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During fertilization, eggs undergo a temporary rise in the intracellular concentration of free Ca2+ ions. Using
the membrane permeable acetoxymethylester of the fluorescent calcium indicator dye Fura-2, Fura-2 AM, the
Ca2+-signal at fertilization was not detectable in eggs of the sea urchin Psammechinus miliaris. However, after
treatment of the eggs with Fura-2 AM in combination with MK571, an inhibitor for multidrug resistance
associated proteins, clear Ca2+-signals at fertilization could be measured without microinjection of the dye.
We used this methodology to detect possible alterations of Ca2+-signalling at fertilization by exposure of
eggs to environmental pollutants. For this purpose, the heavy metal copper, the bromophenol 2,4,6-
tribromophenol, the organic compound bisphenol A and the polycyclic aromatic hydrocarbon phenanthrene
were tested for their potential to inhibit fertilization success of P. miliaris. Copper and 2,4,6-tribromophenol
showed a dose-dependent effect on fertilization rates of P. miliaris and significantly inhibited fertilization at
6.3 µM Cu2+ and 1 µM 2,4,6-tribromphenol. Bisphenol A significantly inhibited fertilization success at
438 µM while phenanthrene had no effect up to 56 µM. 6.3 µM copper and 100 µM 2,4,6-tribromophenol
significantly increased the Ca2+-signal at fertilization. This alteration may contribute to the reduced
fertilization rates of P. miliaris after exposure to copper and 2,4,6-tribromophenol.
© 2009 Elsevier Inc. All rights reserved.
1. Introduction

Free calcium ions are essential second messengers in cells from
their origin at fertilization throughout their entire lifespan (Carafoli,
2002). Disruption of cellular Ca2+ homeostasis appears to mediate the
toxicity of many chemicals (Nicotera et al., 1992). Sustained increase
in intracellular Ca2+ can provoke cytotoxic mechanisms in various
cells and tissues by activation of Ca2+-dependent enzymes, alterations
of the cytoskeleton, mitochondrial damage, and by the activation of
irreversible catabolic processes which may ultimately result in cell
death (Nicotera et al., 1992; Stohs and Bagchi, 1995; Nicotera and
Orrenius, 1998). A diverse range of natural and anthropogenic chem-
icals such as divalent heavy metal ions, bromophenols, bisphenol A as
well as polycyclic aromatic hydrocarbons have been shown to interfere
with cellular Ca2+ signalling (e.g. Büsselberg et al., 1990; Davila et al.,
1995; Stohs and Bagchi, 1995; Nielsen et al., 2003; Wozniak et al.,
2005).

At fertilization, eggs undergo an increase in intracellular Ca2+

beginning at the point of sperm–egg fusion and crossing the egg to the
antipode in awave-like fashion (Santella et al., 2004;Whitaker, 2006).
This calcium wave is the first event at fertilization triggering the
quiescent egg into metabolic activity by posttranslational activation of
: +49 471 4831 1425.
.

l rights reserved.
enzymes, exocytosis of cortical granules for formation of the ferti-
lization membrane and resumption of the cell cycle (Covian-Nares
et al., 2004; Santella et al., 2004).

In the following paragraph a selection of chemicals interfering with
cellular Ca2+ signalling and homeostasis are presented: Cu2+ is an
essentialmetal ion required formetabolic processes in all eukaryotesbut
can reach toxic levels in aquatic environments (Bryan and Langston,
1992; Stohs and Bagchi, 1995; Zorita et al., 2006). Cu2+ has been shown
to alter Ca2+ signals in developing embryos of the macroalgae Fucus
serratus (Nielsen et al., 2003). Bromophenols are industrially produced
flame retardant intermediates and wood preservatives (Howe et al.,
2005) which also occur naturally in the marine environment in algae
(Whitfield et al., 1999) as well as in fish and invertebrates (Boyle et al.,
1992; Fielman et al., 2001). Recently, bromophenols such as 2,4,6-
tribromophenol have been shown to disturb cellular Ca2+-signalling in
neuroendocrine cells (Hassenklöver et al., 2006). Bisphenol A, an
important keymonomer in the production of polycarbonate plastics and
epoxy resins, and endocrine disruptor, affects Ca2+ homeostasis by
provoking Ca2+ influx via Ca2+ channels inmammalian tumor cell lines
(Wozniak et al., 2005). Further, in goldfish bisphenol A significantly
altered plasma Ca2+ levels (Suzuki et al., 2003). Polycyclic aromatic
hydrocarbons (PAHs) are ubiquitous environmental pollutants con-
tained in petroleum hydrocarbons and formed during combustion
of fossil fuels and other products (Latimer and Zheng, 2003). PAHs and
its metabolites have been shown to alter Ca2+-associated signalling
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pathways in immune(Davilaet al.,1995)andnonimmunecells (Barhoumi
et al., 2006) as well as in isolated membrane vesicles of mammalian
skeletal muscles (Pessah et al., 2001).

