) 

libraries generated 6, 12 and 24 h post viral infection were compared to a library from 

an uninfected culture by sequencing, clustering and manual annotation of randomly 

selected ESTs. At first, a preliminary set of 60-90 ESTs from each library were 

annotated to get an overview of gene expression changes that occur during viral 

infection of E. huxleyi. BLAST-searches of the sequenced genome of the virus (EhV-

86) were used to identify viral genes. Results of this small sample probe show already 

a trend towards down-regulation of genes involved in photosynthesis of E. huxleyi for 

the benefit of an increased transcription and translation for viral replication. At 6 (T6) 

and 12 (T12) hours post viral infection the algal transcriptome changed significantly 

although only 3-4 viral transcripts were present. In addition, at 24 hours (T24) post 

infection only 10% of the mRNA was of host origin. Viral transcripts identified at 

T24 encode proteins involved in protein degradation, nucleic acid degradation, 

transcription and replication. 
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As a next step, 1100-1500 ESTs per library were sequenced and annotated. 

Results confirmed the previous tendencies and discovered more genes involved in the 

host’s response to viral infection. Furthermore, two-colour oligonucleotide 

microarrays were used to verify the gene expression results of the ESTs. A total of 

4480 ESTs were assembled into 1871 clusters of which 223 clusters were of viral 

origin. A putative function could be assigned to 35% of the host clusters and to 20% 

of the viral clusters. 

In addition, microarray expression analysis indicated that 231 out of 565 

oligonucleotides of E. huxleyi changed their expression level in at least one time 

point. Results suggest that viral infection affects the transcriptional machinery of E. 

huxleyi within a few hours by decreasing the expression of genes involved in 

photosynthesis and protein degradation at the benefit of fatty acid metabolism, 

glycolysis, and transcription and translation. The expression of E. huxleyi and EhV-86 

genes changed significantly between 12 and 24 hours after infection. 

The results provide insights into the infection mechanisms of the virus EhV-

86 in E. huxleyi and demonstrate the power of EST libraries and DNA microarrays to 

obtain data on gene expression and regulation during viral infection. 

 

Microarray-based comparative genomic hybridization (CGH) was applied to 

investigate genomic diversity of 16 E. huxleyi strains of different geographic origin 

and to identify genes related to virus susceptibility and morphology. The microarray 

consisted of 565 genes derived from the former EST study of E. huxleyi strain 

CCMP1516 and 37880 genes from the ongoing genome project of the same strain. 

Gephyrocapsa oceanica and Isochrysis galbana were taken as out-groups. A total of 

32395 gene transcripts showed significant hybridization patterns and were used to 

elucidate genetic diversity. Hybridization intensities were compared to determine the 

relative copy number of each gene transcript. Comparisons with the sequenced E. 

huxleyi strain CCMP1516 revealed that 27% (8740 genes) to 57% (18581 genes) of 

the genes showed a pattern of hybridization concordant with deletion, nucleotide 

divergence or gene duplication within the species and up to 83% (26881 genes) 

between the genera. The largest variation was observed among the species for E. 

huxleyi strain 92F. Regarding variation with respect to virus susceptibility and 

morphology the most abundant genes with known function were associated with 
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metabolism, transport, and transcription and translation. In addition, two membrane 

receptors and two proteins related to ubiquitin were identified which show significant 

differences between virus susceptible and resistant strains. 

The results obtained by using CGH demonstrate that this method is 

appropriate to compare the gene content of different E. huxleyi strains. CGH was 

successfully applied to identify genes related to virus susceptibility and morphology. 

Among others, the membrane receptors and the ubiquitin-related proteins that 

possibly play a role in virus infection deserve further attention. 

 



 

 

 

 

 

 

 

 

 

6 ZUSAMMENFASSUNG 
 

 

Ziel dieser Arbeit war es mittels EST-Bänken und DNA-Microarrays Gene zu 

identifizieren, die in der Wirts-Virus-Interaktion der Coccolithophoride Emiliania 

huxleyi und dem Virus EhV-86 involviert sind. Mehrere E. huxleyi Stämme wurden 

auf ihre genomische Variation mit Hilfe von Microarray-basierenden 

Hybridisierungen untersucht. Des Weiteren zielte der genomische Vergleich darauf 

ab, Gene in Bezug auf Virusanfälligkeit und Morphologie (z.B. Aufweisen von 

Coccolithen) zu identifizieren. 

Um Einblick in die Wirts-Virus-Interaktion von E. huxleyi zu erhalten wurden 

expressed sequence tags (ESTs) analysiert. Drei cDNA-Bänke wurden nach 6, 12 und 

24 Stunden Virusinfektion hergestellt und mit einer Bank einer uninfizierten Kultur 

verglichen. Dazu wurden zufällig ausgewählte ESTs sequenziert, gruppiert und 

manuell annotiert. Um einen Überblick der Genexpressionsveränderungen von E. 

huxleyi während der Virusinfektion zu bekommen, wurden anfänglich nur 60-90 

ESTs pro Bank annotiert. Die Virus-Gene wurden mittels BLAST-Suche gegen das 

sequenzierte Virus-Genom (EhV-86) identifiziert. Trotz einer solch kleinen 

Stichprobe konnte ein Trend Richtung Herunterregulierung von Genen der 

Photosynthese ausgemacht werden. Außerdem wurde eine höhere Anzahl an Genen 

der Transkription und Translation von E. huxleyi nachgewiesen, die vermutlich zur 

Replikation des Virus verwendet werden. Obwohl jeweils nur 3-4 virale Gene 

vorhanden waren, veränderte sich das Transkriptom der Alge nach 6 (T6) und 12 

(T12) Stunden Virusinfektion signifikant. Nach 24 Stunden (T24) Infektion stammten 

nur noch 10% der mRNA vom Wirt. Unter den identifizierten viralen Gene in T24 
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befinden sich Proteine die vermutlich für den Abbau der Wirts-DNA und -proteine 

zuständig, sowie für die Trankription und Replikation des Virus verantwortlich sind. 

