RIFUGIO
- Rigorous Fusion of Gravity Field into Stationary Ocean Models

Grit Freiwald, Martin Losch (AWI)
Silvia Becker, Wolf-Dieter Schuh (IGG - TG)

Workshop Eitorf 2009
Project idea

- combine complete geoid models as developed by project partners at IGG-GT with altimetry to obtain mean dynamic topography (MDT)
- use simple stationary ocean models to test this MDT
Why stationary ocean models?

▶ Pro:
 ▶ compact and fast
 ▶ many integrations possible
 ▶ realistic solutions for present application with stationary geoid model and MDT

▶ Contra:
 ▶ simplified physics, restricted application
 ▶ adjustment processes not represented
We will use ...

- a geostrophic (diagnostic) section model (FEMSECT)
- a geostrophic box inverse model (Bernadette Sloyan)
- stationary 3D circulation model IFEOM (Dimitry Sidorenko)
Section model FEMSECT

Thermal wind equation with reference velocity problem

\[f \frac{\partial v_g}{\partial z} = -\frac{g}{\rho} \left(\frac{\partial \rho}{\partial x} \right)_p \]

(Losch, Sidorenko, Beszczynska-Möller 2006)
Inverse box model for the Southern Ocean

e.g. Sloyan and Rintoul (2001),
Losch, Sloyan, Schröter and Sneeuw (2002)
Stationary 3D model: IFEOM
Stationary 3D model: IFEOM

\[
\begin{align*}
 f \times \vec{u} - \nabla \cdot A_h \nabla \vec{u} + \frac{1}{\rho} \nabla p &= 0 \\
 \nabla \cdot \vec{u} + \partial_z w &= 0 \\
 \nabla_3 \cdot [(\vec{u}, w)T] - \nabla_3 \cdot K \nabla_3 T &= \epsilon_T \\
 \nabla_3 \cdot [(\vec{u}, w)S] - \nabla_3 \cdot K \nabla_3 S &= \epsilon_S
\end{align*}
\]

mean dynamic topogr. = sea surface height - geoid height
\(\eta = h - N \)

Information about the entire water column:
\[
\frac{\partial \eta}{\partial t} + \nabla_z \int u \, dz = E - P
\]

Geostrophic balance: \(g \frac{\partial \eta}{\partial x} = fv \) solves the reference velocity problems of geostrophic models with thermal wind equations.

But: requires filtering before \(h - N \) is useful for oceanography.
Omission error

- different representations of geoid models and ocean model can lead to an underestimation of the geoid model error

\[C_{MDT} = C_{SSH} + C_N \quad \text{with} \quad C_N = C_L + C_{om} \]
Principle for omission error problems

Homogeneous, isotropic covariance function for geoid model, representation in Legendre and trigonometric functions

\[C(\psi) = \sum_{l=0}^{L} p_l P_l(\cos \psi) = \sum_{l=0}^{L} p_l \sum_{k=0}^{l} a_{l,k} \cos k\psi = \sum_{k=0}^{L} c_k \cos k\psi \]

with the (Fourier-) coefficients

\[c_k = \sum_{l=k}^{L} p_l a_{l,k} \]
(after Balmino et al. 1998)
“Identical twin” experiments with a simplified inverse “box” model.

<table>
<thead>
<tr>
<th>L</th>
<th>$\delta \phi$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>$8.4 \times 10^6 \text{ m}^3\text{s}^{-1}$</td>
</tr>
<tr>
<td>20</td>
<td>$4.0 \times 10^6 \text{ m}^3\text{s}^{-1}$</td>
</tr>
<tr>
<td>70</td>
<td>$1.9 \times 10^6 \text{ m}^3\text{s}^{-1}$</td>
</tr>
<tr>
<td>150</td>
<td>$3.9 \times 10^6 \text{ m}^3\text{s}^{-1}$</td>
</tr>
</tbody>
</table>

contradiction!
Fehlerreduktion bei integrierten Volumentransporten