Sea urchins are widely used to study the cellular events at fer-
tilization (Santella et al., 2004; Whitaker, 2006). Further, some natural
and anthropogenic chemicals have been tested on Ca2+ homeostasis
in sea urchin eggs (Walter et al., 1989; Pesando et al., 1991, 1996; Girard
et al.,1997). Thereby, the permeability of the plasmamembrane to Ca2+

and other ions as well as the accumulation and release of sequestered
Ca2+ were assessed (Pesando et al., 1991, 1996; Girard et al., 1997).
Walter et al. (1989) investigated the Ca2+ content and uptake of Ca2+ as
well as the role of mitochondrial damage in sea urchin eggs upon expo-
sure to mercury chloride.

In sea urchins and some other organisms the calcium wave re-
presents a single event which is followed by a few minor rises in the
intracellular concentration of Ca2+ ions (Stricker, 1999). The mecha-
nisms bywhich the sperm triggers Ca2+ release at fertilization are still
under debate (Santella et al., 2004). In the most establishedmodel the
sperm is believed to introduce a sperm factor into the egg promoting
the formation of inositol-1,4,5-triphosphate (InsP3) which initiates
the activating Ca2+ wave (Jaffe et al., 2001; Santella et al., 2004).
Studies indicate that in sea urchins there are two further messengers
of Ca2+ signalling: nicotinic acid adenine dinucleotide phosphate
(NAADP) and cyclic ADP ribose (cADPr) giving the fertilization calcium
wave a boost and longevity (Steinhardt et al., 1977; Whitaker, 2006).
Steinhardt et al. (1977) and Schmidt et al. (1982) have shown that the
Fig. 1. Fertilization success of Psammechinus miliaris during exposure to set concentrat
d) phenanthrene. Asterisks indicate significant differences in comparison to controls (CuS
Dunnett's test pb0.05; Bisphenol A: one-way ANOVA pb0.001, Dunnett's test pb0.05; Phen
Ca2+ is released from intracellular stores,whereby later InsP3 and cADPr
were identified for mobilizing Ca2+ from the endoplasmic reticulum
(reviewed by Galione, 1994, Jaffe et al., 2001). In contrast, NAADP is
known to induce Ca2+ release from lysosomes (Churchill et al., 2002).

Calcium signals are mostly measured using fluorescent calcium in-
dicator dyes (Whitaker, 2006). The ratiometric fluorescent dye Fura-2
has already been used for measuring the calcium wave at fertilization
in eggs of the sea urchin Lytechinus pictus (Poenie et al., 1985; Swann and
Whitaker, 1986) as well as in ascidians and mammals (Hyslop et al.,
2001; Carroll et al., 2003). In general, the dyes are microinjected into the
eggs. Indeed, Fura-2 is also available as membrane permeable acetoxy-
methylester Fura-2AM.After crossing themembrane Fura-2AM is quickly
hydrolyzed by intracellular esterases to produce membrane imperme-
able Fura-2. Previously, the inhibitor for multidrug resistance associated
proteins (MRP)MK571 has been shown to enhance uptake of fluorescent
dyes in animal cells (Manzini and Schild, 2003; Bickmeyer et al., 2008) as
well as in diatoms (Scherer et al., 2008). MRPs are efflux transporters of
the ATP Binding Casette (ABC) superfamily actively transporting and
sequesteringendogenous andexogenous compounds (HollandandBlight,
1999; Leslie et al., 2001). In marine invertebrates MRPs have been
demonstrated to be expressed inmarine bivalvemollusks aswell as in sea
urchins (Hamdoun et al., 2004; Lüdeking et al., 2005).

The aim of the present study was to test if chemicals may alter the
calciumwave at fertilization in sea urchins. For this purpose, the heavy
metals Cu2+ and Pb2+, the bromophenol 2,4,6-tribromophenol, bis-
phenol A, and the polycyclic aromatic hydrocarbon phenanthrene
ions [µM] of a) copper sulfate, b) 2,4,6-tribromophenol (TBP), c) bisphenol A and
O4: one-way ANOVA pb0.001, Dunnett's test pb0.05; TBP: one-way ANOVA, pb0.001,
anthrene: Kruskal–Wallis ANOVA on ranks p=0.074).
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were tested for their potential to inhibit fertilization success of the sea
urchin Psammechinus miliaris. We measured the calcium wave at
fertilization using Fura-2 AM and the MRP inhibitor MK571.

