
GEOLOGICA ULTRAIECTINA

Mededelingen van 

de Faculteit Geowetenschappen

Universiteit Utrecht

No 272

Shallow-water benthic foraminifera as proxy 

for natural versus human-induced environmental change

Lennart Jan de Nooijer



ISBN 90-5744-136-5

The research presented in this thesis was supported by the Netherlands Institute of

Applied Geoscience TNO.

Lay-out GJ Bosgra, Ubbergen.



Shallow-water benthic foraminifera as proxy 

for natural versus human-induced environmental change

Ondiepe benthische foraminiferen als proxy 

voor natuurlijke en antropogene omgevingsveranderingen

(met een samenvatting in het Nederlands)

Proefschrift

ter verkrijging van de graad van doctor aan de Universiteit Utrecht, op gezag van de

rector magnificus, prof.dr. W.H. Gispen, ingevolge het besluit van het college voor 

promoties in het openbaar te verdedigen op woensdag 17 januari 2007 des ochtends 

te 10.30 uur

door

Lennart Jan de Nooijer

geboren op 4 december 1978 

te Middelburg



Promotor: Prof. Dr. G.J. van der Zwaan

Co-promotor: Dr. I.A.P. Duijnstee



CONTENTS

Chapter 1 General introduction and summary

Chapter 2 Novel application of MTT reduction: a viability assay for 

temperate shallow-water benthic foraminifera

with IAP Duijnstee and GJ van der Zwaan

Chapter 3 Spatial distribution of intertidal benthic foraminifera in the

Dutch Wadden Sea

with IAP Duijnstee and GJ van der Zwaan

Chapter 4 The ecology of benthic foraminifera across the Frisian Front 

(southern North Sea)

with IAP Duijnstee, MJN Bergman and GJ van der Zwaan

Chapter 5 Foraminiferal stability after a benthic macrofaunal regime 

shift at the Frisian Front (southern North Sea)

with T Amaro, IAP Duijnstee, GCA Duineveld and GJ van der Zwaan

Chapter 6 Subrecent ecological changes in foraminifera from the 

western Wadden Sea, the Netherlands

with IAP Duijnstee, HC de Stigter and GJ van der Zwaan

Chapter 7 Copper incorporation in foraminiferal calcite: results from 

culturing experiments

with GJ Reichart, A Dueñas-Bohòrquez, M Wolthers, SR Ernst and 
GJ van der Zwaan

Chapter 8 Conclusions

References

Samenvatting

Acknowledgements

Curriculum Vitae

Appendices I - III

7

13

21

33

49

63

77

91

97

117

122

123

124





CHAPTER 1

GENERAL INTRODUCTION AND SUMMARY

All over the Earth, increasing human population growth and ongoing industrialization

lead to deteriorating global biodiversity (e.g. Kerr and Currie, 1995; Pimm and others,

1995; Vitousek and others, 1997). It is estimated that anthropogenic activity has caused

the extinction of somewhere between 20,000 and 2 million species so far (Wilson and

Peter, 1988; Meyers, 1988; 1990). Most of this loss is thought to be caused by habitat

fragmentation and habitat destruction (Bellwood and Hughes, 2001; Travis, 2003), while

the recent global rise in temperature is likely to contribute to the current mass extinc-

tion as well (e.g. Root and others, 2003; Pounds and others, 2006). Besides extinctions,

ecosystem functioning (Tilman, 1987; Duffy, 2003) and element cycling (e.g. Rast and

Thornton, 1996; Exley, 2003) have been widely altered over the past centuries. Coastal

areas harbor highly diverse ecosystems (Ray, 1988), but are also among the most severe-

ly affected environments. They are subjected to severe eutrophication through increased

deliverance of nutrients and organic compounds by rivers, to habitat loss by trawling

fishery and construction of coastal defense structures (e.g. Casey and Myers, 1998;

Hutchings, 2000; Jackson and others, 2001; Lotze and Milewski, 2004).

Ecosystem composition and functioning are also subjected to natural (e.g. climate-

induced) variability. To quantify human impacts on ecosystems, these natural fluctua-

tions must be accounted for. Since long-term biological monitoring programs are rare

and usually do not include the pre-human state, we must rely on traces of past ecosys-

tems found in the geologic record. These traces come in many sorts and shapes, includ-

ing fossils, minerals, stable isotopes, air bubbles in Antarctic ice and specific molecular

remains of microorganisms. Each of these traces (so-called proxies) can be used to

reconstruct aspects of the environment in which they originated. By combining differ-

ent proxies (a multi-proxy approach), a coherent reconstruction can be made of an envi-

ronment or ecosystem through time. 

Foraminifera (Protista) are close relatives of the amoeba, that live predominantly in the

sea and have a unique feature that makes them popular proxies: many build a shell (a

so-called test) of calciumcarbonate during their life. Since they are abundant in most

marine environments and their tests are often preserved in sediments, they are widely

used in paleoceanography and paleoclimatology. There are two major ways in which

fossil foraminifera can be used as proxies. The first is by enumerating abundances of

different species in a fossil sample and to infer past habitats by the presence or absence

of certain (key) species. Such reconstructions can be improved by increasing our
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knowledge about the habitat preferences of modern species. In order to investigate

temporal and spatial distributions of living foraminifera against an environmental

background, field studies are conducted in which foraminiferal distributions and envi-

ronmental parameters are recorded. In many cases, the abundance of a species is

found to be positively correlated to a range of values of an environmental variable. The

abundance of that same species in a fossil sample is then used to reconstruct values for

that environmental parameter in those samples.

The second way in which foraminifera are used is by analyzing the chemical composi-

tion of their tests. Ratios of carbon and oxygen isotopes in foraminiferal calcite contain

valuable information on, for instance, past oceanic temperature and global ice volume.

Furthermore, during calcification by the foraminifer, trace elements (like Mg, Ba, Cd,

Zn, Cu) can be incorporated in the CaCO3-lattice by substituting Ca. Besides the con-

centration of trace elements in the seawater, the amount of a trace element that is

incorporated in the carbonate is usually a function of several environmental parame-

ters. In the case of magnesium, the incorporation into foraminiferal calcite is mainly

determined by the temperature of the seawater. Hence, Mg concentrations in fossil cal-

cite (commonly expressed as Mg/Ca ratios) reflect sea water temperatures at the

moment when the calcite was produced. The dependency of trace element/Ca ratios on

temperature, salinity, pH, as well as its dependency of cellular activity of the

foraminifer is uncertain for most trace elements. Therefore they need to be quantified

in order to improve their proxy-value.

The original goal of this research was to quantify human and natural influences on near-

coastal Dutch ecosystems over the past 5,000 years. Ongoing population growth has

increased nutrient runoff by rivers, thus enhancing primary production, thereby

increasing the organic flux to the seabed where riverine input is high. In core material

from the North Sea, we expected to see the effects of various stages in human history

(deforestation, agriculture, use of artificial fertilizers) by analyzing foraminiferal assem-

blages from different ages. However, suitable core material, containing a reasonably

continuous record of the past 5,000 years of North Sea sediments, was not available.

Therefore, we shifted the focus of our research to develop proxies to reconstruct human

influences on near-shore ecosystems by collecting living foraminifera from the North

Sea and Dutch Wadden Sea. Results from these studies were used to reconstruct the his-

tory of the western Wadden Sea. In this analysis, the interplay between anthropogenic

and natural influences shows that the effects of human alterations had sudden and dra-

matic consequences for the functioning of this ecosystem.

Our results also indicated that in this environment benthic foraminiferal species com-

positions may not be reliable tools to reconstruct the parameters that we were initially

interested in (i.e. anthropogenic eutrophication) or environmental parameters that are

of more general interest (temperature, oxygen penetration, water depth). In contrast, it

appeared (see chapter 8) that foraminiferal species compositions in shallow seas are

suitable to build models that can reconstruct food quality and hydrographical regimes.

If core material with a substantial part of the Holocene would be available, we would

argue that benthic foraminifera are primarily suitable to reconstruct the North Sea's

hydrographical evolution. Whether foraminiferal community structure is (additionally)
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affected by eutrophication, needs to be investigated further either by experiments or by

field surveys including hydrodynamic fronts in less eutrofied environments.

In foraminiferal research, rose Bengal is commonly used as a vital staining technique

to distinguish living from dead specimens. However, staining foraminifera with rose

Bengal has the disadvantage that it stains all protein-bearing tests, implying that not

only living specimens, but also individuals that have died recently are stained, result-

ing in an overestimation of foraminiferal standing stocks. In chapter 2, MTT is pre-

sented as a new vital staining technique. MTT is a tetrazolium salt that is transformed

by enzymes from a yellow, soluble form to purple formazan crystals. Incubating living

foraminifera with MTT, results in purple staining of active foraminifera. We also show

that days after their death, individuals can become stained by bacteria feeding on

foraminiferal cell material, but these false positives are easily recognized.

Variability in foraminiferal abundances (patchiness) is another practical issue that

may lead to biased results when collecting foraminifera. In chapter 3, results are pre-

sented of a study on the spatial distribution of foraminifera at an intertidal mudflat in

the Dutch Wadden Sea. The study comprised three different surveys: one was con-

ducted to investigate the spatial distribution of intertidal foraminifera on a centime-

ter-scale, in the second, we investigated the variance of foraminiferal abundances on

a larger scale (0.1 - 100 meters apart) and the third was designed to determine the rela-

tion between foraminiferal abundances and their distance from the high- and low

water level. The results show that the two dominant species in the Wadden Sea

(Ammonia tepida and Haynesina germanica) occur in 175-300 cm2-patches of high

abundance and that both species are positively correlated. Only at a very large distance

(>50 m) there appears to be a second-order patchiness, while we found no relation of

abundances with elevation at the intertidal flat. Interestingly, despite huge spatial dif-

ferences in absolute abundance, the ratio between the two species was similar in

space at the same sampling moment. The ratio, however, changed during the year.

This suggests that seasonal variation in an environmental parameter (e.g. type of food

available), causes abundances of H. germanica to be relatively high in spring and those

of A. tepida relatively high in summer, while spatial variations in total standing stock

at any given sampling moment may be governed by another parameter (e.g. total

amount of food).

In chapter 4, results from a field study are presented that show foraminiferal abun-

dances across the Frisian Front (southern North Sea). Around this tidal mixing front dif-

ferent hydrodynamic environments exist (mixed, frontal and stratified) that result in a

variety of different benthic habitats. Stations in those habitats were sampled at four dif-

ferent months to quantify spatial and seasonal differences in benthic species composi-

tion. The results show that the most abundant species present show peak abundances

at specific distances from the benthic front. Inter-seasonal differences in species com-

position were minor, while vertical (in-sediment) distributions of most species in the

upper 5 cm of the sediment changed. In winter months, specimens are usually distrib-

uted evenly in the sediment, while in summer months relatively many specimens occu-
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py the upper centimeter. This suggests that these foraminifera respond to the arrival of

fresh organic material at the seabed in spring and early summer by moving towards the

sediment-water interface or achieve shallow abundance maxima through enhanced

reproduction.

Results from the sampling survey in the previous chapter are compared to distribution-

al data of foraminifera in 1988 and 1989 across the Frisian Front (Moodley, 1990) and

are discussed in chapter 5. Benthic macrofauna was also sampled across the Frisian

Front between 1982 and 2002, during which a sudden shift in dominance was wit-

nessed. Before 1992, the seafloor of the Frisian Front was heavily dominated by filter-

feeding specimens of the brittle star Amphiura filiformis and after 1995, the ghost

shrimp Callianassa subterranea, a burrowing deposit feeder, dominated the area. Despite

the effects of C. subterranea on the physical state of the front's habitats (increased tur-

bidity, increased bioirrigation, increased sediment oxygen uptake), the foraminiferal

community remained relatively stable during the macrobenthic regime shift. This indi-

cates that the occurrences of these foraminiferal species are not strongly influenced by

these ecological and physical alterations and that they can serve as robust proxies for dif-

ferent benthic habitats around tidal mixing fronts.

A reconstruction of the Wadden Sea ecosystem, based on foraminiferal abundances, is

presented in chapter 6. We discuss a record taken in Mok Bay (Dutch Wadden Sea), con-

taining sediment from the past 180 years. The laminated core (2.8 meters long) was

sliced into 1 cm thick slices and total organic carbon content and grain size distribution

was analyzed in each sample. Additionally, benthic foraminifera were counted and all

data were compared to historical trends on the functioning of the Wadden Sea ecosys-

tem. The foraminifera in the core show an abrupt change in species composition: before

1930, Elphidium excavatum is the dominant species and after 1935, numbers decline and

Haynesina germanica suddenly increases in abundance. The timing of the shift in dom-

inance suggests that the construction of the Afsluitdijk in 1932 had profound effects on

the Wadden Sea ecosystem. Knowing the ecological preferences of these two species

(chapters 3 and 4), we hypothesize that the variability in temperature and salinity

increased in Mok Bay after the construction of the Afsluitdijk and are responsible for

the shift in the foraminiferal species composition.

In chapter 7, the incorporation of copper in foraminiferal calcite is discussed. To deter-

mine the partition coefficient of Cu (DCu) in calcite, we cultured two species of

foraminifera under a range of Cu-concentrations in seawater. The Cu/Ca ratio in newly

formed calcite was analyzed by laser ablation inductively coupled plasma mass spec-

trometry (LA-ICP-MS). This method allowed us to analyze the chemical composition of

single chambers of the cultured specimens and resulted in a calculated DCu between 0.1

and 0.3. The effect of temperature and salinity on the DCu was not found to be signifi-

cant. The DCu is similar for both species cultured, despite the presence of symbionts in

one species (Heterostegina depressa) and its absence in the other (Ammonia tepida). We

believe that Cu/Ca ratios in fossil benthic foraminifera can be used to reconstruct

human-induced, heavy metal pollution. 
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The conclusions of these chapters are summarized in chapter 8. Also, important conse-

quences for the use of benthic foraminifera in reconstructing the history of near-coastal

ecosystems are discussed. In the southern North Sea and Wadden Sea foraminiferal dis-

tributions did not appear to be limited by total food abundance or in-sediment oxygen

concentrations. Additionally, foraminiferal community composition did not seem to be

influenced by macrofaunal community composition (dominated by filter feeders or by

burrowing species). We hypothesize that distribution of benthic foraminifera in the

North Sea is mainly controlled by the type of food available (labile or refractory) and by

the level of environmental variability. Different combinations of these two variables are

found across habitats beneath tidal mixing fronts and therefore, benthic foraminifera in

temperate, shallow seas are particularly suited to reconstruct hydrodynamic regimes.
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CHAPTER 2

NOVEL APPLICATION OF MTT REDUCTION: A VIABILITY ASSAY 

FOR TEMPERATE SHALLOW-WATER BENTHIC FORAMINIFERA

with IAP Duijnstee and GJ van der Zwaan

ABSTRACT

Studies on living benthic foraminifera commonly involve staining samples with rose

Bengal (RB) to distinguish living from dead individuals. Since RB also stains individu-

als that have died recently (sometimes weeks earlier) and are not fully decayed, stand-

ing stocks of foraminiferal communities are usually overestimated. To overcome this

bias, we discuss a new viability assay based on the reduction of a tetrazolium salt, MTT

(3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide or thiazolyl blue) by

living foraminifera. The tetrazolium salt MTT is actively ingested by cells and subse-

quently converted enzymatically from a yellow, soluble form to a reddish purple crystal.

Experiments confirm that living individuals of Ammonia beccarii and Globobulimina
turgida convert MTT and become stained within 24 hours. Some dead foraminifers may

continue enzymatic activity for several days, but produce a different coloration than that

of stained living foraminifers. With the reduced problem of false positives, this assay is

an improvement over staining samples with RB whenever a higher accuracy is required

(e.g., in short-term laboratory experiments). 

INTRODUCTION

Benthic foraminifera are extensively used as a tool for paleoecological reconstructions.

The composition of fossil communities of this abundant group of unicellular eukaryotes

reflects marine paleoenvironmental conditions (e.g., van der Zwaan and others, 1999).

However, in order to arrive at reliable paleoenvironmental foraminifer-based proxies, we

need to improve our understanding of foraminiferal ecology. A combination of field

studies (e.g., Bernhard and others, 1997; Wollenburg and Kuhnt, 2000; Gooday and oth-

ers, 2001; Buzas and others, 2002; Scott and others, 2003) and laboratory experiments

(e.g., Alve and Bernhard, 1995; Moodley and others, 2000; Ernst and others, 2002; Alve

and Goldstein, 2003; Langezaal and others, 2004; Duijnstee and others, 2005) provide

the necessary insights into the different habitat preferences of the various foraminifer-

al species. These studies reveal more and more the factors that are important for their

ecological distribution and thereby enhance their proxy value.
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In ecological studies, numbers of living specimens are enumerated at different locations

and sample moments. For this it is necessary to distinguish between living and dead

individuals. The widely used method of staining with rose Bengal (RB) reveals tests

bearing organic material by staining them pink, while empty (dead) tests are not stained

(Walton, 1953). Shells of recently dead foraminifers, however, may retain undecayed

protoplasm for some time, leading to an overestimate of standing stocks, especially

where decay of cell material progresses slowly (Bernhard, 1988; Murray and Bowser,

2000). Experiments are particularly vulnerable to this inaccuracy, since a vast amount of

the community or population is likely to die prior to the start of the experiment because

of manipulations, such as collection of sediment, transport to the lab, sieving, etc. When

an experiment starts, part of the material is harvested to determine the assemblage com-

position at t=0, while an unknown part of the community may have died during the

processes outlined above, and thus might be stained. Bernhard and others (2004)

described the CellTracker Green method as a foraminiferal viability method, and a more

sophisticated method is described in Bernhard and others (2003).  

To overcome the widely acknowledged inaccuracy of staining with RB, alternative stain-

ing techniques have been developed, but none is as easily applicable as RB. Sudan Black

B is less accurate than RB (Bernhard, 2000; Murray and Bowser, 2000), whereas ATP

analysis is very accurate, but individuals have to be processed one by one (Bernhard and

others, 1995; DeLaca, 1986). A good alternative to RB is CellTracker Green, which is eas-

ily used for large populations, but requires epifluorescence microscopy (Bernhard and

others, 2004). 

Here we present an alternative user-friendly staining technique that discriminates

between living and dead foraminifers. Staining proceeds through the conversion of the

soluble yellow tetrazolium salt MTT into a non-soluble purplish blue formazan by

enzymes in living cells. The mechanism of MTT reduction in living cells is not fully

understood, but MTT molecules are known to be taken up by endocytosis (Liu and oth-

ers, 1997; Molinari and others, 2005). The MTT is then reduced in lysozymes by the

activity of enzymes and the coenzyme NAD(P)H (Berridge and Tan, 1993), and finally it

can be transported out of the cell by exocytosis (Bernas and Dobrucki, 2000; Molinari

and others, 2005). Other contributions of MTT reduction come from membrane-bound

enzymatic activity in mitochondria (Bernas and Dobrucki, 2002). 