Darauffolgend wurden pro Bank 1100-1500 ESTs sequenziert und annotiert. Die 

neuen Ergebnisse bestätigten die vorherigen Tendenzen und wiesen noch mehr Gene, 

die in der Wirts-Virus-Interaktion beteiligt sind, nach. Insgesamt 4480 ESTs wurden 

in 1871 Gruppen (Cluster) assembliert von denen 223 viralen Ursprungs sind. Zu 

35% der Wirts-Cluster und zu 20% der viralen Cluster konnten mögliche Funktionen 

zugeordnet werden. Um die Genexpressionsergebnisse der ESTs zu verifizieren 

wurden des Weiteren Oligonucleotid-Microarrays in einer klassischen ‚A versus B’ 

Konfiguration benutzt. Hierbei zeigten 231 der 565 Oligonucleotide von E. huxleyi 

bei mindestens einem Zeitpunkt eine Veränderung im Expressionsmuster. Die 

Ergebnisse beider Methoden deuten darauf hin, dass innerhalb weniger Stunden 

Virusinfektion der Transkriptionsapparat von E. huxleyi beeinflusst wird. Dabei wird 

die Expression von Genen der Photosynthese und des Proteinabbaus zum Vorteil 

eines erhöhten Fettsäure Metabolismus, Glykolyse, Transkription und Translation 

reduziert. Zwischen 12 und 24 Stunden Virusinfektion veränderte sich die Expression 

von E. huxleyi und EhV-86 signifikant. 

Die Ergebnisse geben einen Einblick in den Infektionsmechanismus des Virus 

EhV-86 in E. huxleyi und veranschaulichen das Potential von EST-Bänken und DNA-

Microarrays Genexpressionsdaten während einer Virusinfektion zu erzielen. 

 

Um die genomische Diversität von 16 E. huxleyi Stämme verschiedenen 

geographischen Ursprungs zu untersuchen wurden Microarray-basierende 

Hybridisierungen mit genomischer DNA durchgeführt. Des Weiteren wurde mit 

dieser Methode versucht Gene in Bezug auf Virusanfälligkeit und Morphologie zu 

identifizieren. Der Microarray bestand aus 565 Genen der vorherigen EST-Studie des 

E. huxleyi Stammes CCMP1516 und 37880 Genen aus dem laufenden Genomprojekt 

des gleichen Stammes. Gephyrocapsa oceanica und Isochrysis galbana wurden als 

Außengruppen verwendet. Die Hybridisierungen ergaben insgesamt 32395 

signifikante Signalkombinationen der Gentranskripte und wurden für die Aufklärung 

der genetischen Diversität benutzt. Um die relative Kopienanzahl von jedem Gen zu 

ermitteln, wurden die Hybridisierungsintensitäten der Teststämme und Außengruppen 

mit denen des sequenzierten Referenz-Stammes E. huxleyi CCMP1516 verglichen. 
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Innerhalb der Spezies ergab der Vergleich zur Referenz Unterschiede von 27% (8740 

Gene) bis 57% (18581 Gene) und bis zu 83% (26881 Gene) beim Vergleich mit den 

Außengruppen. Bei diesen Gen Unterschieden handelt es sich um Deletionen, 

Divergenzen in der Nukleinsäure oder Gen Duplikationen. Der E. huxleyi Stamm 92F 

zeigte innerhalb des Stammvergleiches die größte Variation zum Referenz-Stamm. In 

Bezug auf Virusanfälligkeit und Morphologie wurden die meisten Gene mit 

bekannter Funktion dem Metabolismus, dem Transport, der Transkription und 

Translation zugeordnet. Außerdem konnten zwei Membranrezeptoren und zwei 

Ubiquitin-ähnliche Proteine identifiziert werden, die signifikante Unterschiede 

zwischen virusanfälligen und –resistenten Stämmen aufwiesen. 

Die Analyse des genomischen Vergleichs ergab, dass diese Methode sehr gut 

zur Untersuchung des Gen Gehaltes von verschiedenen E. huxleyi Stämmen geeignet 

ist. Des Weiteren konnte diese Methode erfolgreich für die Identifizierung von Genen 

in Bezug auf Virusanfälligkeit und Morphologie angewendet werden. Unter anderem 

konnten dabei Membranrezeptoren und Ubiquitin-ähnliche Proteine identifiziert 

werden, die möglicherweise eine Rolle in der Virusinfektion von E. huxleyi spielen 

und somit für weitere Untersuchungen in Betracht zu ziehen sind. 
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