2. Materials and methods

2.1. Animal collection and maintenance

P. miliaris were collected by fishing subtidal populations close to
the Island Sylt (Germany) by a beam trawl with the FK Uthörn in April
2008. Sea urchins were transported to the Biological Institute
Helgoland where they were kept in running sea water at ambient
temperature until use.

2.2. Collection and processing of gametes

P. miliaris were induced to spawn by injection of 0.5 mL 0.5 M KCl.
Sperm was collected from the aboral pore of each individual using a
syringe fitted to a needle and stored ‘dry’ on ice until use. Female sea
urchins were induced to spawn in the same way, but eggs were
released directly into artificial sea water. Gametes were collected
during the first 20 min of spawning. The quality of eggs was assessed
microscopically on the basis of uniformity of shape and size.

2.3. In vitro fertilization assays

The following chemicals were tested on fertilization success of
P. miliaris: copper sulfate (CuSO4×5H2O), 2,4,6-tribromophenol (TBP),
Fig. 2. Changes of the ratio F340/F380 (upper panel) and corresponding fluorescence intens
eggs of Psammechinus miliaris at fertilization. Eggs were incubated with a) 10 µM Fura-2 only
second Ca2+ rise approximately 400 s after the first peak in b).
bisphenol A andphenanthrene.1000× concentrated stock solutionswere
prepared in distilled water (copper sulfate), DMSO (phenanthrene,
bisphenol A), ormethanol (2,4,6-tribromophenol). Concentration ranges
of test substances were selected according to His et al. (1999), King and
Riddle (2001) and Fernández and Beiras (2001) for copper, Hassenklöver
and Bickmeyer (2006) and Hassenklöver et al. (2006) for TBP, Roepke
et al. (2005) and Kiyomoto et al. (2006) for bisphenol A and Steevens
et al. (1999) and Pillai et al. (2003) for phenanthrene. Eggs and sperm
were obtained as described above but eggs were released in general
purpose medium 2 (GP 2: 360 mM NaCl, 24.8 mM Na2SO4, 8.2 mM KCl,
0.74 mM KBr, 0.09 mM Na2B4O7×10H20, 46.7 mM MgCl2×6H2O, 11.9
CaCl2×2H2O, 0.08mMSrCl2×6H2O, 2.02mMNaHCO3) (instead of ASW)
which had been aerated for 24 h (U.S. EPA, 1993; Caldwell et al., 2002).
During fertilization assays it is essential to keep the concentrations of
sperm and eggs constant in the different treatments and replicates. In
preliminary experiments (data not shown) in vitro fertilization without
exposing the sperm was not satisfactory since washing and counting of
the eggs took too long and resulted in low egg quality with insufficient
fertilization rates in controls. Therefore, eggs as well as sperm – though
only for a short period – were exposed to the test substances during
fertilization assays. Thus, reduced fertilization success may be the result
of toxicity on both types of gametes.

Eggs from three to four females were pooled and sperm from two
to three males were pooled (U.S. EPA, 1993). Approximately 200
unfertilized eggs of the pooled egg suspension were stocked in 1 mL
medium in polystyrene 24 well microplates. Eggs were incubated at
18 °C either with the test substances at set concentrations or with the
respective controls (distilled water, DMSO, or methanol). Solvents had
ities at 340 nm (dotted line) and 380 nm (solid line) excitation (lower panel) in single
and b) 10 µM Fura-2 and 50 µM MK571. Arrows indicate point of adding sperm. Note a
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Fig. 3. The ratio of F340/F380 which represent changes of intracellular Ca2+ in two eggs of Psammechinus miliaris during fertilization (from left to right). Note changes in the ratio
F340/F380 with maximal ratio changes indicated by arrows. Shown are pseudocoloured relative fluorescence images of eggs incubated with 10 µM Fura-2 and 50 µM MK571 with
high fluorescence intensities in red and low in green, respectively.
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a final concentration of 0.1% in all wells. Four replicate incubations
were run per treatment. After 60 min, 10 µL of sperm suspension in
GP2 were added to give a final sperm concentration of 2.5×106 mL−1