METHODS

Tetrazolium salts, such as MTT (3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazoli-

um bromide or thiazolyl blue) are frequently used as color indicators for the detection

of enzymes. In the presence of enzymes, tetrazolium salts are converted to reduction

equivalents, formazans. Tetrazolium salts are soluble in water, while most formazans

are insoluble crystals that precipitate during reduction by enzymes. In the case of MTT,

enzymes convert the yellow, soluble form into reddish blue crystals. Reduction by MTT

is commonly used in medical studies to determine the enzymatic activity of cells under

different conditions (Takahashi and others, 2002; Stowe and others, 1995; Bucciantini

and others, 2005) or to assess the viability of cells (e.g., sperm cells, Nasr-Esfahani and

others, 2002; or protozoa, Dias and others, 1999).
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Staining of living and dead specimens

Living individuals of Ammonia cf. molecular type T6 (Hayward and others, 2004,

referred to herein as A. beccarii) were collected from an intertidal mudflat in the Dutch

Wadden Sea in June, 2004. Bulk sediment was kept in an aquarium at room tempera-

ture. Small volumes of sediment were searched for individuals >150 μm that displayed

pseudopodial activity. These were returned to 2 ml of seawater (salinity 17) with 0.5 ml

of sediment from their original environment, and immediately 1 ml of MTT solution

(3.5 g MTT/l seawater) was added. The specimens were placed at 20° C and photographs

were taken every hour to record the progress of MTT reduction. Prior to photographing,

individuals were placed in transparent seawater so that the development of color in the

cells was not obscured by the surrounding yellow MTT solution or by the sediment.

Because it cannot be excluded that handling of specimens prior to photographing may

have negatively affected the foraminifers, care was taken to avoid individuals that died

during the incubation. Though none of the observations indicate that this happened, we

cannot exclude that the metabolism and, thus, the staining were affected by the experi-

ments. The photographs shown in figures 1-4 are representative of the 50 specimens

observed throughout this procedure. 

To extend the use of MTT as a viability staining technique, benthic foraminifers were col-

lected from the Gullmar Fjord, Sweden in April 2005. Sediment was retrieved from the

center of the fjord at a depth of 116 meters, and the material was then transported to

Utrecht and kept at an ambient temperature of 10º C. Living specimens of Globobulimina
turgida >150 μm were collected and put in MTT dissolved in seawater from the fjord

(salinity 33). The individuals were kept at 10º C and photographed as described.

To track possible reduction of MTT in dead individuals, 50 living individuals of Ammonia
beccarii were killed by transferring them for 15 minutes to seawater that was pre-heated

to 50° C. Subsequently, they were placed in a solution of 1 g MTT /l seawater. Individuals

were also killed by incubation for 10 minutes at 100° C, 10 minutes at -80° C and 10 min-

utes of incubation with 96% ethanol to investigate any development of the stain due to

unforeseen alteration of the cell material during heat shocking. Per alternative treat-

ment, 10 specimens were used and photographed, as were living individuals.

In order to investigate the effect of decay on possible post-mortem staining, other indi-

viduals of Ammonia beccarii were killed at 50° C and 100° C, and placed back in 0.5 ml

of sediment (grain size < 50 μm) and 2 ml of seawater. The individuals were left to decay

for 1, 2, 3, 4 and 7 days, respectively, at 20° C. Ten individuals were used per incubation

period. At the end of each period, 1 ml of MTT solution (3.5 g /l seawater) was added

and the individuals were photographed every hour.

Because dead individuals sometimes stained after incubation with MTT (see results), we

developed a blind test in which people were asked to distinguish stained from non-

stained specimens. Fifty four living individuals of Ammonia beccarii (>150 μm) were

picked from a laboratory stock and killed by transferring them to seawater of 50º C for

15 minutes. They were then placed in a layer of sediment (grain size <50 μm) at 10º C.

After 4 days, the 54 treated individuals and 42 living specimens were incubated with

MTT for 18 hours and every individual was transferred to one of the 96 wells of a

Falcon™ tissue culture plate (353072, Biosciences, San Jose, USA).  Each cell of the cul-

ture plate was filled with seawater.  
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The 42 living and 54 dead individuals were distributed randomly over the 96 wells and

on the same day, using the same microscope and same light source, ten people were

asked to distinguish a 'red' and a 'yellow' category. All of the people were attached to the

authors' department. Some were experienced with processing RB-stained foraminiferal

samples, some with processing fossil samples only, and some were not familiar with

foraminiferal research at all. To ensure that their judgement was not biased by the

authors' knowledge, none of them were shown plates with MTT-stained foraminifers or

even told what caused the observed difference in color. 

Staining of dead and living individuals after addition of antibiotics

Bacteria also are known to reduce MTT, and their activity could cause recently dead

foraminifers to appear alive. To exclude this error, specimens of Ammonia beccarii were

killed as described above at 50 and 100° C and placed back in the sediment. After 4 days,

the decaying foraminifers were incubated for 24 hours with 1 ml of the antibiotics strep-

tomycin, neomycin and penicillin (all three combined into one mixture: P3664, Sigma-

Aldrich, St Louis, USA). The concentrations were 1750 units, 1.75 mg and 3.5 mg,

respectively, dissolved in 1 l seawater. One ml of MTT (3.5 g/l seawater) was added

again, and photographs were taken.

Additionally, sediment that was used to isolate specimens of Ammonia beccarii was

sieved over a 25-μm screen and the smaller fraction was plated on standard agar plates.

The petridishes were incubated at 20° C, and bacterial growth was monitored for three

days. At the same time, the sediment pore water was incubated with the mixture of three

antibiotics and plated on the same type of plates, incubated at 20° C, and monitored for

three days.

To determine the effect of antibiotics on living foraminifers, living individuals of

Ammonia beccarii were incubated with 1 ml of the antibiotics mixture. Individuals were

regularly screened for pseudopodial activity and 1 ml of MTT (3.5 g/ l seawater) was

added after three days.

Preservation

In field studies, it is common practice that bulk samples are stained with rose Bengal,

then dried and put aside until stained individuals can be counted under a dissection

microscope. To investigate the longevity of converted MTT (formazan) in foraminiferal

tests, 20 completely stained individuals were picked, air-dried and kept in a chapman

slide for two months. The color of the individuals was regularly checked.

RESULTS

Staining of living and dead specimens

Living individuals of Ammonia beccarii that showed pseudopodial activity all had yellow

colored cell material. In most individuals the last-built chambers were not filled and there-

fore lacked the yellow color. After MTT was added, the yellow color transformed to a  pur-

plish red, starting with the outermost filled chambers and progressing inward (fig 1A).

The speed at which the staining developed, as well as the eventual color of the stained

cell material, varied among individuals. Complete staining could be accomplished with-
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in 6 hours, and sometimes the innermost chambers of an individual were still yellow

after 12 hours, though all of the 50 living individuals got completely stained within 24

hours. Incubation for longer than 24 hours resulted in progressively darker colored cell

material, eventually turning the individual dark purplish to bluish brown.

The color of the cell material of living Globobulimina turgida was also yellow, but darker

compared to that of Ammonia beccarii. After MTT was added, the yellow color slowly

transformed to dark purple. Compared to the staining of A. beccarii, the stain developed

slightly slower in the Globobulimina specimens and the final color was slightly darker

(fig 1B).

Dead and decaying individuals did not stain when they were placed in MTT immediate-

ly after they were killed. However, they did change color after being left to decay, except

for those killed at 100° C. The more days they remained in the sediment, the faster MTT

was reduced. After more than three days in the sediment, most of the individuals were

NOVEL APPLICATION OF MTT REDUCTION 17

Figure 1: Reduction of MTT in living (A,B) and dead (C,D,E) individuals. A,B. true

positives: staining versus incubation time in Ammonia beccarii (A) and

Globobulimina turgida (B). C. false positives: development of the stain in A. beccarii
that was dead for 4 days, killed at 50° C. D. occurrence of colored patches. E. effect

of antibiotics (right) on the formation of colored patches in A. beccarii.



completely stained within one hour, though the color of these cells is more brown and

less red compared to living foraminifers (fig 1A). Longer incubation with MTT caused

the purple color to shift slowly to darker and browner shades (fig 1C).  

Regardless of the way they were killed, individuals that were placed back in the sediment

for several days and subsequently incubated with MTT regularly showed colored patch-

es that appeared to lie at the surface of the test and that were darker than the yellow or

purple color within the test (fig 1D). 

Reduction of MTT in dead individuals of Ammonia beccarii did not occur within

foraminifers that were killed at 100° C. Individuals got slowly and slightly stained after

3 or more days of decay in the sediment. However, the eventual coloration of the indi-

viduals after 24 hours of incubation with MTT is light compared to that of living indi-

viduals or of those that were killed at 50° C. 

The dead individuals stained for the blind test were hardly colored, in contrast to the

stained, living ones. Dead and living specimens were identified correctly 93% of the

time. On average only 3% of the specimens were misidentified as false positives, and on

average 11% of the specimens were misidentified as false negatives (fig 2). No relation

was found between the person's experience with stained foraminiferal samples and the

number of false positives or negatives scored in the blind test. 

Staining of dead and living individuals after addition of antibiotics

Incubating decaying individuals of Ammonia beccarii with antibiotics prior to incubation
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Figure 2: Identifications made in a blind test (+1 SD for misjudged numbers). Left:

living individuals incubated with MTT, right: heat-shocked individuals incubated

with MTT.



with MTT did not affect the staining of cell material in any of the treatments. It did, how-

ever, prevent the occurrence of patches forming on the outer side of the test (fig 1E).

Living individuals of Ammonia beccarii that were kept in a solution of 1 ml of antibiotics

kept their pseudopodial activity for up to three days. Staining these individuals with MTT

did not appear to be different from staining individuals that were not kept in antibiotics.

Preservation

Once cells of Ammonia beccarii were colored, they were air-dried and kept in chapman

slides to track any changes in the color of the stained cells. The color of the cells became

slightly darker, but the light purple color was preserved in all individuals after drying for

at least two months. Since no change in intensity or amount of stained cell material was

observed, the stained foraminifers can probably be kept for a long time between stain-

ing and picking. 

DISCUSSION

Reduction by MTT stains living foraminifers. All of the 50 individuals of Ammonia bec-
carii we examined in the various experiments were stained fully after 24 hours of incu-

bation at 20° C. Living individuals of Ammonia stain red to purplish blue and are easily

distinguishable from individuals that are not stained. Successful incubation of this

species at this temperature takes at least 6 hours, after which roughly half of the cham-

bers are colored. Individuals of Globobulimina turgida stained slightly slower than the

Ammonia specimens, and after 6 hours less than half of the chambers are brightly col-

ored. The reduction of MTT in A. beccarii progressed slower at lower temperatures

(results not shown here). At 5° C individuals of A. beccarii were hardly stained after 24

hours, while at 25° C individuals were recognizable as living after 3 hours. These obser-

vations confirm that the investigated species are mesophyllic, i.e., having enzymes that

operate best under moderate temperatures. 

The application of RB on deep-sea sediments in particular may lead to overestimated

standing stocks because of slow decomposition rates (Heinz and others, 2001;

Hemleben and Kitatzato, 1995). However, when MTT is used to stain deep-sea

foraminifers, an underestimation of the standing stocks may occur, due to mortality dur-

ing ascent from the seafloor. A combination of both methods may shed some light on

this subject. We think that MTT is a good tool for determining the number of individu-

als that survive collection. This is especially important when, for instance, sediment is

used in microcosm experiments.

The results show that some reduction of MTT can take place in dead individuals.

Foraminifers that were killed by heat shock at 50° C displayed enzymatic activity for sev-

eral days. It even appeared that this activity increased within the first 4 days. In living

human cells, MTT is taken up by endocytosis, reduced mainly in lysozymes and then

transported back out of the cell. This process determines the speed of the cell's staining,

whereas a dead cell does not maintain this organization. Membranes break up in a dead

cell, causing MTT to enter the cell passively and causing the cell's organelles to homog-

enize. The combination of these processes could make MTT reduce faster and be more

evenly distributed throughout the cell, resulting in an overall, intense staining. This
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means that dead individuals may be potentially identified as living specimens and these

false positives may lead to an overestimation of standing stocks when the MTT assay is

applied to field or experimental samples. However, staining is clearly different from liv-

ing specimens (figs 1A and C), making the identification of false positives possible.

Moreover, as opposed to staining with RB, recently dead foraminifers do not stain, and

they become differently stained when dead for several days. 

Since dead specimens can stain after incubation with MTT, the number of false positives

and false negatives as identified by the people who did our blind test, were much lower

than expected. We expect that if the same blind test was made by staining these speci-

mens with rose Bengal, all or most of the heat-shocked specimens would have been iden-

tified as stained, hence the improvement by applying MTT is considerable. Note that the

'assemblage' used in the blind test is not comparable to 'normal' foraminiferal samples

that contain live specimens, some recently deceased, and many long dead. The latter

group is completely lacking in our test, in which we deliberately used an assemblage

entirely composed of living specimens and potential false positives. When most of the

dead specimens died long ago, as is the case in normal foraminiferal samples, obvious-

ly, the successrate for separating dead from living specimens will be much higher.

Exposing enzymes to temperatures >80° C usually denatures their three-dimensional

structure. We think that this prevented staining in individuals that were given a 100° C

heat shock. Killing foraminifers through freezing, drying and exposure to ethanol did

not fully denature their enzymes, and these individuals stained in the same way as those

killed at 50° C. The purple patches on the test of dead individuals were caused by bacte-

rial growth, and were prevented by addition of antibiotics. The presence of patches did

not depend on the killing method. The mixture and concentration of different antibiotics

did stop the activity of marine bacteria.  Bacteria growth was evident after 2 days on agar

plates plated with pore water from the sediment in the laboratory aquariums. In con-

trast, no bacterial growth was evident after incubating the same extract of pore water

with the antibiotic mixture. Ammonia beccarii was not affected by the presence of the

antibiotics and showed as much pseudopodial activity after as before incubation. Finally,

MTT-reduction was not visibly affected by the antibiotics. 

An incubation of samples with the antibiotics stops the activity of bacteria on the test of

dead individuals. We believe, however, that it is not necessary to incubate samples with

antibiotics, since the activity of bacteria is easily distinguishable from active, living

foraminifers. Dried, the samples can be kept for at least 2 months before being analyzed

microscopically. It is not recommended that samples be stored in alcohol, as is common

with rose Bengal-stained samples, because it dissolves formazan crystals.

Here we propose a new method for discriminating between living and dead

foraminifers. Incubation of bulk samples with a solution of 1 g MTT/l  seawater at 20° C

causes living individuals to stain slowly within 24 hours. Individuals can stain rapidly if

they are dead for some time before the start of incubation with MTT. However, if they do

so, then they develop a stain that is distinguishable from the color of stained living cells.

Before using MTT reduction as a viability assay, we recommend that the difference in

developed color between living and dead specimens is checked at the temperature of

incubation (i.e., the seawater temperature in which the specimens are collected) for the

species relevant to the study.
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CHAPTER 3

SPATIAL DISTRIBUTION OF INTERTIDAL BENTHIC

FORAMINIFERA IN THE DUTCH WADDEN SEA

with IAP Duijnstee and GJ van der Zwaan

ABSTRACT

Most spatial distributions of benthic foraminifera are aggregated and the scale of the

patchiness has significance for planning sampling surveys, especially for time-series.

Through investigations of variation on a range of scales we demonstrate that at an inter-

tidal flat in the Wadden Sea there is patchiness of the two dominant species (Ammonia
tepida and Haynesina germanica) at a scale of decimeters and possibly additionally at a

scale of > 50 meters. Despite enormous variation in standing crop, species composition

at different localities at a given sample moment was remarkably constant. However, the

ratio between the abundances of the two dominant species varied temporally. We con-

clude that for surveys to establish the general faunal composition, just a few samples

would suffice. However, for time-series investigations of this area it would be necessary

to adopt special sampling procedures. We argue that food availability is likely to be

responsible for the variations in absolute abundances and that relative foraminiferal

abundances may be caused by the ratio of the different food sources present.

INTRODUCTION

Organisms are rarely regularly dispersed in space: sometimes they have a random, but

usually an aggregated distribution (see for an overview: Thrush, 1991). Such a distribu-

tion may be caused by local variations in the environment, but in turn, they themselves

shape the local environment. Non-random spatial distribution of diatoms, for instance,

can have profound effects on sediment stability through secreted extracellular polymer-

ic substances (Paterson and others, 2000) and aggregated distribution of specimens may

enhance biodiversity (Seuront and others, 2002). 

Despite a wealth of studies on benthic foraminiferal abundances in intertidal localities

(Buzas, 1970; Olsson and Eriksson, 1974; Chandler, 1989; Buzas and Severin, 1993; Alve

and Murray, 1994; Buzas an Hayek 2000; Murray and Alve, 2000; Swallow, 2000;

Thomas and others, 2000; Alve and Murray, 2001; Buzas and others, 2002), it is not fully

understood what determines the success (and thus absolute and relative abundances) of

these species. This is important for two reasons: first, in the case of low spatial sampling
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resolution or small sample size, total standing stocks in field samples are easily under-

or overestimated (Buzas, 1968). This makes comparison between different samples and

the detection of long-term trends in foraminiferal abundances difficult. Except when

specimens are evenly distributed in space, sampling procedures need to be based on

observed spatial patterns in order to be accurate.

Secondly, fossil samples may be biased due to spatial heterogeneity (Edwards and oth-

ers, 2004). Foraminiferal patchiness is usually claimed to be spatially dynamical and

therefore, high and low abundances alternate at a location and together produce a fossil

sample with average foraminiferal abundances. However, when sedimentation rates are

very high or when the location of patches is stationary over time, spatial heterogeneity

can still be responsible for misinterpreting paleo-abundances of foraminifera. 

For different, short-term research projects bachelor students conducted various sam-

pling surveys at an intertidal mudflat between June 2002 and May 2003. After combin-

ing these results, a consistent pattern of spatial and temporal dynamics of foraminifer-

al abundances was found. Here we present the combination of these three different

sampling surveys and hypothesize that food availability is responsible for the spatial and

temporal variations in foraminiferal abundances.

METHODS

Small scale patterns 

In June 2002, we sampled an intertidal location in the south-western Wadden Sea (near

Den Oever, 52° 56' N, 5° 01' E; fig 1). This location does not accommodate any sea grass

and samples were taken by avoiding algal aggregates, topographical irregularities, bur-

rows and other traces of macrofaunal activity. A metal grid consisting of 3x3 cm-squares

was pushed in the sediment and 7 by 7 squares were sampled down to a depth of 1 cm,

and immediately stained with rose Bengal (1 g/l ethanol). After two days, samples were

sieved and the fraction >150 μm was screened for stained specimens. In May 2003, the

same grid was used to sample 8 by 8 adjacent squares at the same location. 