(Caldwell et al., 2002). Sperm had been allowed to activate in GP2
approximately 10 min prior to use. The plates were gently agitated for
30 s to increase sperm/egg encounters and incubated for 15 min.
Fertilization was stopped by adding 100 µL 4% formaldehyde in ASW.
The final concentration of formaldehyde is sufficient to stop fertiliza-
tion (U.S. EPA, 1993) which was evident by amotile sperm and the
absence of multi-cellular embryos in the wells. Fertilization success
was determined using an inverted microscope (Axiovert 25, Zeiss,
Germany) and was defined as elevation of the fertilization membrane
observed at 100× magnification. 100 eggs per well were counted and
the number of unfertilized eggs were recorded.
Fig. 4.Mean changes in the ratio of F340/F380 at fertilization in control eggs (N=8 eggs) an
obtain Δ ratio values data were subtracted with the respective ratio of F340/F380 for each eg
c), d) mean Δ ratio values with standard deviations for controls, CuSO4- and TBP-treated egg
to 4 eggs each.
2.4. Fluorometric measurement of intracellular Ca2+

levels at fertilization

For measuring Ca2+ signals at fertilization, gametes were obtained
as described above but for each test eggs from one female and sperm
from one male were used (gametes were not pooled). Eggs were
incubated with artificial seawater (ASW: 460 mM NaCl, 10.4 mM KCl,
55 mM MgCl2×6H20, 11 mM CaCl2, 15 mM Hepes-Na; pH 7.5) con-
taining either 10 µMFura-2AMor 10 µMFura-2 AMwith 50 µMMK571
for 60 min at room temperature. Eggs were washed three times with
ASW. They were fertilized by adding sperm which was activated by
dilution of dry sperm in ASW immediately prior to use.

Fluorescence of eggs during in vitro fertilizationwas monitored by an
imaging system (Visitron, Puchheim, Germany) with a CCD camera
d in eggs incubated with 6.3 µM CuSO4 (N=9) and 100 µM TBP (N=9), respectively. To
gs at the beginning of the fertilisationwave. a) mean Δ ratio for the three treatments, b),
s, respectively. Data are obtained from three separate experiments per treatment with 2
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Fig. 5. a)Maximal changes in the ratio F340/F380 at fertilization in control (N=8 eggs),
CuSO4- (N=9) and TBP-treated (N=9) eggs. Asterisks indicate significant differences
in comparison to controls (one-way ANOVA, pb0.001, Dunnett's test pb0.05). b) The
time [s] needed to reach maximal changes in the ratio F340/F380 at fertilization in
control, CuSO4- and TBP-treated eggs. No significant differences were found in
comparison to controls (one-way ANOVA, p=0.143). Data are obtained from three
separate experiments per treatment with 2 to 4 eggs each.
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(Coolsnap) mounted on an inverted microscope (Axiovert 100, Zeiss).
Two to four eggs were measured simultaneously by using the ‘region of
interest’ function of the software (Metafluor, Meta Imaging Series).
Fluorescencewasobtained throughanUVobjective (NeoFluar 20x, Zeiss).
Datawere obtained fromdivision of two images, one obtained at 340 nm,
the other at 380 nm excitation. Obtained ratio values were not converted
to intracellular Ca2+ concentrations.

2.5. The effects of Cu2+ and TBP on Ca2+-signalling in eggs

Gametes were obtained as described for the fluorometric measure-
ments. In contrast to in vitro fertilization assays, counting of eggs is not
necessary duringfluorometricmeasurementof intracellular Ca2+ levels.
Therefore, eggs were washed prior to addition of sperm so that only the
eggs were exposed to the tested chemicals.

First, eggs were incubated in medium (GP2) with 10 µM Fura-2
AM and 50 µM MK571 for 60 min and washed three times with GP2.
Test substances (6.3 µM Cu2+ or 100 µM TBP) were added and
fluorescence was recorded as described above. Next, it was tested
whether the test substances lead to alterations of the calcium wave
at fertilization of P. miliaris. To avoid interference of the MRP in-
hibitor on the toxicity of the test substances, eggs were treated with
the test substances first and incubated with Fura-2 AM and MK571
afterwards. In detail, eggs were incubated with test substances
(6.3 µM Cu2+ or 100 µM TBP) for 60 min, washed three times with
GP2, and then incubated with 10 µM Fura-2 AM and 50 µM MK571
for 60 min and washed again three times with GP2. Eggs were
fertilized with 10 µL sperm suspension (dry sperm diluted 1:50
immediately prior to use) and fluorescence was recorded. Two to
four eggs were recorded simultaneously and at least three experi-
ments were run per treatment. Incubation of eggs and tests were
performed at 18 °C.

2.6. Statistics

Statistical tests were run with Sigma Stat 3.0 (SPSS Inc.). Residuals
were tested for normality and variance homogeneity. Data for fer-
tilization rates were arc sin square root transformed and a one-way
ANOVA with a Dunnett's test as post hoc test was run as described by
the U.S. EPA (1993) for sea urchin fertilization tests. In case the data
were not normally distributed a Kruskal–Wallis ANOVA on ranks was
used. The Ca2+ signals (the Δ ratiomax and the time needed to reach
maximal changes in the Ca2+ signal) were analysed with a one-way
ANOVA and a Dunnett's test. The significance level was set at pb0.05.
Note that in Sigma Stat 3.0 the p-values for the Dunnett's test are
unavailable. The software only indicates if the p-value is above or
below the significance level of 0.05.

3. Results

3.1. In vitro fertilization assays

In Fig. 1 the fertilization rates of P. miliaris after exposure to the test
substances are presented. Exposure to Cu2+ significantly reduced
fertilization success of P. miliaris at the two highest concentrations
(6.3 and 63 µM, one-way ANOVA, pb0.001). 63 µM Cu2+ significantly
decreased the fertilization rate by 76% in comparison to controls. TBP
significantly inhibited fertilization success of P. miliaris at 1 µM (one-
way ANOVA, pb0.001). Exposure to 1000 µM TBP, the highest con-
centration tested, significantly inhibited the fertilization rate by 75% in
comparison to controls. 438 µM bisphenol A significantly reduced
fertilization success by 97% in comparison to controls. (one-way
ANOVA, pb0.001). Indeed, for bisphenol A no effects were found at
concentrations lower than 438 µM. Phenanthrene showed no effect on
fertilization success at concentrations of up to 56 µM (Kruskal–Wallis
ANOVA on ranks, p=0.074).
3.2. Fluorometric measurement of intracellular Ca2+

levels at fertilization

In the experiments, eggs of P. miliaris were successfully fertilized
by adding activated sperm, which was checked visually after each
experiment by elevation of the fertilizationmembrane. However, after
incubation with Fura-2 AM no calcium signals could be observed in
the eggs during fertilization (N=8 eggs measured in three separate
experiments). In some cases, an increase in the ratio F340/F380 was
recorded. Indeed, close inspection of the corresponding fluorescence
intensities at 340 and 380 nm excitation shows that the ratio changes
are due to decreasing intensities at both wavelengths induced by cell
movement during fertilization (see Fig. 2a). These changes cannot be
regarded as alterations in intracellular Ca2+ since the fluorescence
spectrum of Fura-2 does not shift in opposite directions with an
increase at 340 and a decrease at 380 nm.

In contrast, after incubation with Fura-2 AM and MK571 clear
calciumwaves could be observed in the eggs upon fertilization (Fig. 3)
(N=8 eggs measured in 4 separate experiments). The changes in the
ratio of F340/F380 clearly correspond to changes in intracellular Ca2+

since the fluorescence intensity increases at 340 nm and decreases at
380nmexcitation (Fig. 2b). The ratio of F340/F380 changedby0.033±
0.02 in comparison to the resting ratio level before fertilization
(N=8). The calciumwaves reached theirmaximumafter 95±33 s and
lasted 351±130 s (N=8).
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In one egg, a second Ca2+ rise was observed 10 min after the first
peak (Fig. 2b) which was around 70% smaller and with 177 s shorter
than the first peak with 371 s.

3.3. The effects of Cu2+ and TBP on Ca2+-signalling in eggs

For the followingexperiments 6.3 µMcopper sulfate and 100 µMTBP
were selected which inhibited fertilization success by 65% and 61%,
respectively, in comparison to controls. Neither 6.3 µMCu2+ nor 100 µM
TBP induced detectable calcium signals in unfertilized eggs (data not
shown). After incubation of eggs with Cu2+ and TBP the fertilizing
sperm still induced a Ca2+ wave. In Fig. 4 mean relative changes in the
ratio of F340/F380 at fertilization,Δ ratio, obtained after subtracting the
resting ratio of F340/F380prior to fertilization are shown in thedifferent
treatments. Eggs treated with Cu2+ and TBP exhibited alterations of the
fertilization calciumwave: Themaximal changes in the ratio F340/F380
(theCa2+peak)were significantly higher in Cu2+- and TBP-treated eggs
in comparison to controls (Fig. 5a). In TBP-treated eggs the Δ ratio
remained above the resting ratio prior to fertilizationwithin 600 s after
fertilizationwhereas in control and Cu2+-treated eggs the Δ ratio fell to
resting levels approximately 400 s after fertilization. In addition, the Δ
ratio showed a high variance in Cu2+-treated eggs after the fertilization
Ca2+wave. Indeed, the timeneeded to reach themaximal changes in the
ratio was not different in the treatments (Fig. 5b).