To analyze possible spatial patterns in these grids, we used the abundances to construct

covariograms that summarize the relation between covariance and distance between sam-

ples. We used standardized covariograms (equation 1) to determine size and tightness of

patches (Dalthorp and others, 2000). A low standardized covariance for a given distance

indicates similarity between samples, while high covariances indicate dissimilarity. 

Cs(h) = 1-C(h)/s2 (1)

Where C(h) is the covariance for two samples with distance h and s2 is the variance

between those samples. Standardized covariograms typically have low values at low dis-

tances and increase to 1 at higher distances. The starting value (commonly called the

nugget) can be interpreted as the tightness of patches (lower values indicate tighter

patches), whereas the size of the patches is represented by the distance where the covari-

ance curve levels off at 1. If individuals are randomly distributed, patchiness is absent

and the covariance-curve is horizontal.
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Large scale variation 

In June 2002, the same intertidal location in the Wadden Sea was sampled to determine

large scale spatial patterns in foraminiferal abundances. Samples were taken by using a

1 cm high ring with a diameter of 8.0 cm resulting in top-centimeter samples of 50.3

cm³. Three pairs of samples were taken at eight locations: groups consisted of pairs at

distances of 0.10, 1.0 and 10 m. Each group of three pairs were taken within 100 m² and

all eight groups of samples were approximately 40 meters apart, located roughly paral-

lel to the water line, in between the mean low and mean high tide lines. Samples were

stained with rose Bengal (1 g/l ethanol) at the site of collection and after two days, the

material was sieved over a 150 μm-screen after which the large size fraction was checked

for stained foraminifera. Because samples occasionally contained many specimens,

samples were split into halves, or further into one-fourths, etc. In these cases, parts were

then analyzed for rose Bengal-stained specimens and numbers were multiplied to

obtain abundances for the complete sample. In this way, at least 200 individuals were

counted per sample.

Data were used to calculate similarity ratios (Ball, 1966) between pairs of samples for

each of the three distances (equation 2). 

SRij = Σkykj/(Σkyki
2 + Σkykj

2 - Σkykiykj)                    (2)

Where yki is the abundance of the species k at site i. This similarity index varies between

0 and 1, higher values indicating higher similarity. The 8 calculated ratios of each dis-

tance were averaged to calculate the average similarity ratio for each of the three dis-

tances.
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Tidal gradient 

In May 2003, at low tide, the same 1 cm high ring with a diameter of 8 cm was used to

sample two parallel transects. At the same longitude (5° 01.179' E), six locations with a

0.1 minute-interval (185 meters) were sampled by taking two samples within a square

meter. The two locations closest to the low water line were sampled with a distance of 0.2

minutes (370 meters) away from the nearest samples. 0.05 minutes (93 meters) west of

this transect, another transect was sampled in the same way. Sampled locations were cho-

sen so that they were evenly spaced between mean high tide and mean low tide (fig 2).

In April 2003, the same two transects were also sampled, although no replicates were

taken.

RESULTS

Small scale patterns

The grid sampled in June 2002 contained only one species in significant abundances:

Ammonia cf. molecular type T6 (Hayward et al., 2004; here further referred to as A. tepi-
da; fig 3). In chapter 2 we referred to this species as Ammonia beccarii, but after publica-

tion (De Nooijer and others, 2006) we agreed with others that it is more often referred to

as A. tepida. In this and following chapters, we will use the name tepida for this species.

The squares containing high abundances (>300) were located in the lower right and the

upper right corner of the grid. Most squares contained low abundances (<50), were

located in adjacent pairs: two at the middle-lower side and two at the left side of the grid.

In May 2003, the samples of the 8 by 8 squares contained the species Ammonia tepida
and Haynesina germanica (fig 4).

For both species there appeared to be two patches of higher abundances: in the upper
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left and lower right corner. The relations between distance within the grids and absolute

abundances in the adjacent squares (figs 3 and 4) are summarized in standardized

covariograms (fig 5).

In 2002, for the smallest distance, the standardized covariance (i.e. the nugget) is 0.75,

indicating that the foraminifera are distributed in diffuse patches. For 2003, the covari-

ograms show a patchy spatial distribution for both species in the grid: Haynesina ger-
manica occurs in more diffuse patches (nugget = 0.6) and Ammonia tepida in tighter

patches (nugget = 0.4) of 15-20 and 15 cm in diameter respectively. A. tepida is present

in much higher numbers than H. germanica, although the location of their patches is

spatially correlated.
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Figure 3: Small scale distribution of Ammonia tepida in June 2002.

Figure 4: Small scale distribution of Ammonia tepida and Haynesina germanica in one

grid in May 2003.



Large scale variation

In June 2002, the same location was sampled to investigate the distribution of benthic

foraminifera at a larger scale. Again, samples contained mainly Ammonia tepida. The

relation between the distance and similarity is expressed as the similarity ratio (fig 6).

Although standard deviations are relatively large, samples differ more when taken 10

meters apart than at smaller distances. This suggests that there may have been 2 levels

at which there was spatial variability: a relatively small scale variance resulting in a simi-

larity ratio of 0.85 and a larger scale variance with a ratio of 0.70. 

With regard to the groups of sample-pairs taken within 100 m² (group 1-8), there are sig-

nificant differences between average abundances of the groups (fig 7). Average abun-

dances of Ammonia tepida in the samples of group 1 and 2 (located at the west side of the

line on which all groups were located) is higher than that of groups 3-8. Average stand-

ing stocks of groups 1 and 2 differ significantly from all other 6 groups, but not from each

other (ANOVA single factor, df = 10, F1, 5 > 4.96, p < 0.05). Within the groups 3-8, most

differences in means are significant (exceptions: 3 and 4; 5 and 7; 5 and 8; 7 and 8).
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bottom: May 2003; left: Ammonia tepida, right: Haynesina germanica.
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Figure 6: Relation between similarity of

samples and distance (+ 1 SD).

Figure 7: Mean total standing stock of

groups of 6 samples taken within 100

m2 (+ 1 SD). Groups were located

approximately 40 m apart.

Figure 8: Similarity ratio for the upscaled grid data from figs 2 and 3 (+ 1 SD).



Relation small and large scale

To compare spatial patterns in the two discussed sets, grid samples were upscaled to

match the size of the large scale samples. This was approximated by combining 4 adja-

cent squares into one of 6 by 6 centimeters. The centers of these new squares of 36 cm²

had mutual distances ranging from 6 to 25 cm. The relation between similarity and dis-

tance was expressed similar to the large-scale samples in fig 6. Average similarity ratio

between these larger squares is 0.90 - 0.95 for the grids sampled in 2002 and 2003 (fig 8). 

Effect of tidal gradient

In April and May 2003, two transects were sampled at the same intertidal location in the

Dutch Wadden Sea. As for the grid sampled in May that year, only Ammonia tepida and

Haynesina germanica were present. Although total numbers of both species differed, the

Ammonia/Haynesina ratio in each month was relatively constant among the samples

(fig 9).

To compare transect samples with the other two groups of samples, their similarity

ratios versus distance were calculated (table 1). Regression analysis based on all data,

indicated that abundances of both species were not significantly correlated with distance

to mean high or low tide. 
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Figure 9: Numbers of Ammonia tepida and Haynesina germanica in the sampled tran-

sects in April (left) and May (right).



Summary 

The occurrence of the two main taxa was compared by correlating the absolute abun-

dances of Ammonia tepida and Haynesina germanica per sample for the large scale sur-

vey (June 2002), and transects (April 2003 and May 2003: fig 10).

Before calculating the correlation coefficients between Ammonia tepida and Haynesina
germanica, total numbers were log-transformed because numbers were not bivariate

normally distributed. After log-transformation, this requirement was met and all corre-

lations between A. tepida and H. germanica were positive (April 2003: r = 0.902, df = 10;

May 2003: r = 0.707, df = 22; June 2002: r = 0.835, df = 46) and significant (p < 0.0001

for all analyses). In June 2002, average percentage of A. tepida in all samples was 91%,

in April 2003 it was 59% and in May that year, 81% of the community consisted of A.
tepida. The small scale data was not transformed and correlation analysis resulted in a

positive (r = 0.740) and significant (p< 0.001) correlation (fig 11).

At the centimeter scale, the Haynesina/Ammonia ratio is similar to that obtained from

the large scale sampling survey at the same time.
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Similarity ratio

April May

Distance (m) A. tepida H. germanica n A. tepida H. germanica n

<1 (replica's) - - - 0.66 +/- 0.31 0.67 +/- 0.30 12

93 0.57 +/- 0.31 0.41 +/- 0.37 6 0.64+/- 0.27 0.61 +/- 0.25 24

185-207 0.63 +/- 0.27 0.51 +/- 0.28 16 0.51 +/- 0.32 0.57 +/- 0.34 64

370-382 0.52 +/- 0.28 0.45 +/- 0.27 16 0.47 +/- 0.30 0.51 +/- 0.33 64

555-563 0.64 +/- 0.28 0.48 +/- 0.39 12 0.67 +/- 0.27 0.62 +/- 0.30 48

740-746 0.50 +/- 0.37 0.34 +/- 0.38 8 0.58 +/- 0.33 0.50 +/- 0.33 32

925-930 0.23 +/- 0.18 0.18 +/- 0.21 4 0.30 +/- 0.21 0.62 +/- 0.28 16

1110-1114 0.35 +/- 0.25 0.36 +/- 0.42 4 0.61 +/- 0.30 0.69 +/- 0.28 16

Table 1: Average similarity ratio per distance within transects for both species during

April and May (+/- 1 SD).



DISCUSSION AND CONCLUSIONS

In this study we show that elevated foraminiferal abundances occur in patches of ~175-

300 cm2. Spatially, the abundances of Ammonia tepida and Haynesina germanica are cor-

30 CHAPTER 3

Figure 10: Relation between abundances of Ammonia tepida and Haynesina german-
ica in the large-scale and transect samples.

Figure 11: Relation between abundances of Ammonia tepida and Haynesina german-
ica in the grid samples.



related although the ratio of the two species varies temporally. We hypothesize that the

availability of different food sources and differential food preferences of A. tepida and H.
germanica are responsible for the observed spatial and temporal variability, and further

explore this possibility below.

Differential food preferences

Haynesina vs Ammonia
Many studies suggest that Ammonia spp. and Haynesina germanica feed on different

food sources. Generally, species in the genus Ammonia are known to feed on detritus,

bacteria and refractory material (Goldstein and Corliss, 1994). H. germanica on the other

hand, is known to prefer labile organic material such as (living) diatoms. This difference

in food preference is illustrated by the fact that in our laboratory, we were able to keep

A. tepida alive in the dark for several months, where most individuals of H. germanica
did not survive dark conditions for a week (results not shown here).

From visual observations (Murray and Alve, 2000) and from chromatography studies

(Knight and Mantoura, 1985) it is known that A. tepida usually does not contain algal

chloroplasts. A. tepida is also described to be spatially positively correlated with

cyanobacteria (Hohenegger, 1989). Experiments by Moodley and others (2000) show

that A. tepida does not exclusively feed on refractory matter, but rather is capable of feed-

ing on many food sources and perhaps utilizes refractory matter when nothing else is

available or competition for labile matter is too fierce.

H. germanica on the other hand is known to contain living diatoms or their chloroplas-

ts (Knight and Mantoura, 1985), which is also indicated by its intense green colored cyto-

plasm (Murray and Alve, 2000). Ward and others (2003) concluded after feeding experi-

ments that H. germanica consumes living individuals of the pennate diatom

Phaeodactylum tricornutum, and does not consume more refractory, sewage-derived

organic matter. Recently, it has been shown that H. germanica is able to crack the frus-

tule of the diatom Pleurosigma, presumably to feed on its cell material (Austin and oth-

ers, 2005).

If this difference in food preference is responsible for the observed spatial and tempo-

ral patterns, three premises must be true: 1. foraminiferal food occurs in patches: 2. dif-

ferent types of food are correlated spatially and 3. the ratio of the food sources varies

temporally.

Distribution of foraminiferal food

Microphytobenthos (the main foraminiferal food source) is reported to occur in patch-

es of 2-100 cm2 in muddy sediments (Blanchard, 1990; Seuront and Spilmont, 2002;

Jesus and others, 2005) and in patches of 30-190 cm2 in sandy sediments (Sandulli and

Pinckney, 1999). Bacteria can also occurr in patches on a centimeter scale in near-coastal

sediments (Seymour and others, 2004). Additionally, Blanchard (1990) found a correla-

tion between the patchy distribution of microphytobenthos and meiofauna and hypoth-

esizes that spatial and temporal variations in the abundance of meiofauna is caused by

food availability. Harpacticoid copepods are also shown to be distributed spatially

according to distribution of diatoms and bacteria (Decho and Castenholtz, 1986). 

Spatial correlation of food sources (the second premise) is described for different

SPATIAL DISTRIBUTION OF FORAMINIFERA 31



species of diatoms (Peletier, 1996; Haubois and others, 2005) and for microphytoben-

thos and bacteria (Hohenegger and others, 1989; Goto and others, 2001). The latter cor-

relation can be caused by bacteria feeding on excreted polymers by diatoms (Decho,

2000).

Finally, it has been shown that intertidal microphytobenthic biomass (e.g. De Jonge and

Colijn, 1994; Staats and others, 2001; Widdows and others, 2004) and species composi-

tion (e.g. Underwood, 1994; Pinckney and others, 1995) varies seasonally. Also at Dutch

tidal flats these variations are recorded (e.g. Barranguet and others, 1997; Hamels and

others, 1998), where diatoms dominated the sediments in spring and high amounts of

cyanobacteria coexist with diatoms in summer, followed by a further decrease of diatom

biomass in autumn.

Other factors

It may well be that variations in absolute and relative abundances of foraminifera in the

Wadden Sea are (partly) caused by the factors determining microphytobenthic and bac-

terial biomass and species composition. For example, Montagna and others (1983)

showed that occurrences of diatoms and other meiofauna were partly determined by

physical factors (salinity, temperature and redox depth). It is also reported that micro-

phytobenthic biofilms, formed in spring at Dutch intertidal flats, were mainly eroded by

tidal waves later in the season due to increased wind stress (Staats and others, 2001; De

Brouwer and others, 2000). It can not be excluded that benthic foraminiferal abun-

dances are also determined by these factors.

Implications for sampling design

The results emphasize the need for adequate sampling procedures that cope with the

observed variation in abundances. In the area described here, relative foraminiferal

abundances can be determined by a low number of samples since the ratio of Ammonia
tepida and Haynesina germanica is relatively constant at a given time. In contrast, the

absolute numbers vary greatly, with many samples of relatively low numbers and few

with high numbers. This difference manifests itself especially at the centimeter scale,

which is easily accounted for by taking several replicate samples. Another major hetero-

geneity step occurs at the scale of >10 meters. In seasonal or multiple-year monitoring

of such mudflats it is thus necessary to take samples app. 100 meters apart if one wish-

es to cover the full range of abundances present at the scale of the entire mudflat.

Many studies mentioned in this discussion stress the complexity of the meiofaunal-

microphytobenthic-sedimentary system. Some studies reveal that biological interactions

(grazing, competition), or abiotic, seasonal changes (wind stress, salinity, temperature)

determine abundances and species composition in the intertidal benthic community.

The role of foraminifera in the intertidal benthic food web is hardly accounted for in

these studies, but as our results show, they may play an important role in the interac-

tions between bacteria, microphytobenthos and other meiofaunal taxa.
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CHAPTER 4

THE ECOLOGY OF BENTHIC FORAMINIFERA ACROSS THE

FRISIAN FRONT (SOUTHERN NORTH SEA)

with IAP Duijnstee, MJN Bergman and GJ van der Zwaan

ABSTRACT

Benthic foraminifera were collected across the Frisian Front, a biologically enriched

transition zone with high organic matter content below a tidal mixing front in the south-

ern North Sea. At various seasons during cruises between 2002 and 2005, boxcores from

different hydrographic regimes (i.e. tidally mixed, frontal and stratified) were subsam-

pled. From every subsample, stained foraminifera were enumerated in the top 5 centi-

menter of sediment. Results indicate that standing stocks and foraminiferal diversity

are higher at the central zone of the Frisian Front than further away from the frontal

zone. Also, most of the abundant species occupy a specific zone relative to the front's

central position. Elphidium excavatum is abundant at the southern edge of the Frisian

Front, where input of labile organic matter is high and physical disturbance (i.e. resus-

pension of fine-grained material) is relatively frequent. Ammonia tepida and

Quinqueloculina spp. dominate at the front's center where organic carbon input is rela-

tively high. Hopkinsina pacifica has highest abundances at the deepest boundary of the

front, and Eggerella scabra dominates the deeper, stratified Oyster Grounds north of the

front. Differences in seasonal distribution patterns were minor compared to spatial dis-

tributions, although depth distributions varied between summer ('epifaunal' distribu-

tion) and winter (vertically more evenly distributed). The latter suggests that the vertical

distribution of foraminifera is governed by the arrival of fresh organic matter at the

seafloor in spring and summer.

INTRODUCTION

In many coastal waters, tidal mixing fronts can be found (Pingree and Griffiths, 1978;

Simpson and others, 1978). These fronts are the transition zone between near-coastal

waters, which are completely mixed by tidal wave action, and deeper waters that become

thermally stratified in spring and summer (Jones and others, 1998; Drinkwater and

Loder, 2001; Mavor and Bisagni, 2001). If the tidally mixed waters are rich in suspend-

ed matter this will sink down at such fronts where tidal currents drop below a critical

velocity along a deepening slope. Enhanced settlement results in a zone of sediment
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with a high mud content at the location of these fronts (Creutzberg and Postma, 1979).

In the frontal zone, usually a chlorophyll maximum exists, caused by the optimal com-

bination of light and nutrients (Holligan, 1981; Postma, 1988). At the deep boundary of

a front, thermal stratification prevents upward diffusion of nutrients and at the coastal

edge, turbidity prevents light penetration, both factors limiting primary production.

In the North Sea two hydrographic fronts separate the Southern Bight from the

Oystergrounds: the Frisian Front off the northern Dutch coast (De Gee and others,

1991) and the Flamborough Front, which is located near the English east coast (Hill

and others, 1993; Howarth and others, 1993; Tett and others, 1993). These fronts pro-

vide a variety of pelagic and benthic environments within a short bathymetrical range.

Benthic studies at the Frisian Front, the zone with increased deposition of silt between

the 30 and 40m isobaths, have shown enhanced biomass and diversity of the mac-

robenthos compared to locations outside the front (Creutzberg, 1986; Callaway and oth-

ers, 2002; Dewicke and others, 2002). 

Only few studies have included foraminifera in assessing the benthic community

structure in the North Sea, despite their high abundances and ecological importance.

Studies focusing on foraminifera across hydrodynamic fronts (e.g. Moodley, 1990;

Scott, 2003) are necessary in order to reliably reconstruct Holocene shelf evolution

(Moodley and Van Weering, 1993; Evans and others, 2002; Scourse and others, 2002).