In eggs of all treatments, small postfertilization Ca2+ rises could be
observed within 12 min postfertilisation (control: 15 postfertilization
waves, Cu2+: 5, TBP: 12). In controls up to four and in Cu2+- and TBP-
treated eggs up to two postfertilization Ca2+ waves were recorded,
respectively.

4. Discussion

So far, studies on the fertilization Ca2+ wave have focused on the
North American sea urchin species Lytechinus pictus and Strongylocen-
trotus purpuratus. Though, Genazzani et al. (1999) have demonstrated
that egg homogenates of P. miliaris share the same Ca2+ release
mechanisms as L. pictus and S. purpuratuswith the InsP3, the cADRP and
the NAADP pathways. In L. pictus, the Ca2+ wave at fertilization is
reported to reach its peak after approximately 20 s (Poenie et al., 1985,
Swann andWhitaker, 1986), while in the present study, the Ca2+ rise in
P. miliaris takes approximately 95 s to reach its maximum. However, the
duration of the Ca2+ transients are comparable with approximately
5min in L. pictusmeasuredby Poenie et al. (1985) and in P.miliaris in the
present study.
Table 1
Toxicities of test substances on different species of sea urchins (Echinoidea).

Test substance Species Effective
concentration

Duration of exposure

Bisphenol A Strongylocentrotus
purpuratus

1 µM 96 h

Hemicentrotus
pulcherrimus

≥10 µM Directly after until up
48 h postfertilization

Hemicentrotus
pulcherrimus

≥10 µM 12 h after fertilization

Copper Heliocidaris
erythrogramma

≥4 nM

Diadema antillarum 44 nM 40 h
Paracentrotus lividus ≥0.25 µM 48 h
Paracentrotus lividus 1.1 µM 48 h

Phenanthrene Lytechinus variegatus ≥6 nM 2 h

Lytechinus anemensis ≥1 µM n.st.
2,4,6-
Tribromophenol

Strongylocentrotus nudus ≥3 nM 1 h
Strongylocentrotus nudus ≥30 nM 24 h
Strongylocentrotus nudus 150 nM 24 h

Presented are the tested chemicals, the tested species, the effective concentration, the duratio
st.=not stated.
Different developmental stages of marine invertebrates are known to
be affected differently by chemicals or polluted water samples with
fertilization being eithermore or less sensitive than embryonic and larval
development (e.g. Kobayashi,1980,1990;Gopalakrishnanet al., 2008). By
comparing toxicity of chemicals on different life stages exposure times
towards test substances often differ and make a direct comparison
difficult. In the present study, fertilization success of P. miliaris was
inhibited by bisphenol A only at the highest concentration (438 µM)
tested. Phenanthrene did not affect fertilization rates of P. miliaris up to
56 µM. Yet, these values are above critical concentrations reported to
affect sea urchin embryonic and larval development (Table 1).
Furthermore, the effective concentration of phenanthrene is above its
'safe' level of b=29 nM developed by several countries for aquatic
organisms (Lawet al.,1997). Toourknowledge, nomaximumpermissible
value has been set for bisphenol A in the aquatic environment.

We show that fertilization success of P. miliaris was significantly
affected at 6.3 µM Cu2+. The same concentration increased the calcium
wave at fertilization indicating disturbance of Ca2+ homeostasis in the
eggs by exposure to Cu2+. Early life history stages of marine in-
vertebrates may be particularly sensitive to elevated copper concen-
trations (Kobayashi, 1980, 1990; Bielmyer et al., 2005, Table 1).
Generally, divalent heavy metals are known to affect cellular calcium
homeostasis (Stohs and Bagchi, 1995). Exposure of sea urchin eggs
towards the heavy metal mercury chloride increased calcium influx
and calcium content in a time anddose-dependentmanner resulting in
disturbance of mitochondrial function and finally cell death (Walter
et al., 1989). In sperm of themusselMytilus edulis treated with 3.3 mM
Cu2+ Ca2+ levels significantly decreased in mitochondria and
acrosomes indicating an increase in the ionic permeability of organelle
membranes and possibly resulting in an increase in cytosolic Ca2+

(Earnshawet al.,1986). Ca2+ channels on the spermplasmamembrane
have also been proposed to be affected after paternal exposure of sea
urchins to the heavy metal Cd2+ (Au et al., 2001). Further, Cu2+ has
been shown to alter Ca2+ signals in developing embryos of the
macroalgae Fucus serratus: Moderate Cu2+ concentrations (422 nM)
inhibited generation of cytosolic Ca2+ signals in response to hypoos-
motic shock whereas high Cu2+ concentrations (2.11 – 8.44 µM) ele-
vated cytosolic Ca2+ (Nielsen et al., 2003).

Next to Cu2+, TBP significantly decreased fertilization success
of P. miliaris in a dose-dependent manner in our study. Recently,
bromophenols have been shown to inhibit larval survival and meta-
morphosis of the sea urchin Strongylocentrotus nudus (Agatsuma
et al., 2008, Table 1). In the present study, TBP significantly
decreased fertilization success of P. miliaris at 10 µM. Moreover,
Developmental
stage

Effect Reference

Embryos–larvae EC50 for normal development Roepke et al. (2005)

to Embryos–larvae Suppression of development Kiyomoto et al. (2006)

Embryos–larvae No effect on development Kiyomoto et al. (2006)

Sperm–eggs Reduced fertilization success,
(most sensitive among five tested
sea urchin species)

Kobayashi (1980)

Embryos–larvae EC50 for abnormal development Bielmyer et al. (2005)
Embryos–larvae Inhibition of growth Fernández and Beiras

(2001)Embryos–larvae EC50 for complete development
Eggs–embryos Inhibition of embryo

development
Steevens et al. (1999)

Embryos Disruption of axial development Pillai et al. (2003)
Larvae Inhibition of metamorphosis Agatsuma et al. (2008)
Larvae Inhibition of swimming activity Agatsuma et al. (2008)
Larvae Mortality Agatsuma et al. (2008)

n of the exposure, the tested life stage(s), the observed effect, as well as the reference. n.
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exposure of eggs to 100 µM TBP significantly increased the Ca2+

wave at fertilization indicating alterations of calcium signalling by
TBP. An increase in intracellular Ca2+ partly by Ca2+ release from
intracellular stores after exposure to TBP has already been shown in
neuroendocrine (PC12) cells (Hassenklöver et al., 2006). In a sub-
sequent study, Hassenklöver and Bickmeyer (2006) show that TBP
selectively reduced calcium channel currents in PC12 cells with a
half-maximal concentration of 28±18 µM. Additionally, this effect
increased with ongoing exposure time (Hassenklöver and Bick-
meyer, 2006). We, therefore, may strongly underestimate the ef-
ficacy of TBP.

In sea water samples from the German Bight up to 6 ng L−1 TBP
(equivalent to 0.02 nM) are reported while the highest level of all
identified bromophenols was 74 ng L−1 (Reineke et al., 2006). Higher
levels of bromophenols are found inmarine sediments andmacroalgae:
In estuarine sediments from theRhone river up to 3.7mgkg−1 TBPwere
found and in the marine macroalgae Ulva lactua up to 1.6 mg kg−1 TBP
have been detected (Howe et al., 2005). Regarding the environmen-
tal levels of Cu2+, concentrations range from 0.2 to 2.6 µg L−1 dissolved
Cu2+ (equivalent to 3 to 41 nM) in the North Sea. Indeed, at point
sources up to 600 µg L−1 dissolved Cu2+ (equivalent to 9 µM) can be
found (Bryan and Langston, 1992). The effective concentrations of Cu2+

and TBP tested in this study are, therefore, higher than relevant aqueous
concentrations in the marine environment, except for Cu2+ at point
sources. Regarding TBP, exposure and uptake by sea urchins need to be
further investigated in regard to high TBP contamination of sediments
in their habitats and the high TBP levels of macroalgaewhichmay serve
as food source as already proposed by Agatsuma et al. (2008). The
effective concentrations of Cu2+ are above the European safe level
of 41 nM Cu2+ in marine waters (European Copper Institute, 2008).
Indeed, it should be considered that duringmeasuring the Ca2+ signal at
fertilization eggs were not exposed to the tested chemicals to avoid
interference of the MRP inhibitor with the test substances. Effective
concentrations of Cu2+ and TBP on Ca2+ signalling at fertilization in
P. miliaris are, therefore, likely to be lower than the tested concen-
trations of 6.3 µM Cu2+ and 100 µM TBP, respectively.

In contrast to the effects on the Ca2+ wave at fertilization, we were
not able to detect induction of Ca2+ signals by exposure of unfertilized
eggs to Cu2+ and TBP. Indeed, the low dye loading of the eggs in
comparison to eggs microinjected with indicator dyes in conjunction
with the large size of the eggs limits detectability and resolution of
intracellular Ca2+ changes in these cell types.