Another reason to monitor (meio)faunal densities and diversity results from the inten-

tion of the Dutch government to appoint the Frisian Front as a protected area in 2007

(IDON, 2005). The North Sea in general is heavily trawled and ongoing deterioration

of its habitats and declining fish stocks have caused the necessity to restrict fishery in

certain areas of the North Sea. The Frisian Front is one of the intended protected loca-

tions since it is acknowledged to be an ecologically unique area. Future changes in the

benthic faunal diversity, community structure and densities can only be investigated by

using base-line field studies that determine faunal abundances shortly before ecologi-

cal intervention. Here we present results of benthic foraminiferal abundances across

the Frisian Front and discuss their relation to a range of hydrodynamic and environ-

mental conditions.

METHODS

Area description

At the transitional zone between the Southern Bight water (depth 25m) and the Oyster

Grounds (50 m) the maximum tidal current velocity drops below a critical value, result-

ing in increased deposition of mud and organic carbon at the sea bed. This biologically

enriched benthic zone between the 30 and 40m isobaths is called the Frisian Front and

is located approximately between 53º 30' N, 4  00' E and 54º 00' N, 5  00' E (Creutzberg,

1986; De Gee and others, 1991). On a north-south transect along the 4º 30' E meridian,

the frontal zone extends from 53º 35' N to 53º 50' N, with the highest mud content

between the latitudes 53º 40' N and 53º 45' N where water depths are between 35 and

40 meters. The position of the hydrodynamic front may vary according to wind direction

and speed (Hill and others, 1993), the location of the benthic front, however, remains

relatively stable over the years. South of the Frisian Front, sediments consist of fine
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sands with almost no mud and towards the front the mud content increases rapidly up

to 15%, but declines somewhat towards the deeper Oyster Grounds that are character-

ized by spring and summer stratification (fig 1).

The hydrographic Frisian Front stretches out to the east, parallel to the Dutch and

German northern coastline and to the west, where it joins the Flamborough Head Front

at approximately 0º 40'E. An along-front jet flows eastwards, just south of the Frisian

Front (Lwiza and others, 1991). During stratification of the water north of the Frisian

Front, a colder surface layer can be distinguished just south of the stratified area. This

phenomenon is ascribed to small, circular cross-frontal currents, which transfer deep

and colder waters of the stratified area up to the surface (Van Haren and Joordens, 1990;

fig 1). Studies on chlorophyll-a (Chl-a) content in cross-sections of the Frisian Front

revealed that the Chl-a profiles are not consistent through space and time. Chl-a maxi-

ma exists regularly in summer near the sediment-water interface at the south side of the

benthic front (Van Haren and Joordens, 1990) and occasionally, a weaker optimum just

north of the front is observed. 
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Figure 1: Position of the benthic front versus bathymetry of the seafloor. Mud con-

tent across the front, Chl-a maxima, and the cross-front current are indicated (based

on Creutzberg and Postma, 1979; Creutzberg, 1986 and Van Haren and Joordens,

1990). Position of sampling stations is indicated by arrows.



Sampling

A transect across the Frisian Front was sampled in different months and years to deter-

mine abundances of benthic foraminifera. Samples were taken on December 4th, 2002;

June 25th, 2003; August 29th, 2004 and February 7th, 2005. Figure 2 shows the location

of the front and the sampled stations. 
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Figure 2: The Southern North Sea, the location of the enriched benthic zone in the

Frisian Front (single hatched area) with the highest silt content (cross-hatched area)

and the sampling scheme.



Foraminifera were subsampled from both boxcores taken at each station. Small cores

(26 cm2 in diameter, ten centimeters high) were used to slice the sediment on-board into

7 depth intervals. The top two centimeters were sliced in four layers (each 0.5 centime-

ter) and the lower part in three intervals of one centimeter each. All samples were stored

in polyethylene jars and fixed in ethanol with rose Bengal (1 g/ l). Additionally, each box-

core was subsampled for oxygen profile measurements and the top centimeter of sedi-

ment of one boxcore per station was sampled for TOC and grain size analyses. 

Measurements of the dissolved oxygen content of the pore waters were performed on

board with Unisense microelectrodes (OX-10) attached to a micromanipulator and con-

nected to a Unisense picoamperemeter. Electrodes were calibrated prior to measure-

ments in oxygen-saturated seawater from the boxcore. At approximately 5 cm above the

sediment-water interface, oxygen was measured before and after profiling the sediment

to exclude any changes in the electrode's properties during the measurements.

Upon return in the laboratory, samples for TOC and grain size analysis were dried. After

one week, samples for TOC were decalcified by two successive additions of 1M HCl and

rinsed with demineralized water afterwards. After the samples were dried, analysis was

performed on a CS-analyzer, LECO. Grain size analysis was performed using a laser par-

ticle sizer, Malvern Instruments, UK. Before analysis, material was treated with 10%

H2O2 and with 1M HCl to remove organic material and carbonates.

A week after the samples were taken, the faunal samples were sieved over two screens

to remove material smaller than 63 μm and to separate the foraminifera into two size

classes that are common in micropaleontological studies: between 63 and 150 μm and

larger than 150 μm. The material was screened under a dissection microscope for rose

Bengal-stained (i.e. protoplasm-bearing) foraminifera. 

Statistical methods

Principal Component Analysis (PCA) was used to determine the community's relation to

abiotic parameters at the sampled stations and was performed in CANOCO, version 4.5

(Microcomputer Power, Ithaca, USA; Ter Braak and Šmilauer, 2002). Prior to analysis,

species numbers were square root transformed and environmental parameters were plot-

ted additionally. Also, since three samples contained very few specimens (February and

August, southernmost samples) and therefore would have dominated the outcome of the

PCA, they were plotted in the ordination plane as supplemental samples, thus not influenc-

ing the construction of the ordination axes. Foraminiferal abundances are partly presented

by interpolating between the moments and locations of the samples. The interpolation was

carried out by an Excel-embedded algorithm using third-order piecewise polynomials.

Since the samples were taken in different months of different years, the results are pre-

sented in a chronological order, (i.e. in the order in which the samples were taken). For

convenience, and to facilitate the recognition of possible seasonal patterns in the data,

they are also presented as if they were taken within one year. This seasonal order that is

used to express the data in the following sections starts with the samples taken in

December (as in the chronological order) and consequently, ends with the same sam-

ples to complete the seasonal interpretation. One should keep in mind, however, that

the variability in these representations may be partly caused by interannual variability. 
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RESULTS

Environmental setting

The total organic carbon (TOC) in the upper centimeter, measured at the stations and at

the four sample moments, was generally higher in June and December than in February

and August. Along the cross section through the geographic Frisian Front, TOC was ele-

vated between 53º 30' and 53º 45' and highest at the central front zone (fig 3).

During some of the measurements on pore-water oxygen profiles in the sediment, the

electrodes were broken by large objects in the sediment. Therefore, oxygen profiles were

not obtained from all sites and sample moments and we did not include oxygen as envi-

ronmental variable in our statistical analyses. We noticed, however, that the obtained

profiles were all relatively similar: i.e. below 0.5 cm, oxygen concentration was usually

below 8 mg/l, i.e. 5% of the concentration 1 cm above sediment-water interface: data are

listed in appendix I. 

Total foraminiferal community

Overall, total standing stocks were relatively similar between stations and sample

moments; the only exceptions were abundances in the stations at the southern border

or even south of the enriched silty Frisian Front (53º 30' and 53º 22'), where densities of

stained individuals were always less than 60 per sample (130 cm3). In general, differ-

ences between the replicate samples were small (fig 4).

Abundances of all species were used to calculate Shannon's diversity index (H) and

Shannon's equitability (EH): fig 5.

Foraminiferal diversity (Shannon diversity index: H) did not differ much across the sta-

tions, although it was slightly higher at the central zone of the front than at more dis-

tant stations. Since H is a reflection of both evenness and species number, high values

at the front were only partly caused by a high number of species in those samples.

Shannon's equitability (EH: value between 0 and 1) is essentially a correction of this

diversity for the number of species, thus reflecting merely evenness, which increases

towards the southern border of the front (fig 5, right). 

To analyze spatial and temporal patterns in total foraminiferal communities, principal

component analysis was performed (fig 6). 

The variance in species data explained by the first and second Principal Component

together is almost 75% (40.4% and 32.8%, respectively). Sample scores on the first axis

are mainly dominated by the abundant Eggerella scabra and Bolivina spathulata (causing

negative sample scores) and by Elphidium excavatum, Bolivina pseudoplicata, Stainforthia
fusiformis and the rarer Nonion depressulus (whose abundances cause positive sample

scores). This axis is negatively correlated with latitude and positively with TOC. 

Sample scores on the second (vertical) axis are caused by high numbers of Hopkinsina
pacifica, Bulimina marginata, Bolivina dilatata and Bolivina seminuda, and by low abun-

dances of Textularia sp. and Leptohalysis scotii. The second axis is also positively correlat-

ed with mud content and negatively with high values for the variable 'summer'. The

species composition of the three additionally plotted samples from the southern end of
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Figure 3: Total organic carbon content in the upper centimeter as a percentage of the

sample's dry weight. The values are represented in the chronological order (left) and

in the seasonal order with interpolated values in between the samples (right).

Figure 4: Total abundances per 26 cm2 of the total community in the upper five cen-

timeters: values are averages of duplicate samples (+1 SD in the bar chart).

Figure 5: Shannon's diversity index (left) and Shannon's equitability (right). Data in

between samples are interpolated.
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Figure 6: Principal component analysis. A: Biplot of 1st and 2nd PCA scores based

on absolute abundances of all species, environmental variables are plotted addition-

ally. Values for the variable 'summer' are based on the time lapse, calculated in

months, from December (the first sample moment) onward. Although used for the

analysis, species that occurred in low numbers are not shown in the ordination

plane. Samples at 53°30' and 53°22' N are added as supplemental samples. B and C:

spatio-temporal distribution of the sample scores on the first and second axes respec-

tively: values in between the samples are interpolated.



the sampled transect corresponds to foraminiferal compositions of samples that have a

low mud content too.  

Figures 6B and C highlight the relation between the time and location of sampling and

the scores of the samples in the ordination plane. The first axis reflects a transition from

north (low scores on first axis) to south (high scores). The scores on the second axis,

more than on the first one, represent a stronger temporal gradient. 

Individual taxa

Overall, we distinguished 33 taxa, mainly determined to the species level. In this sec-

tion, we will focus on the temporal and spatial distribution of the 6 most abundant

species: data are listed in appendix II. Figure 7 shows that there were geographical

foraminiferal zones in the stations sampled. At stations that are characterized by sum-

mer stratification (53° 50' and further north), Eggerella scabra was the most dominant

species. Further south, at the central frontal stations (53° 40'-53° 45') Hopkinsina pacifi-
ca, Ammonia tepida and, less pronounced, Quinqueloculina spp. were the most abundant

species. Eggerella scabra was the only species that displayed a clear north-front prefer-

ence and Elphidium excavatum the only species with a south-front preference. The last

of the 6 most abundant species -Stainforthia fusiformis - did not show a clear geographi-

cal preference, but had cross-frontal temporal peaks in abundance. Temporarily, A. tep-
ida and E. scabra are relatively abundant in the two winter months, while E. excavatum
and Quinqueloculina spp. are relatively abundant in summer months. H. pacifica and S.
fusiformis do not display a seasonal preference (fig 7).

The occurrences of the 6 most abundant species are also presented as relative abun-

dances at the four different sample moments (fig 8). These graphs emphasize the

change in dominance at the stations sampled and the correlation of species with specif-

ic latitudes. Eggerella scabra showed increasing relative abundances towards northern

stations at all sample moments. Consequently, relative abundances of Ammonia tepida
and Elphidium excavatum decreased towards northern stations. Stainforthia fusiformis on

the other hand, occurred mainly in June and December.

Depth distribution in the sediment

In the previous sections, we combined all 7 vertical depth intervals per species. In fig 9

we summarized total standing stocks versus sediment depth of 4 months combining

data of various stations. Minor differences in vertical distribution patterns were

observed when comparing the different stations at the same sample moment, despite

significant differences in environmental conditions (e.g. organic carbon content, fig 3).

However, differences are visible when comparing different sample moments. In

December and February, for example, the foraminiferal community lived on average

deeper than in June and August. During summer months highest foraminiferal densi-

ties were observed in the upper 0.5 cm of the sediment, while during the winter months

densities were more evenly distributed throughout the sediment. This shallowing or

deepening of the microhabitat occurred for all taxa rather synchronously (results not

shown here) and no significant difference was noted between the more muddy and

sandy stations.
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DISCUSSION

Samples taken in this study largely consisted of dysoxic and anoxic sediment layers. The

protoplasm of individuals that died at these depths will decay much slower than those in

the upper, oxidized layer. Since staining samples with rose Bengal does not make it possi-

ble to distinguish between decaying and living individuals, it is argued that standing

stocks in deeper, anoxic habitats are easily overestimated (Bernhard, 1988; Corliss and

Emerson, 1990). Alternatives for rose Bengal are MTT (De Nooijer and others, 2006; chap-
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Figure 7: Total standing stocks of the six most abundant species in the upper five

centimeter: values are averages of two samples (+1 SD in the bar chart).



ter 2) and CellTracker Green (Bernhard and others, 2003; 2004). Although these methods

will result in more accurate determination of total standing stocks, it will hamper compar-

ison with previous field studies. Since we found relatively low standing stocks in deeper

sediment layers in summer months (fig 9), we are inclined to think that the bias caused

by staining with rose Bengal is limited. Moreover, CellTracker Green and MTT do not stain

those specimens that did not survive the period between sampling and incubation with

the staining probe, resulting in an underestimation of the total standing stock.
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Figure 8: Relative abundances of the 6 most abundant species.

Figure 9: Average relative depth distributions in the sediment per month, stations

and species combined. Values are based on averages of total numbers per depth

interval (+1 SD), total number of specimens in the upper four samples are doubled

to equal the volume of the other samples.



Another error in estimating abundances of benthic foraminifera can be caused by patch-

iness in the spatial distribution of individuals (Buzas, 1968; 1970; Murray and Alve,

2000; this thesis, chapter 3). The variability in duplicates was generally low (figs 4 and

7, left-side panels, and fig 6A), indicating that on average, abundances are representa-

tive for the stations sampled. 

Environmental setting

The central position of the high concentration of total organic carbon (fig 3) fits the sed-

imentation of organic matter described in the literature for tidal mixing fronts (Lampitt,

1985; Cadée, 1986). Enhanced primary production at fronts (Lee and others, 2005),

results in a high input of phytodetritus at the seafloor. Suspended organic carbon at the

coastal side of the front sinks when current velocities drop below a critical level, some-

where along the slope of the southern North Sea. At this depth, organic matter as well

as sand and clay particles are deposited (Van Haren and Joordens, 1990; Howarth, 1993;

Trimmer and others, 2003). Deposition of clay is responsible for the high mud content

found at the central zone of the front because the zone of sedimentation roughly coin-

cides with the zone with primary production maxima. Organic matter strongly adsorbs

to mineral surfaces (Anderson, 1988; Mayer, 1994) providing an additional explanation

why mud content and total organic carbon content are strongly correlated at the Frisian

Front. In our samples, the input of organic matter appeared especially high at the start

of the summer (fig 3), likely a result from high phytoplankton production in spring (Lee

and others, 2005). High organic carbon content at the front in December may be partly

caused by the increased silt transport from the English coast, resulting from erosion of

cliffs during autumn and winter (Van Raaphorst and others, 1998). As a consequence,

quality of present organic carbon (i.e. labile vs. refractory) is likely to vary seasonally at

the Frisian Front. 

Foraminiferal community

High amounts of organic carbon at the front's center (fig 3) are positively correlated

with high total foraminiferal standing stocks (fig 4) and suggest that high faunal den-

sities are supported by elevated food availability. Phytodetritus arriving at the seafloor

is mainly and rapidly consumed by bacteria (Lochte and Turley, 1988; Pfannkuche,

1993), although some studies have shown the capability of benthic foraminifera to

utilize substantial amounts of this detritus too despite their relatively low biomass

(Altenbach, 1992; Heinz and others, 2001; Moodley and others, 2002). It may also be

that foraminifera do not feed directly on the phytodetritus, but profit from the elevat-

ed bacterial biomass. 

Biodiversity is also highest at the front's center, except in February when biodiversi-

ty does not peak across the frontal zone between 53º 30' and 53º 55' (fig 5). The cal-

culated equitability (i.e. evenness), shows that diversity at the center is partly caused

by high abundances of a few species, especially in the first half year. Shannon's equi-

tability filters out this effect, and shows that evenness is highest at, and south of the

front's center, especially in the second half of the year. Summarizing, we conclude

that the front's center provides favorable conditions for foraminifera, supporting

high total standing stocks. Shannon's diversity of the foraminiferal community in a
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similar field survey in 1988/1989 (Moodley, 1990) is also highest at the center of the

Frisian Front (~2.2) compared to stations further away from the center (~1.2-2.0). In

contrast to our results, diversity is reported to be higher in February than in June.

Values for Shannon's equitability were similar to ours (0.43-0.91).

The reason for high diversity at the Frisian Front may be the high diversity of avail-

able organic matter, whereby different foraminiferal species feed on different food

sources. Another reason could be that there are temporally separated habitats at the

front's center. In winter, available food is likely to be more refractory, while in late

spring labile material suddenly arrives. Later in summer, lower amounts of detritus,

possibly from different sources may be deposited at the seafloor. If different species

exploit different food types present and if they can survive the period between suc-

cessive arrivals of their preferred food, all those species may be found at any time at

these locations.

The principal component analysis further highlights the role of the position of the

stations relative to the Frisian Front: spatial variations are slightly more important in

explaining the variance in the foraminiferal community than temporal variability

(figs 6B and C). There are however, large differences between the species' responses

to different environmental variables: some species are well correlated with temporal

variance, others are correlated with mud and organic carbon content. Scott and oth-

ers (2003) also stressed the importance of different hydrodynamic regimes in deter-

mining the occurrences of benthic foraminiferal species and find different commu-

nities for different hydrodynamic regimes. The grain size characteristics of the sta-

tions they sampled across the Celtic Front resemble those described in this chapter.

The average depth above which the Celtic Front is situated, however, is higher (50-75

meters) than that of the Frisian Front whereas organic carbon content is generally

higher in the southern North Sea than in the Celtic Sea. These two differences may

be responsible for the differences in species composition of the stratified assem-

blages: Hyalinea baltica, Bulimina marginata, Adercotryma wrighti and Nonionella

turgida in the study by Scott and others (2003) versus Eggerella scabra, Bolivina

spathulata and B. seminuda in our study.