We demonstrate that Cu2+ and TBP affect calcium signalling at
fertilization in sea urchin eggs. This may contribute to the reduced
fertilization success of P. miliaris exposed to Cu2+ and TBP, respectively.
Disturbance of Ca2+ channels and homeostasis by heavy metals have
previously been suggested to affect acrosome reaction and motility
of invertebrate sperm (Earnshaw et al., 1986, Au et al., 2001). Since
sperm motility is directly correlated with fertilization success (Au
et al., 2002) further studies are needed to investigate the effects of
Cu2+ and TBP on sperm motility of sea urchins. Next to fertilization,
early development is regulated by Ca2+ (Whitaker, 2006) and may
be prone to disturbance of calcium homeostasis by TBP and Cu2+.
Increased Ca2+ levels can trigger the release of hormones from
secretory granules but they can also initiate signalling cascades by
activation of kinases which may rapidly affect embryonic develop-
ment. Sustained increase in intracellular Ca2+ may further activate
Ca2+-dependent degradative enzymes, compromise mitochondrial
function and cytoskeletal organization, and ultimately result in cell
death.

In the present study, we successfully visualized the calcium wave
at fertilization in eggs of sea urchins without using methods risking
injury of the cell membrane: In eggs of P. miliaris incubated with
Fura-2 AM and the MRP inhibitor MK571 we observed clear Ca2+

signals at fertilization. Still, it has to be considered that transport
inhibitors may reduce fertilization-evoked Ca2+-signals in sea urchin
eggs (Davis et al., 2008). In previous studies, Fura-2 was micro-
injected into eggs of the sea urchin Lytechinus pictus to measure the
Ca2+ rise at fertilization (Poenie et al., 1985; Swann and Whitaker,
1986). Simple incubation of eggs with Fura-2 AM has already been
performed to investigate Ca2+ signals in mouse eggs (Hyslop et al.,
2001). However, we could not observe Ca2+ signals in sea urchin eggs
incubated with Fura-2 AM only. Similarly, Stricker et al. (1992)
mentions that in eggs of the sea urchin Lytechinus pictus incubated
with acetoxymethylesters of the calcium indicator dyes fluo-3 and
calcium green no Ca2+ wave at fertilization could be detected.

MK571 is a specific blocker for MRP transporters and its applica-
tion has been suggested to facilitate loading of animals cells (Manzini
and Schild, 2003; Bickmeyer et al., 2008) as well as diatoms (Scherer
et al. 2008) with calcium indicator dyes. Eggs and embryos of the
sea urchin Strongylocentrotus purpuratus are known to express efflux
transport activity (Hamdoun et al., 2004). Hamdoun et al. (2004) have
shown that the efflux activity is relatively low in unfertilized eggs but
is dramatically upregulatedwithin 25min postfertilization possibly by
translocation of transporters in vesicles to the plasma membrane
(Hamdoun et al., 2004). In sea stars, immunocytochemistry revealed
that MRP-like proteins are localized throughout the cytoplasm in
oocytes and translocated to the periphery during oocyte maturation
(Roepke et al., 2006). After fertilization, eggs of the sea urchin
Lytechinus pictus microinjected with the calcium indicator fluo-3
show higher fluorescence intensities in the cortex than in the centre of
the cell. (Stricker et al., 1992). Possibly, in the absence ofMK571 Fura-2
is extruded from the cytoplasmic spaces just underneath the plasma
membrane by MRP transporters. Changes in intracellular Ca2+ which
may primarily occur in these cellular regions may, therefore, not be
detected when MRP transporters are active.

As demonstrated in the present study, decreasing fluorescence
intensities of Fura-2 at 340 and 380 nm excitation induced by cell
movements may result in an increasing ratio of F340/F380. This rise
in the ratio of F340/F380 may be misinterpreted as an increase in
intracellular Ca2+ concentration. Indeed, Fura-2 changes its fluores-
cence spectrum upon binding of Ca2+ ions in opposite ways: at
340 nm the intensity increases whereas at 380 nm it decreases
(Grynkiewicz et al., 1985). The observed decrease in the fluorescence
intensity of Fura-2 is due to gross movement of the eggs: Movement
of cells is known as major artefact in imaging techniques using
fluorescent dyes (Tsien et al., 1985; Silver et al., 1992). In the present
study, attacking sperm caused slight movement of the eggs during in
vitro fertilization. Moreover, eggs changed their shape upon fusion
with sperm which is also known from other microscopic studies
(Schatten, 1981; Stricker et al., 1992).
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