Individual taxa

Temporal and spatial differences in abundances of the six most occurring species are

likely to be determined by the environmental variables at work at the Frisian Front. In

1988 and 1989, a similar sampling survey was conducted by Moodley (1990): differ-

ences between these data sets are discussed in detail in chapter 6. In general, distri-

butions of the most abundant species are similar: Elphidium excavatum is in both

studies dominant at the stations with high input of (labile) organic matter (fig 3) and

is known to be capable of consuming phytodetritus rapidly (Murray, 1991; Altenbach,

1992; chapter 8). It is also reported to withstand (temporal) anoxia (Moodley and Hess,

1992) and a combination of physical disturbance and high load of (fresh) organic

material is reported to promote high densities of E. excavatum (Moodley, 1990; Takata

and others, 2006). Our results therefore confirm that this species could be used as a

proxy for eutrophic environments with relatively high physical disturbance (Filipsson

and Nordberg, 2004).
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Ammonia tepida is abundant in a zone around 53º 42' (fig 7) where organic carbon is

relatively abundant: its abundances are also higher in winter than in summer months.

It has been hypothesized repeatedly (Hohenegger, 1989; Goldstein and Corliss, 1994;

Murray and Alve, 2000) that A. tepida is able to feed on refractory material and bacte-

ria (see also chapter 3). In chapter 8, the distribution of A. tepida is hypothesized to be

partly determined by its capability to withstand 'environmental variability'. At the cen-

ter of the Frisian Front, conditions may be variable due to large differences in the

amount of organic material arriving at the seafloor, or to different levels of physical

disturbance by variability in the exact position of the hydrographic front.

Just north of the front's center, abundances of Hopkinsina pacifica and

Quinqueloculina spp. are relatively high. This zone also receives occasional high

amounts of fresh organic matter and it may be that peak abundances of these species

are determined by the abundance of organic matter at the Frisian Front. Since high

abundances of these species occur well after the arrival of phytodetritus in early sum-

mer, other factors may be equally important in determining the success of these

species at the Frisian Front.

Eggerella scabra is abundant at the northernmost stations, especially in winter months,

indicating that it does not depend on the availability of labile organic material. It is,

however, often described to be abundant in heavily eutrofied environments (e.g.

Thomas and others, 2000). Furthermore, it is described to have an infaunal microhab-

itat distribution (Ernst and others, 2002; 2005; Duijnstee and others, 2004), reflecting

too that it does not depend on labile organic material. The absence of E. scabra at the

southern edge of  the Frisian Front may indicate that physical disturbance, or environ-

mental variability in general, limits its distribution across the front.

The erratic abundance of Stainforthia fusiformis in our samples relates well to its

reported opportunistic life-style. It is known to respond quickly to phytodetritus arriv-

ing at the seafloor (Gustafsson and Nordberg, 2000; 2001; Filipsson and others, 2004),

to be the first recolonizer of formerly anoxic environments (Alve, 1994; 2003) and to

withstand (and bloom after) prolonged periods of anoxia (Alve and Bernhard, 1995;

Nordberg and others, 2000; Duijnstee and others, 2004). 

Vertical distribution

Interestingly, vertical microhabitat distributions were remarkably constant over the sta-

tions and similar for most species. Since oxygen penetration in the sediment was simi-

lar in space and time (see also: Van der Zee and others, 2003) and much shallower than

the depth at which most specimens lived, it once more points out the remarkable abili-

ty of these relatively large unicellular organisms to live in anoxic conditions (see also:

Moodley and Hess, 1992; Bernhard and Bowser, 1999).

Vertical distributions did vary between winter and summer months. In December and

February, specimens were distributed relatively evenly throughout the upper 5 centime-

ters of the sediment, while in June and August, 35 - 40% of the individuals were found

in the top 0.5 centimeter. This suggests that most of the species do not behave truly

infaunal or epifaunal, but rather switch between both behaviors during the year. High
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amounts of labile organic material in summer at the front's center, and the response of

foraminifera in this study to migrate to shallower depths, or preferentially reproduce

here, confirm the hypothesis by Moodley (1990) that vertical distributions around the

Frisian Front are mainly caused by the settlement of phytodetritus at the seafloor.

Presence of the ghost shrimp Callianassa subterranea at the Frisian Front may partly

determine the relatively even vertical distribution of foraminifera. Bioturbation and

transport of specimens and organic matter into the sediment and supplying the sedi-

ment with oxygen, may allow foraminifera to live at greater depths. Since we carefully

avoided burrows in sampling for foraminifera, additional effects of burrowing organ-

isms at the Frisian Front on the vertical distribution of foraminifera remain to be quan-

tified (see also this thesis, chapter 6).

A series of experiments with foraminifera from the northern Adriatic Sea have shown

that vertical distributions of foraminifera are determined by either food or oxygen avail-

ability (Duijnstee and others, 2003; Ernst and others, 2002; 2005). Eggerella scabra,

Caronia sylvestrii and Acostata mariae responded to the arrival of food by migrating

upwards but did not so during declining oxygen concentrations. Nonionella turgida,

Hopkinsina pacifica and Stainforthia fusiformis, however, responded to declining oxygen

levels rather than to extra food by moving to the sediment-water interface. Since in the

field these two parameters are usually correlated, it is often difficult to distinguish

between the two effects. Our results suggest that at the Frisian Front, it is mainly the set-

tlement of (labile) organic material that determines the vertical distribution of benthic

foraminifera in the southern North Sea. 

This study reveals that within a short bathymetrical range along the frontal slope of the

Frisian Front, abundances and community structure of living benthic foraminifera

show sharp gradients. This indicates that shifts in fossil species composition do not nec-

essarily reflect paleobathymetrical changes, as often inferred, but may be related to

shifts in hydrodynamic regimes. 

TAXONOMIC REMARKS

In this study we followed the taxonomy described in Barmawidjaja and others (1992),

which is largely based on the taxonomy of Von Daniels (1970) and Jorissen (1987, 1988).

Three species have been renamed: Reophax nana has been more appropriately described

as Acostata mariae (Brönnimann and others, 1992). Reophax scottii is currently assigned

to the genus of Leptohalysis and Morulaeplecta bulbosa is here described as Caronia
sylvestrii. Also, some taxa have been lumped for practical reasons: individuals of

Textularia and a number of scarce genera were often difficult to determine down to the

species level (especially small specimens). Quinqueloculina spp. consisted mainly of Q.
seminulum.
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CHAPTER 5

FORAMINIFERAL STABILITY AFTER A BENTHIC MACROFAUNAL

REGIME SHIFT AT THE FRISIAN FRONT (SOUTHERN NORTH SEA)

with T Amaro, IAP Duijnstee, GCA Duineveld and GJ van der Zwaan

ABSTRACT

Stations across a tidal mixing front in the southern North Sea (the Frisian Front) were

sampled between 1982 and 2005. Macrofaunal and foraminiferal abundances were

determined and compared with weather variables recorded at the North Sea. Results

revealed that species composition of the macrobenthic community between 1992 and

1995 from heavily dominated by the suspension-feeding echinoderm Amphiura fili-
formis to a community dominated by the burrowing, deposit-feeding crustacean

Callianassa subterranea. The ultimate cause of this benthic regime shift may be frequent

and relatively long periods of increased wind stress. The resulting increased suspension

of fine-grained material at the front's seabed may have hampered A. filiformis in its feed-

ing behavior. After their decline, increased abundances of C. subterranea may have pre-

vented the return of brittle stars by the shrimp's positive effect on resuspension of sed-

iment and by direct competition for space. Despite effects of the benthic regime shift on

biogeochemical cycling and sedimentary dynamics, and the transition from a filer-feed-

er dominated to a burrowing suspension-feeder dominated system, the foraminiferal

community remained relatively stable during the macrofaunal shift. Vertical, in-sedi-

ment distribution of foraminifera shifted slightly towards shallower sediment layers,

contrary to what may be expected by the positive effect of C. subterranea on oxygen pen-

etration depths. The stability of the foraminiferal species composition during the macro-

faunal shift at the Frisian Front implies that benthic foraminifera primarily reflect con-

ditions defined by the presence of the hydrodynamic front, while the role of macroben-

thic activity on their habitat (i.e. altered geochemical conditions) seems limited.

INTRODUCTION

Species compositions of communities are constantly changing. These changes occur  grad-

ually due to internal dynamics (e.g. predator-prey interactions) or gradual environmental

changes. Abrupt transitions of key variables between quasi-stable states of a community

also occur and are termed regime shifts (Mantua, 2004). Regime shifts are often caused by

strong external forcings, although gradual changes in environmental variables can also
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result in sudden shifts. The latter occurs when conditions reach a critical threshold and

species composition and/or functioning of a community changes rapidly (Scheffer and

Carpenter, 2003). Occasionally, such shifts in the state of an ecosystem or community may

not simply be reversible by reversing the environmental change. This is attributed to the

existence of different attractors for that ecosystem, which is then said to have alternative

stable states (Noy-Meir, 1975; Petraitis and Latham, 1999; Scheffer and others, 2001).

Marine examples of regime shifts are scarce (Petraitis and Dudgeon, 2004; Scheffer and

Van Nes, 2004) compared to the number described for terrestrial and lake ecosystems.

Some examples from the North Sea have shown shifts on decadal scales in the commu-

nity structure of decapods (Lindley and others, 1993; Beaugrand, 2003) and phytoplank-

ton (Edwards and others, 2002; Beaugrand and Reid, 2003; Beaugrand, 2004). Although

data sets for benthic biota usually span less time, changes in community structure are

also reported after changes in competition and predation (Rhoads and Young, 1970;

Weinberg, 1984), sediment stability (Probert, 1984), sedimentation rate (Aller and

Stupakoff, 1996) and oxygen concentration (Levin and others, 1991).

In this paper, we review a number of studies that describe benthic community struc-

tures across a hydrodynamic front in the southern North Sea and compare it with our

foraminiferal study of the area (chapter 4). Macrofaunal and foraminiferal abundances

are available from surveys undertaken between 1982 and 2005. We hypothesize that the

soft-bottom macrofaunal community in the southern North Sea is more sensitive to

environmental perturbations than the foraminiferal community.

METHODS

Area description

The data we review in this paper consist of samples collected from seafloor stations in the

southern North Sea, located across a tidal mixing front called the Frisian Front. This front

is located at the maximum depth at which the water column is mixed by tidal wave action

(Creutzberg and Postma, 1979; Van Haren and Joordens, 1990) and is thus positioned in

an east-west direction, parallel to the Dutch coast, roughly between the isobaths of 30 and

40 meters (see chapter 4 for a more extensive description of this area). North of the

Frisian Front, the water column is thermally stratified in spring and summer, while south

of the front it is mixed by tidal wave action throughout the year. Around the front, light

penetration is usually limited due to input of silt from the UK coast and resuspension of

sediment. When sedimentation of silt or supply of fine-grained material decreases peri-

odically, optimal availability of nutrients causes increased phytoplankton productivity in

spring and summer. This, in turn, causes an increased flux of organic matter to the

seafloor at the center of the front (Holligan, 1981; Postma, 1988).

Sampling for macrobenthos

Stations across the Frisian Front were sampled for macrofauna from 1982 until 1986

(Duineveld and others, 1987; see also for details on sampling procedures). From 1990 to

1994 and in 1997, the center of the Frisian Front (i.e. at 53° 42' N for the 4° 30' meridi-

an) was sampled and from 1999 to 2002, a number of stations across the Frisian Front

were sampled in different months (Amaro, 2005; fig 1).
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Sampling for foraminifera

In June 1988 and February 1989 the area was sampled for benthic foraminifera by

Moodley (1990; see also for details on sampling procedures). Stations were chosen so

that a variety of hydrodynamic regimes (mixed, frontal and stratified) were included (fig

1). The second sampling survey was conducted between 2002 to 2005 and included

roughly the same stations, but with a higher temporal resolution (fig 1) and is described

in further detail in this thesis, chapter 4.

Taxonomic remarks

For foraminiferal analyses, taxonomic descriptions were based on different sources:

Moodley's taxonomy (1990) is based on Gabel (1971) and Murray (1971; 1979), while

de Nooijer followed Von Daniels (1970), Jorissen (1987; 1988) and Barmawidjaja

(1992). The discrepancies between the taxonomic sources was overcome by renaming

species and occasionally lumping species from both publications in genus groups:

table 1.

Statistical analysis

To compare changes in the foraminiferal and macrofaunal data sets, Bray-Curtis simi-

larities were calculated for all possible foraminiferal and macrofaunal sample pairs

(Bray and Curtis, 1957; Clarke and others, 2006; equation 1):

DB-C = 100·Σi | yi1-yi2 | /Σi( yi1+yi2)                    (1)
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Figure 1: Sampling surveys for macrofauna and foraminifera across the Frisian

Front at 4° 30', between 1982 and 2005. The central zone of the benthic front is posi-

tioned between 53° 40' and 53° 45'.
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this paper de Nooijer Moodley

Acostata mariae Acostata mariae -

Ammonia tepida Ammonia tepida Ammonia beccarii

Ammodiscus sp. Ammodiscus sp. -

Asterigerinata mamilla Asterigerinata mamilla Asterigerinata mamilla

Bolivina speudoplicata Bolivina pseudoplicata Bolivina pseudoplicata

Bolivina spp. Bolivina dilatata + B. seminuda
+ B. spathulata

Bolivina skagerrakensis 
+ Brizalina pseudopunctata 
+ B. variabilis

Bulimina spp. Bulimina marginata/ elongata Bulimina gibba/ elongata

Buliminella elegantissima Buliminella elegantissima Buliminella elegantissima

Caronia sylvestrii Caronia sylvestrii -

Cassidulina spp. Cassidulina sp. Cassidilunoides sp.

Clavulina spp. - Clavulina sp.

Dentalina sp. Dentalina sp. -

Eggerella scabra Eggerella scabra Eggerella scabra

Elphidium spp. Elphidium advenum 
+ E. excavatum

Elphidum articulatum
+ E. earlandi + E. magellanicum
+ E. excavatum + E. sp.

Epistominella vitrea Epistominella vitrea Epistominella vitrea

Fissurina sp. Fissurina sp. Fissurina sp.

Haynesina germanica Haynesina germanica -

Hopkinsina pacifica Hopkinsina pacifica Spiroloxostoma sp.

Hyalinea baltica Hyalinea baltica -

Jadammina sp. - Jadammina sp.

Lagena sp. Lagena sp. Lagena sp.

Lenticulina sp. Lenticulina sp. -

Leptohalysis scotii Leptohalysis scotii -

Nonion sp. Nonion depressulus Nonion sp.

Nonionella sp. Nonionella turgida Nonionella sp.

Pyrgo spp. Pyrgo sp. Pyrgo williamsoni

Quinqueloculina spp. Quinqueloculina sp. Quinqueloculina cliarensis 
+ Q. oblonga + Q. seminulum

Reophax monoliformis Reophax monoliformis -

Rosalina sp. Rosalina sp. Rosalina sp.

Saccamina spp. Saccamina sp. Reophax fusiformis 
+ Psammosphera fusca 

Stainforthia fusiformis Stainforthia fusiformis Fursenkoina fusiformis

Textularia sp. Textularia sp. Textularia sp.



where yi1 is the absolute abundance of species i in sample 1. Rather than using each

sample individually, meio- and macrofaunal samples were grouped into four categories

based on different hydrographic regimes across the front. The position of the hydro-

graphic Frisian Front may not be static in time (Hill and others, 1993), although the

position of the benthic front (i.e. the location of the sedimentary zone with a high mud

content) is relatively stable. Therefore, we chose to classify the benthic samples accord-

ing to the depth at which the samples were taken, representing the average hydrody-

namic regimes found across the tidal mixing front: table 2. 

Since in 1988/1989 stations were sampled in February and June, only samples from

those months in the 2002-2005 data set are used to make a fair comparison possible. 

Climate forcing

To analyze the possible influence of climate parameters on faunal community structure,

daily wind speeds that are recorded at a weather station in the southern North Sea (K13;

at 53º 21' N and 3º 22' E) are taken from the web site of the Royal Dutch Meteorological

Institute: www.knmi.nl/samenw/hydra. Daily recorded wind speeds are used to calcu-

late monthly average wind speeds from 1980 to 2000.
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Table 2: Four groups of samples (macro- and meiofauna) for which similarity indices

are calculated.

Table 1 (facing page): Taxonomic comparison between the data sets used.

group depth (m) latitude(s) n (macrofauna) n (foraminifera)

seasonally 

stratified

45 54º 00' 2 6

frontal 39-41 53º 42' - 53º 45' 4 4

south frontal 37 53º 39' 4 6

mixed 28-31 53º 22' - 53º 30' 2 3
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Figure 2: Abundances of Amphiura filiformis and Callianassa subterranea in 1982,

1999 and 2002 across the Frisian Front (Amaro, 2005). Shaded area: central zone of

the benthic front.



RESULTS

Macrofauna

The macrofaunal community was heavily dominated by two species: the ghost shrimp

Callianassa subterranea and the brittle star Amphiura filiformis. Between 1982 and 1999

the benthic fauna of the Frisian Front shifted from an A. filiformis-dominated to a C. sub-
terranea-dominated community (fig 2).

The shift is most pronounced at the center of the benthic front and the exact timing of the

shift is determined by analyzing data only from stations at the center of the front (fig 3).
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Figure 3: The two dominant macrofaunal species at the center of the benthic Frisian

Front between 1982 and 2002 (Amaro, 2005).



Foraminifera

Densities in February and June 2002-2005 and in February and June 1988/1989 are sim-

ilar for most foraminiferal species. Note that the spatial sampling resolution in 2002-

2005 was higher than in 1988/1989, explaining the more erratic appearance of species

in 2002-2005 (e.g. Eggerella scabra; fig 4, bottom panel). Generally, in both data sets,

Elphidium excavatum dominates the south edge of the benthic front, Ammonia tepida
and E. scabra are dominant at the center of the front, whereas in the stratified waters

north of the front only E. scabra dominates.

For both foraminiferal data sets, abundances in the top 5 centimeters of the sediment

were enumerated. Despite differences between species, specimens are generally distrib-

56 CHAPTER 5

Figure 4: Average densities of the 6 most occurring species of benthic foraminifera

across the Frisian Front in 1988-1989 (n=7; Moodley, 1990) and in 2002-2005 (n=11;

this thesis, chapter 4).



uted near the sediment-water interface in June and on average more evenly distributed

in the sediment in February (fig 5).

Similarities within and between the data sets

Similarity indices for most sample-pairs in the foraminiferal data set were generally low

and on average high for the macrofaunal samples (fig 6). In the former, exceptions were

pairs from the same location, sampled at different years (fig 6: left, shaded area). In the

macrofaunal data set, similarities were not higher among pairs from the same location

that were sampled in different years.
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Figure 5: Relative in-sediment distribution of the key species of foraminifera in the

upper 5 cm (+ 1 SD) in 1988/1989 (left) and 2002-2005 (right). Abundances of all sta-

tions at a sample moment are combined.
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Figure 6: Similarity (Bray-Curtis) for foraminifera (left) and macrofauna (right).

Shaded area in plots represents sample-pairs from the same location, and sampled

at different years.

Figure 7: Monthly average of daily wind speeds measured at weather station K13

between 1980 and 2000.



Climate parameters

Monthly average wind speeds in the southern North Sea show typical high winter peaks.

Before the winter of 1989/1990, wind speeds were relatively low (fig 7), while more

months with relatively high wind speeds (high and broad peaks) occurred in the winters

of 1990/1991, 1992/1993, 1993/1994 and 1994/1995. Until 2000, monthly average wind

speeds were only slightly lower again.

DISCUSSION AND CONCLUSIONS

The macrobenthic regime shift

Although detection of regime shifts may be statistically difficult (e.g. Rudnick and Davis,

2003), the shift in dominance from Amphiura filiformis to Callianassa subterranea at the

Frisian Front between 1992 and 1995 appears to be a genuine regime shift. It can be

classified as such since the benthic community was stable, brittle star-dominated from

at least the early 1980s until the start of the 1990s (Duineveld and others, 1991), shifted

suddenly (within a few years) in its composition and functioning by becoming ghost

shrimp-dominated around 1995, and remaining so until 2005. In a station at the

German Bight (depth 42 meters), sampled yearly between 1980 and 2000, abundances

of A. filiformis also dropped suddenly around 1991 (Schroeder, 2003). In addition, num-

bers of the bivalve Mysella bidentata also decreased sharply during the early 1990s.

Decreasing numbers of these filter feeders in a similar environment may indicate that

the regime shift at the Frisian Front is not a local phenomena, but may be caused by cli-

mate or wide-scale hydrographic forcings.

Possible forcings and consequences

Ecosystems and communities can shift rapidly in composition due to internal, stochas-

tic processes (Ellner and Turchin, 1995; Vandermeer and Yodzis, 1999; Hsieh and oth-

ers, 2005). Alternatively, the described macrobenthic regime shift can be caused by envi-

ronmental forcings, of which three types will be briefly discussed (fig 8). Although in

nature, many environmental variables together influence the functioning and composi-

tion of an ecosystem or community, here we treat regime shifts as if they are caused by

only one variable. In the first scenario, ecosystem change simply follows a permanent

change in an environmental parameter ('Direct response'). Another possibility is that a

regime shift is caused by a gradual change in an environmental parameter ('Threshold

response'). In such a scenario, an ecosystem suddenly changes when an environmental

threshold is reached, and the old state is no longer sustainable or overtaken by another.

In the last model ('Perturbation response'), an ecosystem shifts as the result of a change

in an environmental parameter, but is not reversible by a return to the original environ-

ment and is therefore said to have two stable states (fig 8).

The ultimate cause of the discussed regime shift is unknown and may include contribu-

tions of many environmental and biological parameters. Also, we do not know which of

the proposed mechanisms is responsible for the shift. Substrate characteristics (median

grain size and organic carbon content) have remained relatively stable during the

regime shift (compare Creutzberg and Postma, 1979; Van Haren and Joordens, 1990;
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Van der Zee and others, 2003). This indicates that either these parameters do not deter-

mine to a large extent the ecosystem state or that the regime shift did not happen accord-

ing to the direct response or threshold response model. Alternatively, the occurrence of

a relatively short perturbation at the Frisian Front, may have caused the regime shift.

It may be that in a relatively short period, turbidity and possibly resuspension of sedi-

ment at the Frisian Front increased due to trawling or a sequence of storms. Such high

amounts of suspended fine material may have hampered the filter feeding brittle stars

in their food uptake. Juveniles of A. filiformis may be more vulnerable to high turbidity

than adults, and measurements on the body size showed that juvenile numbers

decreased around 1990. The long life-span of this species caused abundances to remain

relatively high until 1993 (Amaro, 2005). Monthly average wind speeds were relatively

high in the period before, during and after the regime shift (fig 7), possibly responsible

for increased turbidity at the Frisian Front and thereby contributing to the observed ben-

thic regime shift. If stronger winds were the main trigger for the macrofaunal regime

shift, their perseverance may also be stopping Amphiura filiformis from regaining its

dominant position in the sense of the direct response model (fig 8).

After 1992, lower abundances of Amphiura filiformis may have left much organic matter

arriving at the Frisian Front's seafloor unconsumed, which in turn, may have positively

influenced the colonization of this area by Callianassa subterranea. Individuals of C. sub-
terranea make complex burrowing systems that cause increased total oxygen uptake by

the sediment (Dobbs and Guckert, 1988; Witbaard and Duineveld, 1989; Forster and
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Figure 8: Models by which the macrofaunal regime shift could have occurred. 



Graf, 1995). Although individuals of A. filiformis can play a major role in the O2-flux

from water to sediment, in comparison with C. subterranea, its contribution is restrict-

ed by the relatively shallow (6-10 cm deep) burrows they produce (Ockelmann and

Muus, 1978; Solan and Kennedy, 2003; Vopel and others, 2003). Although oxygen pene-

tration was not determined consistently (since we avoided burrows during O2-profile

measurements), we believe that oxygen penetration depth and total oxygen uptake of the

sediment must have increased after the macrobenthic regime shift at the Frisian Front.

This, in turn, would have promoted microbial biomass and increased benthic respira-

tion rates, thus altering the ecosystem's biogeochemical cycling.

Also, since Callianassa subterranea has profound effects on sediment turnover rates

(Witbaard and Duineveld, 1989; Rowden and Jones, 1993), its current dominance is like-

ly to have increased these rates and downward transportation of Chl-a (Boon and

Duineveld, 1998), and hence of organic matter. The decreasing amounts of silt at the

Frisian Front in the late 1990s (Daan and Mulder, 2005) may be (partly) caused by

increasing activity of C. subterranea. After colonizing the Frisian Front's seafloor, this

may have increased the amount of suspended matter near the seafloor at the center of

the front, not only rapidly transporting organic matter and increasing benthic-pelagic

exchange of particles, but possibly also preventing the return of Amphiura filiformis
through direct competition for space (Wilson, 1990), thereby stabilizing the new macro-

faunal species composition. If this is the case, the shift in macrobenthic community

structure may be an example of the existence of alternative stable states in the southern

North Sea (fig 8).

Stability in the foraminiferal community

Surprisingly, the shift in dominance from filter feeders to a burrowing species at the

Frisian Front did not affect the foraminiferal community structure very much, nor did

it influence absolute abundances (fig 4). It is mainly the densities of the well-known

opportunist Stainforthia fusiformis (high in 1988/1989) that are responsible for differ-

ences between the two sample moments. Additionally, relative abundances of

Elphidium excavatum decreased at the center of the front. Similarity indices for the

foraminifera indicate that between-sample similarities are usually low (fig 6).

Exceptions are sample-pairs that  are taken at the same latitude but in different years,

confirming the relative stability of the foraminiferal community during the macroben-

thic regime shift at the Frisian Front between 1988 and 2005.

The increased oxygen supply to deeper sediment layers after the regime shift did not

appear to have increased the average living depth of the foraminifera. In 2002-2005,

specimens were distributed more evenly throughout the sediment in February, than in

June, when for the six most abundant taxa more specimens were found in the top cen-

timeter. In the 1988/1989 data set, this difference between the seasons was observed as

well (fig 5). Remarkably, there is no clear evidence of microhabitat separation as often

observed in deeper water and muddy stations (see discussion on TROX models: Jorissen

and others, 1995; Van der Zwaan and others, 1999). In view of the macrofaunal regime

shift, it is surprising that the response in species composition of foraminifera was so

low. Despite apparent changes in physical disturbance, increased deep bioturbation,

bioirrigation of oxygen and burial of food deep into the sediment, relative abundances
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of the most occurring species remained relatively stable. The differences between the

data sets, could have been partly caused by patchiness of foraminifera, that is likely to

affect absolute abundances rather than relative abundances (this thesis, chapter 3).

Unfortunately, the 1988/1989 data did not consist of replicate samples, making it impos-

sible to investigate differences in small-scale, spatial distributions in benthic

foraminifera at the Frisian Front.

In a recent paper, Meysman and others (2006) suggest that bioturbating macrofauna

structures (subsurface) ecosystems. They convincingly show that bioturbating species

act as ecosystem engineers, thereby determining to a large extent the meio- and micro-

faunal community composition. However, our results show that foraminifera do not

seem to be affected by the changed bioturbation regime at the Frisian Front. Apparently,

the changed oxygen penetration or other factors affected by bioturbation did not influ-

ence foraminiferal abundances before and after the macrobenthic regime shift.

The stability of the foraminiferal community during the macrofaunal regime shift has

an important consequence for using foraminifera as paleoenvironmental proxies. Our

results suggest that the apparent decoupled dynamics of macro- and meiofauna implies

that foraminiferal community structure reflects the hydrodynamic environment (strati-

fied, frontal, mixed), despite varying geochemical conditions and irrespective of the

composition of the macrobenthos. On the other hand, the environmental factor that

triggered (if not sustained) the macrofaunal regime shift is not reflected in the

foraminiferal record.
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CHAPTER 6

SUBRECENT ECOLOGICAL CHANGES IN FORAMINIFERA FROM

THE WESTERN WADDEN SEA, THE NETHERLANDS

with IAP Duijnstee, HC de Stigter and GJ van der Zwaan

ABSTRACT

A 2.8 meter long core from a shallow, tide-dominated bay in the Wadden Sea (the

Netherlands) was analyzed for grain size, total organic carbon content and benthic

foraminiferal community structure. Sedimentation rate at this site was very high (1.56

cm/yr), allowing high-resolution reconstruction of the history of the Dutch coastal envi-

ronment from 1820 to 2000. Large parts of the core consisted of alternating sand and

mud laminae: the sands are likely to be of eolian origin, transported during storms from

dunes surrounding the bay, while silt and clay are likely to be transported into the bay

by tidal energy. The low-diversity foraminiferal community shifted around 1930 from

Elphidium excavatum-dominated to Haynesina germanica-dominated. The timing of the

shift in dominance suggests that the construction of a nearby coastal defense structure

(the Afsluitdijk) in 1932 altered the shallow-water environment of Mok Bay by increas-

ing variability in temperature and salinity.

INTRODUCTION

Human activity has been affecting the environment and global climate increasingly

with ongoing industrial development (Levitus and others, 2001; Barnett and others,

2001; 2005; Beman, 2005). Prospects for the Earth's climate indicate that anthro-

pogenic alterations will continue to increase levels of carbon dioxide in the atmos-

phere, further rising temperatures and melting of land ice, resulting in higher sea-lev-

els (e.g. Overpeck and others, 2006). To predict the contribution of human activity on

ecosystems in the near future, the relation between different kinds of pollution and

natural, climatic variability in ecosystem functioning need to be quantified. The subre-

cent (i.e. centennial) history of human-influenced environments may provide insight

in the interaction that natural variability and ongoing human activity have on ecosys-

tem functioning.

Coastal areas are among the most heavily influenced environments: not only are they

directly affected by rising sea levels, rivers also deliver sewage waste, artificial fertiliz-

ers, heavy metals and pesticides into marine ecosystems. Wherever coastal ecosys-
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tems are monitored through time, severe effects of human pollution have been

recorded, including local extinction of crustaceans (Wittmann, 2001), changes in phy-

toplankton species composition (Lotze and Milewski, 2004), and shifts from carnivore

to deposit feeders' biomass (Beukema, 1991). To investigate the combined effects of

eutrophication and other human interventions in coastal ecosystems on longer

timescales, datasets spanning centuries should be analyzed. Since pre-1950 datasets

of biological and/or geochemical records are rare, insights in interactions between

human development and coastal environments on longer timescales are best based on

fossil records.

The Dutch Wadden Sea is potentially a suitable study area to quantify long-term

effects of anthropogenic pollution (Wolff, 2005): it is a large, tide-dominated, back-bar-

rier system that receives input from two large rivers directly, the IJssel and Ems, and

indirectly from the Rhine and Meuse. Unfortunately, as with most back-barrier and

estuarine systems, sediment dynamics in the Wadden Sea are so high that a continu-

ous sub-recent history is rarely recorded: i.e. there are hardly locations that have a net

sedimentation rate for a relatively long period (Oost and De Boer, 1994; Vos and oth-

ers, 2000; Andersen and others, 2006). The Mok Bay in the western Wadden Sea, how-

ever, experienced a constant net sedimentation over the last centuries and its fossil

record thus provides an excellent opportunity to study centennial changes in a coastal

ecosystem.

In this paper we report on high-resolution foraminiferal and sedimentological data

from a laminated core taken in the Mok Bay (western Dutch Wadden Sea), covering the

last 180 years in which effects of ongoing eutrophication and other human modifica-

tions of the marine environment are recorded. Foraminiferal and sedimentological pat-

terns are discussed in relation to historical data on construction of coastal defense

structures, bivalve fisheries and intensified eutrophication in the 1960s and 1970s.

METHODS

Area description 

In June 2001, a gravity core (MOK2001, 53º 00'20" N and 4º 45'30" E) was taken in Mok

Bay, a tide-dominated bay at the south of the island of Texel, The Netherlands (fig 1).

The bay formed in the 18th century in the wake of a migrating sand shoal, which fused

with the southern tip of the island of Texel. Protected from the waves and currents of

the open sea it became a sink for sand and mud, resulting in a steady shallowing and

narrowing of the bay. At low tide, the bay is currently 700 meters wide and 1750 meters

long. At the center of the bay, where the core was taken, water depth is 2 meters at high

tide and tidal amplitude is 1.4 meters. The eastern part of the Mok Bay is regularly

dredged to maintain accessibility to a small navy facility: the coring site is west-north-

west of the navy base and not affected by dredging (fig 1).

Average relative sea level rise in the Wadden Sea was approximately 5 cm in the 19th

and 15 cm in the 20th century (Kooi and others, 1998; Vos and others, 2000; Beets and

others, 2003). Since the average net sedimentation rate in the Mok Bay was 1.56 cm/yr

(see 'Age model' in results section below), and the 280 centimeters of our core represent

180 years, in 1820, the Mok Bay must have been 2.6 meters deeper than at present day.
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Sampling

The core consisted of 280 centimeters of sediment, was cut lengthwise and stored at

-20° C. After taking X-ray photographs and 12 samples were used for Pb-210 age analy-

sis, the core was sampled for fauna, grain size analysis and organic carbon content

determination. From every centimeter, about 5 g of material was taken and stored in

small glass jars. In the laboratory, material of each depth-interval was divided into three

equal parts: one for foraminiferal analysis, one for total organic carbon assessment and

one for grain size analysis

Foraminiferal analysis

Sediment for foraminiferal analysis was sieved over 63 and 150 μm mesh-sized screens

to divide the foraminifera and sediment into size-fractions that are common in micropa-

leontological studies. Only specimens >150 μm were included in this study. Samples for

foraminiferal analysis were taken every other centimeter in the upper 250 cm of the

core, resulting in 125 samples. In these samples only 5 species were recognized:

Ammonia cf. molecular type T6 (Hayward and others, 2004; here further referred to as

A. tepida), Elphidium excavatum, E. williamsoni, Haynesina germanica and Nonion depres-
sulus. Taxonomy was based on Murray (1971) and Debenay and others (2001). In most

cases, foraminifer-rich samples were split up using an Otto-microsplitter until they con-

tained at least 200 individuals. After counting, abundances were corrected for the dry

weight of the sample and are represented as numbers/g dry sediment.

Organic carbon and sedimentology

Organic carbon and grain size was analyzed for all 1-cm samples down to 280 cm.

Samples for total organic carbon were decalcified by two successive additions of 1M

HCl and subsequently rinsed with demineralized water. After samples were dried,

analysis was performed on a LECO CS-analyzer. Grain size analysis was performed

with a laser particle sizer (Malvern Instruments, UK). Before analysis, material was

treated with 10% H2O2 and with 1M HCl to remove organic material and carbonates.
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210Pb measurements
210Pb was determined indirectly from 210Po assuming secular equilibrium between
210Pb and 210Po. 210Po was extracted from dried and homogenized sediment by total

digestion of samples in a cocktail of HNO3 and HF. After removal of the acids by evap-

oration, 210Po was re-dissolved in weak HCl dilution and collected on silver plates by

spontaneous deposition. 210Po activity was then measured by alpha spectrometry, using

alpha detectors of Canberra. Sedimentation rate integrated over the last ~100 years was

determined from the downcore profile of 210Pb, applying a conventional one-dimension-

al, two-layer, vertical eddy diffusion model of 210Pb distribution and assuming constant
210Pb flux and constant sedimentation rate (Carpenter and others, 1982; Nittrouer and

others, 1984). Diffusive biological mixing was taken into account in the calculation.

Climate data 

One of the permanent weather stations of the Royal Dutch Meteorological Society (KNMI)

is located at the town of Den Helder (fig 1). Here, amongst others, wind speed, precipita-

tion, and temperature have been recorded continuously since 1841. Measurements are

available, free of charge at www.knmi.nl/klimatologie/maandgegevens/index.html.

Average monthly air temperatures and average maximum wind speeds are calculated

from these daily measurements.

Seasonal bias

Since sedimentation rate was 1.56 cm/year and

faunal samples were analyzed every other cen-

timeter, successive samples may display an arti-

ficial, cyclic pattern that does not stem from the

record itself (fig 2). In this example, two differ-

ent species, indicated by black and grey closed

circles, produce a regular fossil record in which

material is dominated by one species (grey) in

the first half of every year and by another

(black) in the second half of each year. The

depicted sampling procedure results in a sub-

sequent series of mixed samples and samples

dominated by one of the species, regularly

alternating, although there is no difference

between the years. In records, subsequent years

usually vary in thickness and patterns in

foraminiferal abundances may not be repeated

as regularly as depicted in fig 2. However, we

can not exclude the possibility that seasonal

cyclicity affects the foraminiferal (or other) pat-

terns through time. 
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Figure 2: Hypothetical seasonal foraminiferal distribution and successive samples

with alternating dominance of both species.



For the Principal Component Analysis (see results), we used a moving average of three

successive samples to reduce the potential effect of this seasonal bias. Furthermore, the

PCA is based on relative numbers of the foraminiferal species and abundances were not

transformed prior to analysis.

RESULTS

Log core

In large parts of MOK2001, laminated sediments prevail. Light and dark bands in the X-

ray photograph vary in thickness: some bands are ~1 cm thick, usually with thinner lam-

inae (1-2 mm) situated in-between. Near the bottom of the core, a number of Mytilus
shells were present (fig 3).

Age model

Total 210Pb activity in the core is highest in the upper part, varying between 72 and 76

Bq/kg between 0 and 20 cm and with a distinct subsurface maximum of 91 Bq/kg at 30

cm. Below this depth, 210Pb decreases exponentially, approaching a supported level of 28
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Figure 3: X-ray photograph of MOK2001.

Figure 4: Pb-210 in core MOK2001.



Bq/kg toward the base of the core. Whereas the regular downcore decrease in 210Pb indi-

cates a constant sedimentation over the last century, the lack of a decreasing trend in the

upper 20 cm and the subsurface maximum at 31 cm can be attributed to biological mixing

(fig 4). A model fit on the observed data gives an average sedimentation rate of 1.56 cm/yr.

Foraminifera

The foraminiferal assemblage in the core exhibited large differences in total numbers/g

dry weight: in 1865 and 1905, total standing stocks were high, while from 1960 onward,

numbers were relatively low. Despite this variance, the benthic foraminiferal assem-

blage constantly consisted of 5 species throughout the core (fig 5).

Two of these species (Elphidium excavatum and Haynesina germanica) alternately domi-

nated the assemblage. In general, E. excavatum did so from 1840 to 1925-1930 and H. ger-
manica from 1930-2000. The other three species did not display a specific trend through-

out the core, although Ammonia tepida had two periods of slightly higher occurrence:

from 1840 to 1870 and around 1930 relative abundances reached values of almost 30%.

Sample scores from the Principal Component Analysis were plotted against time and

show the change of the total assemblage through time (fig 6).

The scores of the species on the two axes (i.e. their correlation with the sample scores)

show that Elphidium excavatum is negatively correlated and Haynesina germanica posi-

tively with axis 1. Ammonia tepida is the third most abundant species and is positively

correlated with axis 2 (table 1).

The first principal component is mainly dominated by the shift from Elphidium excava-
tum to Haynesina germanica. Superimposed on that trend, is a more erratic, though

slightly decreasing trend of the other species (mainly Ammonia tepida) in time.  
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Figure 5: Total foraminiferal densities of specimens >150 μm and relative abun-

dances of the occurring species throughout MOK2001.



Organic carbon content and sedimentology

Clay content in MOK2001 steadily decreased from 7% in 1820 to 4% in 1870. Until

1955, clay content fluctuated between 3% and 5%, after which it suddenly dropped to

1.5-2%. Silt fractions exhibited a similar trend, although silt levels increased after their

initial drop around 1955. The two sand fractions reached peak values around 1960 and

1985 and medium and coarse sand also reached markedly high values around 1840,

1855, 1870, 1910 and 1935.

Skewness of the total grain size distribution is around 0.3 and remained constant until

1970, when skewness was suddenly high (upto 1.6) and remained relatively high after

1970 (fluctuating around 0.7).
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Figure 6: Sample scores in a PCA versus time. The 1st PC axis explains 95.9% of the

variance in the species data, the 2nd an additional 3.4%.

species score PC-axis 1 species score PC-axis 2

Ammonia tepida -0.0255 0.582

Elphidium excavatum -1.55 -0.505

Elphidium williamsoni -0.0025 0.144

Haynesina germanica 1.58 -0.488

Nonion depressulus 0.0028 0.266

Table 1: Species scores on the first two PC axes.



Despite large inter-year variability, the total organic carbon content (TOC) throughout

the core decreased between 1820 and 1900 and small amounts of TOC (1-2%) were pre-

served between 1965 and 1980 (fig 7). 

Temperature and windspeed

From 1906 to 2000, air temperatures were recorded daily by the Royal Dutch

Meteorological Society (KNMI) at, amongst others, a station near Mok Bay. Average

monthly temperatures were used to calculate the annual average and seasonal averages

through time in the Wadden Sea (fig 8).
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Figure 7: Distribution of different grain size classes, skewness and TOC content

from 1820 to 2000.
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Figure 8: Average temperatures at the weather station of Den Helder from 1906-

2000.

Figure 9: Monthly average wind speeds from 1906 to 2000, thick line indicates 10-

point moving average (left), number of days per year in which maximum hourly

wind speed is higher than 12 m/s (middle) and winter NAOindex (right).



Maximum hourly wind speeds per day from the same weather station were used to cal-

culate monthly average wind speeds and to calculate the number of days in which max-

imum hourly wind speeds were higher than 12 m/s (fig 9). The North Atlantic

Oscillation winter index (NAOi: Hurrell, 1995) is positively correlated with winter tem-

peratures and average winter wind speeds (fig 9).

For the laminated part of the core (pre-1970), there is a significant positive correlation

between percentage grain sizes >103 μm and yearly average wind speed. Any of the

smaller grain size intervals were not correlated to average wind speeds: table 2.

DISCUSSION

Historical developments in the Wadden Sea

Construction of the Afsluitdijk

In 1932, the Zuiderzee (currently a fresh water lake called the IJsselmeer) was separat-

ed from the Wadden Sea by construction of the Afsluitdijk. This caused, amongst oth-

ers, the tidal prism in the Wadden Sea to increase suddenly by 26% from 1.1 to 1.4

meter (Thijsse, 1972; Elias and Van der Spek, 2006), resulting in higher turbidity and

increased light limitation (De Jonge and De Jong, 1992). Although sedimentation rates

and dynamics in the western Wadden Sea have changed locally after 1932 (e.g. Berger

and others, 1987), sedimentation in Mok Bay appeared not to be affected since the thick-

ness and number of laminae is similar in the decades before and after 1932 (i.e. around

a depth of 110 cm; fig 3). 

Primary production

Closure of the Zuiderzee not only cause decreased algal growth by higher turbidity, but

also affected primary production by enhancing decline of oysters in the Wadden Sea.

The oyster population had been declining from the beginning of the 20th century, but
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grain size interval (in μm) correlation coefficient (r)

>301 0.324

>258 0.353

>222 0.359

>190 0.352

>163 0.347

>140 0.335

>120 0.303

>103 0.250

>88 n.s

Table 2: List of grain size-classes that are positively correlated to average wind speeds.

n.s. = not significant; df = 63; p<0.05.



changed hydrographic conditions after 1932 in the western Wadden Sea, triggered oys-

ter larvae to flush out into the North Sea. Since bivalves filter phytoplankton from the

water column (Cloern, 1982; 2001; Officer and others, 1982; Peterson and Heck Jr, 1999;

Jackson and others, 2001), primary production in the Wadden Sea shifted from (subti-

dal) microphytobenthos to pelagic production (Reise and others, 1989; Van Beusekom,

2005). The sharp drop in abundances of seagrass in 1930 (Short and others, 1988; De

Jonge and De Jong, 1992; Kastler and Michaelis, 1999; Reise, 2005) and the steady

decline of red and brown algae in the 19th and start of the 20th century (Lotze, 2005)

were also partly caused by the loss of oyster beds. Decline of macroflora and oysters have

decreased sediment stability, resulting in augmented suspension of fine particles

(Piersma and others, 2001), although this trend may have been partly and locally

reversed by commercial mussel farming that started in the 1950s (Van der Veer, 1989).

Eutrophication

From the 1960s to the 1990s, the Wadden Sea was subjected to intensified eutrophica-

tion (De Jonge and Postma, 1974; De Vries and others, 1998; Van Raaphorst and De

Jonge, 2004). Higher levels of P and N in coastal waters trigger higher primary produc-

tion and may have caused a reduction in the sediment's oxygen penetration depth

(Kolbe and others, 1995). Despite this, zoobenthic biomass in the Wadden Sea is

described to have increased during ongoing eutrophication in the Wadden Sea (e.g.

Beukema, 1991; Beukema and others, 2002). 

Climate

Although the NAO index was relatively high in the 1980s and 1990s, average wind

speeds in the Netherlands were low after 1972 (fig 9). In winter months, westerlies are

stronger in years with a high NAOi due to large differences in air pressure between

Iceland and the Azores (Kushnir and Wallace, 1989; Hurrell, 1995). Increased westerlies

also result in mild winter and spring temperatures. Apart from the influence of the

NAO, global temperature increased on average with 0.6 C in the 20th century due to the

increased greenhouse effect (Houghton, 2001).

Sedimentology and organic carbon content

Sedimentology

The X-ray photograph of core MOK2001 revealed laminated sediments in large parts of

the core (fig 4). Laminated cores from the Wadden Sea have been described before (e.g.

Berger and others, 1987) and we infer from the lamination that bioturbation or vertical

mixing must have been insignificant during and after deposition of sediments in Mok

Bay over the past 180 years. If horizontal transport of foraminiferal specimens into the

Mok Bay is absent (see 'Foraminifera' in section below), foraminiferal tests can be

regarded as autochtonously belonging to the sediment layers and corresponding time

intervals. Lamination on the X-ray photograph consists of alternating dark and white

bands that are commonly interpreted as intervals with high mud and sand contents,

respectively. Although sample resolution for grain size analysis was too low to support

this, laminae consisting of alternating sand and mud intervals was visually confirmed

during subsampling of the core. 
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Like most tidal flats and inner margins of the Wadden Sea, Mok Bay acts as a sink for

mud deposition (Davis and Hayes, 1984, Dronkers, 1986; Eisma, 1998), and therefore,

constant net sedimentation has resulted in shallowing and subsequent shrinking of the

Mok Bay ever since it was formed during first half of the 18th century. It is therefore

likely that the muddy intervals in MOK2001 are the result of tidally transported sedi-

ments.

The sandy intervals, however, may be partly transported into the Mok Bay by wind from

surrounding dunes, consisting of medium and coarse sands. Although rainfall and

wind direction are likely to affect the amount of sand transported into the Mok Bay,

wind speeds higher than 12 m/s are shown to transport considerable amounts of sand

from Wadden Sea dunes (Arens, 1996). 

From 1906 to 1970, the NAO index and wind speeds are positively correlated to sand

contents in the core and negatively to mud content (table 2; figs 7 and 9). This is not

true for the upper part of MOK2001, when NAOi was relatively high, and coincides

with the period for which the Pb-210 datings display some scatter (fig 4) and clay con-

tent was relatively low (fig 7). This may indicate that sedimentation between 1970 and

2000 was not constant and material may have been partly reworked during this period.

Although these results suggest that sands are deposited within days during storms, it

remains unknown whether all of the sand is of eolian origin and, if any, how much is

tidally transported into the Mok Bay.

It may be that both sands and clays are deposited (tidally and eolian) simultaneously

and almost at the same rate, but that during storms material from the upper centime-

ters of the Mok Bay's floor is brought in suspension and re-settling with differential

rates: sand first, followed by silt and clay. This process thus may lead also to a laminat-

ed record, irrespective of the mud and sand source.

Organic carbon

The organic carbon levels in Mok Bay are well correlated to the clay/fine silt and medi-

um silt content. This has been described before for sediments in the Wadden Sea (e.g.

Beukema and Cadée, 1997) and can be explained by four processes. Firstly, organic

material adsorbs stronger to clay than to sand particles (Anderson, 1988; Mayer, 1994).

Secondly, organic particles have the same settling dynamics as clay and other fine par-

ticles (e.g. Fries and Trowbridge, 2003). Thirdly, when the sandy intervals are deposit-

ed instantaneously and organic matter is deposited on a relatively constant rate, inter-

vals with much sand are diluted and may thus contain low amounts of organic matter.

Finally, oxygen penetration in clay and silt is lower than in sandy sediments, promot-

ing the preservation of organic material in fine sediments. Overall, there is a decreas-

ing trend of a preserved TOC content in core MOK2001, despite ongoing eutrophica-

tion in the Wadden Sea.

Foraminifera

Taphonomic loss due to dissolution of tests must have been low, since there was no

sign of dissolution in the analyzed samples. The two peaks in total foraminiferal den-

sity (fig 5) may be caused by periods in which sedimentation rate was exceptionally low

and thus accumulation rates were high. This may indicate that although sedimentation
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rates in Mok Bay appear to have been constant for large parts of its history (fig 4), it is

likely that during some periods, sedimentation rates varied significantly. This bias,

however, is not likely to be large, since there is no correlation between foraminiferal

abundances and any of the sedimentary parameters.

Individual taxa

In the record, five species of foraminifera are present, of which two dominate the com-

munity (fig 5). The shift from Elphidium excavatum to Haynesina germanica occurs

around 1930, suggesting that this shift is caused by the construction of the Afsluitdijk

in 1932. The main difference in the niches of these species is a result of their differ-

ence in ability to cope with variations in temperature and salinity. Although they both

are cosmopolitan and often coexist in intertidal environments (e.g. Alve and Murray,

1994; 2001), H. germanica is reported to live in a wider range of temperatures (Murray,

1991) and is more tolerant to low salinities (Debenay and others, 2006).

The construction of the Afsluitdijk may have increased variability in temperature and

salinity, thereby increasing the success of Haynesina germanica at the expense of

Elphidium excavatum. In 1820, relatively great water depths (an estimated 3.5 at low

tide versus 4.6 m at high tide) were likely to have buffered daily variations in water tem-

perature and salinity. Also, this realtively large water volume may have minimized sea-

sonal differences in these parameters. Shallowing of Mok Bay during the 19th and 20th

century resulted in an estimated tidal amplitude of 1.8-2.9 m in 1930, thus increasing

the potential for greater daily and seaonal differences in temperature and salinity. After

construction of the Afsluitdijk in 1932, the tidal amplitude increased suddenly, result-

ing in a difference in a much lower water volume during low tide with a tidal range of

1.6-3.0 m. During the rest of the 20th century, the relative semidiurnal difference in

water volume in Mok Bay is likely to have further increased variability in temperature

and salinity. With waterlevels currently ranging from only 0.6 m to 2.0 m, the Mok Bay

during low tide is prone to substantial cooling in winter, and heating and evaporation

in summer.

Ammonia tepida is the third most abundant species in MOK2001. Although it is abun-

dant in highly variable environments (see also chapter 4), it is able to feed largely on

refractory matter, while Elphidium excavatum and Haynesina germanica seem to depend

on labile organic matter (Knight and Mantoura, 1985; Hohenegger, 1989; Goldstein and

Corliss, 1994; Moodley and others, 2000; Murray and Alve, 2000; Ward and others, 2003;

Austin and others, 2005; this thesis, chapter 3). Since the ratio between

Elphidium+Haynesina and Ammonia does not change throughout the core, it is not likely

that the ratio of labile/refractory organic matter changes, despite the enhanced eutroph-

ication and the possible, subsequent shift in the quality of the foraminiferal food.

Furthermore, the low numbers of Ammonia tepida in Mok Bay may indicate that hori-

zontal transport of specimens is limited. A. tepida occurs in large numbers near the

sediment-water interface at the intertidal flats near Mok Bay (this thesis, chapter 3). If

sands would have been transported into the Mok Bay by tidal energy, it is likely to have

contained substantial amounts of A. tepida. Since this is not the case (fig 5), we infer

that foraminifera and sand found in MOK2001 are not likely to be transported horizon-

tally by tidal energy.
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Climate and foraminifera

Temperature trends (NAOi and 20th century global warming) are not reflected in the

foraminiferal record of Mok Bay. This is either because abundances of intertidal species

are not influenced by these rather subtle (compared to seasonal variations in tempera-

ture) trends or that the change from Elphidium excavatum to Haynesina germanica over-

prints any other correlation with climate forcings. The correlation with grain size, how-

ever, does suggest that sedimentation of coarse material is high during periods of rela-

tively high average westerly wind speeds (i.e. during years with high a high NAO index).

CONCLUSIONS

The laminae in MOK2001 are likely to reflect both tidal (mud) and eolian (sand) trans-

port of sediments into the Mok Bay. Since average winter wind speeds are governed,

amongst others, by the North Atlantic Oscillation, lamination in MOK2001 may reflect

the NAOi. The shift in foraminiferal dominance suggests that Mok Bay's environment

has become more variable: the currently dominant Haynesina germanica is an indicator

of highly variable environments, compared to the formerly dominant Elphidium excava-
tum (this thesis, chapter 8). This shift occurred around 1930, suggesting that the con-

struction of the Afsluitdijk (1932) caused, or at least enhanced, variability in salinity and

water temperature in Mok Bay.
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CHAPTER 7

COPPER INCORPORATION IN FORAMINIFERAL CALCITE:

RESULTS FROM CULTURING EXPERIMENTS

with GJ Reichart, A Dueñas-Bohòrquez, M Wolthers, SR Ernst and GJ van der Zwaan

ABSTRACT

A partition coefficient for copper (DCu) in foraminiferal calcite has been determined by

culturing individuals of two benthic species under controlled laboratory conditions. The

partition coefficient of a trace element (TE) is an emperically determined relation

between the TE/Ca ratio in seawater and the TE/Ca ratio in foraminiferal calcite and has

been established for many divalent cations. Despite its potential to act as a tracer of

human-induced, heavy metal pollution, data is not yet available for copper. Since parti-

tion coefficients usually are a function of many factors (seawater temperature, pH, salin-

ity, metabolic activity of the organism, etc.), we chose to analyze calcite from specimens

cultured under controlled laboratory conditions. They were subjected to different con-

centrations of Cu2+ (i.e. different (Cu/Ca)sea water) and constant temperature, salinity and

pH. We monitored addition of new calcite in specimens of the temperate, shallow-water

foraminifer Ammonia tepida and in the tropical, symbiont-bearing Heterostegina depres-
sa. Newly formed chambers were analyzed for Cu/Ca ratios by laser ablation-ICP-MS.

The calculated partition coefficient (0.1-0.3) was constant over a large range of

(Cu/Ca)sea water and remarkably similar for both species. Neither did the presence or

absence of symbionts affect the DCu,nor did we find a significant effect of temperature

or salinity on Cu-uptake.

INTRODUCTION

Trace elements incorporated in foraminiferal tests are widely used in paleoceanography:

Mg/Ca ratios are used to reconstruct sea surface (Nürnberg et al., 1996) and deep-sea

temperatures (Rathburn and DeDecker, 1997), Cd and Ba are used to estimate past sea-

water nutrient levels and alkalinity, respectively (Boyle, 1988; Rosenthal and others,

1997; Lea and Boyle, 1991). These proxies rely on empirically derived partition coeffi-

cients (DTE) and the dependence of these coefficients on environmental variables.

Temperature, salinity and pH of sea water potentially affect the DTE in foraminiferal cal-

cite (e.g. Nürnberg and others, 1996; Segev and Erez, 2006). 

Although field experiments are useful to determine first order proxy relationships, reli-

able proxy calibrations should include the contribution of so-called vital effects and sep-
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arate the effects of other possible contributing factors. The best way to unravel the con-

tribution of separate variables is through culturing experiments, in which one variable

is varied and all others are kept constant. In the case of some divalent cations, culturing

experiments also allow calibration of proxies out of the range of naturally occurring

environmental conditions. This is important for trace elements that are associated with

anthropogenic pollution with significantly raised concentrations above natural back-

ground levels.

Anthropogenic heavy metal pollution is often characterized by, amongst others, high

Cu-concentrations (Borrego and others, 2004; Sáinz and Ruiz, 2006). Foraminifera have

been used in several ways to investigate pollution as high levels of heavy metals poten-

tially deform foraminiferal chamber alignment and influence foraminiferal community

stucture (Ellison and others, 1986; Samir and El-Din, 2001; Hallock and others, 2003;

Armynot du Châtelet and others, 2004; Ruiz and others, 2004; Ferraro and others, 2006).

However, a number of papers state that test deformations  under high heavy metal con-

centrations occur less often than under medium pollution loads (Alve and Olsgard,

1999; Geslin and others, 2002; Le Cadre and Debenay, 2006). This suggests that recon-

structions based on test deformations are not accurate. 

Cu-concentrations can also be high in the proximity of hydrothermal vents (Iizasa, 1993;

Douville and others, 2002; Kadar and others, 2005). Although the low pH close to acidic

vent fluids dissolves foraminiferal calcite, records of benthic foraminiferal assemblages

described further away from these vents may be used to reconstruct past hydrothermal

activity and impact on concentrations of heavy metals in its vicinity (Molina-Cruz and

Ayala-López, 1988; Jonasson and others, 1995; Panieri and others, 2005). 

25 years ago, Boyle (1981) showed that Cu was one of the elements which proved to be

difficult to analyze in foraminiferal calcite. However, recent analytical advances in the

analyses of trace elements in foraminiferal calcite (Reichart and others, 2003) enabled

us to calibrate for the first time foraminiferal Cu to seawater chemistry, using cultured

benthic foraminifera. Two different intertidal to neritic species (temperate and tropical)

were cultured to establish interspecific differences in the partition coefficient of Cu in

foraminiferal calcite.

METHODS

Collecting and culturing foraminifera

Two similar culturing experiments were conducted. For the first experiment, sediment

was collected at an intertidal flat in the Dutch Wadden Sea and was kept in the labora-

tory in the dark at 10° C. Large (>150 μm), living individuals of Ammonia cf. molecular

type T6 (Hayward and others, 2004: further referred to as A. tepida) were transferred to

custom-made flow-through culture vessels (fig 1). Vessels consist of a 32-well culture

tray, sandwiched between two Plexiglas plates and cells were connected by silicon tubes,

attached with luers in the upper Plexiglas lid (fig 1). Between each cell and tube, a small

filter was placed to prevent specimens from moving between cells. Trays were connect-

ed individually to a 2-liter reservoir with chemically altered sea water and a peristaltic

pump was used to circulate sea water through the cells with a speed of 9 ml/h: in this

way, six groups of 16 cells were formed, each connected to its own sea water reservoir.

In each cell, four foraminiferal specimens were placed. Sea water was enriched with Cu
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from a stock solution: added concentrations of Cu in sea water were 0, 10, 20, 50, 1,000

and 2,000 ppb. Calcein (C0875, Sigma-Aldrich, St Louis, USA) was added to the Cu-

enriched sea water at a concentration of 10 mg/l. Calcein is incorporated into biogenic

calcite, while existing calcite (i.e. earlier formed chambers) is not affected. Since (incor-

porated) calcein is fluorescent, foraminiferal chambers can be recognized that have been

built during the time when individuals were incubated (Bernhard and others, 2004). 

Cells with specimens of Ammonia tepida, contained a small layer (<0.5 mm) of sieved, <37

μm, clay and silt from sediment collected at the Wadden Sea. Natural seawater from the

eastern Mediterranean Sea was adjusted with MilliQ water to a salinity of 17 to mimic

average Wadden Sea salinity. Salinity levels were regularly checked during the experiment

with a WTW LF330 conductivity meter. All 6*16 cells were kept at a constant temperature

of 10° C for two months: before and after experiments, reservoirs were sub-sampled and

sea water was analyzed by ICP-MS for Cu, Mg and Ca. At the start of the incubation peri-

od, the individuals were fed ~0.5 mg of freeze-dried Dunaliella sp. During experiments,

the set-up was subjected to the daily sunlight cycle (app. 14h light/ 10h dark).
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Figure 1: Design of the experimental set-up. A: overview of the system. B: culture

tray with in- and outflow openings (top view). C: cross-section of culture tray with

inter-cell connections, small layer of sediment and inflow opening.



For experiment 2, trays were replaced and lids rigorously cleaned with HCl, rinsed with

MiliQ and re-used to incubate individuals of Heterostegina depressa in seawater with

similar Cu-enrichments used in the first experiments. H. depressa is an epibenthic,

tropical and symbiont-bearing foraminifer, that was kept in our laboratory under high

light intensities (15W tropical reef lamp; Arcadia, FO15) and after transferring them

into the culturing set-up, similar light conditions were maintained in a daily rhythm

(14h light/ 10h dark). No sediment was added to the cells, seawater salinity was kept

at 35, and the set-up was kept at 20º C. Because of their large size, only two specimens

were placed in each cell.

Carbonate chemistry of culture media

For culturing Ammonia tepida, we diluted 35 PSU seawater with MiliQ water to mimic

intertidal ambient conditions with seawater of 17 PSU The dilution decreased both

[Ca2+] and [CO3
2-] and the alkalinity with approximately 50%, resulting in a pro-

nounced reduction of the carbonate saturation state (Ω). The temperature maintained

during these experiments was kept at 10° C, compared to 20° C for the Heterostegina
depressa experiments, allowing gas exchange with the atmosphere (ambient pCO2) in

both cases. The combined effect of these changes is a reduction in saturation state

from about 5.5 for the H. depressa experiment to about 1.0 for the A. tepida experiment

(calculations were performed in CO2sys; Lewis and Wallace, 1998). The lower seawa-

ter saturation state for the A. tepida cultures was most likely responsible for the fact

that newly formed chambers were thinner than the pre-experiment chambers (see

Results).

Laser ablation ICP-MS

Newly formed chambers were ablated using an Excimer laser (Lambda Physik) with

GeoLas 200Q optics inside a helium atmosphere flushed ablation chamber. Pulse repeti-

tion rate was set at 6 Hz, with an energy density at the sample surface of 10  mJ/cm2.

Ablation craters were 60 μm in diameter and ablated material was analyzed with respect

to time (and hence depth) using a quadrupole ICP-MS instrument (Micromass

Platform).

Simultaneous monitoring of Al allowed us to discard the parts of the ablation profiles

contaminated by clay minerals from further calculations of elemental concentrations.

Since the analytical error increases with shorter ablation time we cleaned all specimens

by an incubation of 24 hours in 5% NaOCl (Gaffey and Brönniman, 1993) before analy-

sis, maximizing the amount of data that could be used for calculating (Cu/Ca)calcite ratios.

Calibration strategy

The low calcite saturation state used in the experiment with Ammonia tepida resulted

in formation of new chambers with thin walls. A similar correlation between test wall

thickness and carbonate saturation state has been observed earlier for tests of cultured

planktonic foraminifera (Bijma and others, 2002). Unfortunately, these thin chambers

break easily during ablation when high laser energies are used. Therefore, we ablated

Ammonia tepida with a laser energy of 1 mJ/cm2 , ten times less as the 10 mJ/cm2 used

to ablate newly formed chambers of Heterostegina depressa.
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Analyses were calibrated against NIST glasses 610 and 612, using concentration data

of Pearce and others (1997). Calibrating calcites against glasses is possible because of

the matrix independent ablation by the Excimer laser (Mason and Mank, 2001).

However, when energies lower than 2 mJ/cm2 are used, glass does not ablate properly

and calibration was performed against matrix matched in-house standards (i.e.

pressed calcite powder tablets). Calcium was used as an internal standard because (1)

concentration is constant at 40 wt % in calcite and (2) it allows direct comparisons with

trace metal to Ca ratios from wet-chemical studies. A collision and reaction cell was

used to give improved results by reducing spectral interferences on the minor isotopes

of Ca (42Ca, 43Ca and 44Ca: Mason and Kraan, 2002). Both 63Cu and 65Cu isotopes were

used to calculate Cu-concentrations. 

Seawater Cu-concentration

The concentration of Cu did not vary considerably in most of our experiments during

the experimental period for most of the concentrations used (table 1).

In the first experiment, all measured Cu-concentrations were lower than the target

concentration and most total Cu-concentrations increased during the experiment,

resulting in increased seawater Cu/Ca ratios (on average 17%). In experiment 2, most

Cu-concentrations and all Cu/Ca ratios were higher at the start than at the end of the
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Experiment Target [Cu]

in ppb

Measured Cu Cu/Ca

at the start of 

experiment 

in ppb + 1SD

at the end of 

experiment 

in ppb + 1SD

at start 

(*10-5) +1SD (*10-5)

at end 

(*10-5) +1SD (*10-5)

1. 

Ammonia 
tepida

0 5.40 6.43 +/- 0.374 6.32 +/-5.28 2.91 +/- 0.221

10 6.15 +/- 0.936 n.a. 2.95 +/- 0.384 n.a.

20 12.6 +/- 0.111 16.4 +/- 0.132 6.00 +/- 0.0326 7.34 +/- 0.121

50 21.3 +/- 0.324 n.a. 10.1 +/- 0.0143 n.a.

1,000 804 +/- 18.8 899 +/- 55.6 378 +/-  4.62 408 +/- 6.94

2,000 1143 +/- 31.4 1282 +/- 196 547 +/- 13.5 473 +/- 20.8

2. 

Heterostegina
depressa

0 8.01 +/- 0.355 13.3 +/- 0.765 1.69 +/- 0.0236 3.62 +/- 0.343

10 11.1 +/- 0.139 13.5 +/- 2.61 2.32 +/- 0.0670 3.74 +/- 0.500

20 15.6 +/- 1.46 23.6 4.06 +/- 0.179 6.71

50 82.0 +/- 2.46 80.0 +/- 3.35 20.2 +/- 0.0120 23.1 +/- 0.711

1,000 717 +/- 0.430 665 +/- 17.8 172 +/- 0.844 212 +/- 5.88

2,000 n.a. n.a. n.a. n.a.

Table 1: Target concentrations of Cu in sea water and measured (Cu/Ca)sea water at

start and end of both experiments. n.a.=not available.



experiment. Identical procedures and techniques were used during both sample

moments, making it unlikely that sampling artifacts affected our measurements.

Therefore, we used average solution Cu/Ca ratios to calculate the partition coefficient

of Cu in foraminiferal calcite and incorporated differences between start and end con-

centrations for uncertainty calculations. Error bars plotted in the different graphs are

based on these calculations and largely stem from these changes, which are an order

of magnitude larger than the analytical uncertainties.
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Reaction Functional groups Log K

(1) L6- + H+ = HL5- -COOH 11.7

(2) HL5- + H+ = H2L4- -COOH 10.8

(3) H2L4- + H+ = H3L3- -COOH 5.5

(4) H3L3- + H+ = H4L2- -OH 4.2

(5) H4L2- + H+ = H5L- ≡NH+ 2.9

(6) H5L- + H+ = H6L ≡NH+ 2.1

(7) 2Cu2+ + L6- = Cu2L2- -COOH 28.9

(8) Cu2+ + H2L4- = CuH2L2- ≡NH+ 8.3

(9) Cu2+ + H4L2- + H3L3- = Cu(H4L)(H3L)3- -COOH + -OH 10.4a

(10) 2Ca2+ + L6- = Ca2L2- -COOH 27.2 b

(11) Ca2+ + H2L4- = CaH2L2- ≡NH+ 6.63

(12) Ca2+ + H4L2- + H3L3- = Ca(H4L)(H3L)3- -COOH + -OH 8.73 a b

(13) 2Mg2+ + L6- = Mg 2L2- -COOH 28.5 b

(14) Mg2+ + H2L4- = MgH2L2- ≡NH+ 7.9

(15) Mg2+ + H4L2- + H3L3- = Mg(H4L)(H3L)3- -COOH + -OH 10.0 a b

Table 2: Thermodynamic data for calcein (Ueno and others, 1992). L = calceine. a

reactions leads to negligible metal binding; b values extrapolated by assuming chem-

ical behavior similar to Cu2+ (see text for discussion).



Cu speciation in seawater

In the absence of organic matter, Cu in sea water forms mainly Cu(OH)2 and CuCO3,

while small amounts of Cu2+ and CuOH- are also present (Zirino and Yamamoto, 1972).

In natural sea water, however, usually more than 99.9% of the Cu is bound to organic

compounds (Eriksen and others, 2001), mainly in the colloidal state (Mackey and Zirino,

1994). Foraminifera take up organic particles and sea water by endocytosis, likely ingest-

ing both free Cu and Cu-ligand complexes. The internal routes that organic compounds

follow are virtually uninvestigated in foraminifera and therefore, we do not know which

Cu species are present at the site of calcification.

Modelling Cu speciation

The calcein present in the culturing medium is a ligand that can bind TE's and thus

potentially causes concentrations of free Cu to drop. Traditionally, total calcium and TE

concentrations in solution are used to calculate partition coefficients for trace elements

in calcite. Ideally, activities or effective concentrations, of relevant metals are used to

allow application of partition coefficients in solutions of different compositions (Morse

and Bender, 1990). 

To correct for Cu binding to calcein, we calculated speciation of all abundant cations

(Cu, Ca and Mg) in our solution. Speciation calculations were performed in PHREEQC

2.8.03 (Parkhurst and Appelo, 1999) with the llnl database and thermodynamic data for

calcein listed in Table 2. For calcein complexation of calcium and magnesium, reactions

(11) and (14) are reported in the literature. These reactions will lead to competition

between copper, calcium and magnesium in binding to an amine group on H2L4-, thus
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Experiment [Cu]t (ppb) {Cu}t (M) [Cu]t/[Ca]t [Cu]c (ppb) {Cu}c (M) [Cu]c/[Ca]c

1.

Ammonia
tepida

9.94 1.33 x 10-7 2.6 x 10-5 9.94 1.33 x 10-7 2.6 x 10-5

10.7 1.46 x 10-7 2.9 x 10-5 10.7 1.46 x 10-7 2.9 x 10-5

24.4 3.33 x 10-7 6.6 x 10-5 24.4 3.33 x 10-7 6.6 x 10-5

66.8 9.11 x 10-7 18 x 10-5 66.8 9.11 x 10-7 18 x 10-5

1,182 161 x 10-7 320 x 10-5 1182 161 x 10-7 320 x 10-5

2,417 329 x 10-7 660 x 10-5 2417 329 x 10-7 660 x 10-5

2.

Heterostegina
depressa

10.6 1.40 x 10-7 1.6 x 10-5 10.6 1.6 x 10-5 1.6 x 10-5

12.1 1.63 x 10-7 1.8 x 10-5 12.1 1.8 x 10-5 1.8 x 10-5

16.2 2.18 x 10-7 2.4 x 10-5 16.2 2.4 x 10-5 2.4 x 10-5

86.5 11.6 x 10-7 13 x 10-5 86.5 13 x 10-5 13 x 10-5

767 103 x 10-7 110 x 10-5 767 110 x 10-5 110 x 10-5

Table 3: Added and free copper concentrations and activities in the experiments.

Suffix t = total copper concentration added to the experiment; suffix c = corrected

ratios (total Cu or Ca minus calceine-complexed Cu or Ca). 



decreasing calcein-bound Cu. It is, therefore, likely that the behavior of Ca and Mg

towards calcein is similar to Cu and similar competition between the three metals

occurs in binding according to reactions (7) and (9) via carboxyl groups (Lu and Allen,

2002). Composition of the solution in the model was either the Cu-enriched sea water

with a salinity of 35 or 17 for the experiment with Ammonia tepida, and were both open

to atmospheric CO2.

Cu and Ca-concentrations used to calculate the partition coefficients were those correct-

ed for Cu and Ca complexated with calcein (Table 3).

RESULTS

New calcite and survival rates

Specimens that grew new calcite, were recognized by fluorescent, outer chambers (fig 3).

None of the individuals of Heterostegina depressa incubated at the target Cu-concentra-

tion of 2,000 ppb, survived the experimental period. At 1,000 ppb of added Cu, howev-

er, several survived of which 1 individual produced new calcite. At lower concentrations,

generally more chambers were formed (Table 3). None of the added chambers (n=88)

showed abnormal alignments or deformations.

For Ammonia tepida, the number of successful laser-ablation analyses is significantly

lower (3) than the number of added chambers (34). The limited size of newly added

chambers did not allow multiple analyses of a single chamber. After an unsuccessful

attempt to analyze a targeted chamber it is not possible to re-do this measurement as

the largest part of the carbonate has been ablated (fig 4). 
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Figure 3: New chambers added by Ammonia tepida (A) and Heterostegina depressa (B),

visible by fluorescence of incorporated calcein.



Partition coefficient of Cu - Ammonia tepida
Two ablation profiles were obtained from two specimens of Ammonia tepida that

grew new chambers at a low (20 ppb) Cu-concentration (fig 5). Measurements indi-

cate that the partition coefficient lies between 0.1 and 0.3. In figure 5B, the same two

measurements are depicted at the left end of the graph (note different scales). Ratios

for calcite formed at higher (Cu/Ca)sea water, indicated a partition coefficient between

0.1 and 0.2.
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Experiment Target [Cu2+] 

in ppb

Number of 

specimens at start 

of experiment

Number of 

individuals that grew

new chambers

Number of new

chambers added

1.

Ammonia 
tepida

0 64 7 7

10 64 11 12

20 64 6 6

50 64 3 3

1,000 64 5 5

2,000 64 1 1

2.

Heterostegina 
depressa

0 32 5 8

10 32 3 6

20 32 0 0

50 32 19 37

1,000 32 1 3

2,000 32 0 0

Table 3: Number of individuals at the start of the experiments, number of specimens

that formed new calcite and total number of added chambers. 

Figure 4: Scanning electron microscope image of laser ablation craters in Ammonia
(left) and Heterostegina (right). Insets depict whole specimen.



Partition coefficient of Cu - Heterostegina depressa
Although individuals of Heterostegina did not survive the highest Cu-levels, we obtained

two ratios from specimens that added new chambers at a target concentration of 1,000

ppb (i.e. a realized concentration of 700 ppb Cu). From incubations with lower Cu-con-

centrations, more specimens were available that grew new chambers that could be ana-

lyzed for Cu-concentration (fig 6).
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Figure 5: Cu/Ca ratios in Ammonia tepida test carbonate versus Cu/Ca in sea water

(error bars indicate 1 SD). Left graph is an enlargement of right one: lines represent

partition coefficients of 0.1, 0.2 and 0.3.

Figure 6: Plot of Cu/Ca ratios in foraminiferal calcite of the added chamber versus

the Cu/Ca of the sea water in which they were incubated. Error bars indicate 1 SD.

Lines indicate partition coefficients of 0.1, 0.2 and 0.3.



DISCUSSION

Within the experimental and analytical error both species show an identical (Cu/Ca)sea water

to (Cu/Ca)calcite relation, resulting in a partition coefficient (DCu) of 0.2 +/- 0.1. No sig-

nificant difference was observed in copper incorporation between Ammonia tepida and

Heterostegina depressa, despite large differences in ecology and habitat. Some inter-spec-

imen variation in Cu/Cacalcite was observed in H. depressa grown at low Cu-concentra-

tions, in which rather large uncertainties in culture water Cu-concentration (fig 6)

resulted from changes in [Cu2+] over time. Moreover, the alternative calibration method

used for the thin-walled chambers of A. tepida increased the analytical uncertainty in the

laser ablation-ICP-MS analyses (fig 6). Despite these errors, the calculated DCu was not

significantly dependent on either temperature or salinity.

Cu in the calcite lattice

Crystalline CuCO3 does not exist, because the most common coordination of Cu-carbon-

ate complexes are distorted tetragonal pyramids or distorted octahedrons (Wells, 1984).

These shapes do not allow precipitation of pure CuCO3 crystals and rather

Cu2CO3(OH)2 (malachite) will form. However, sorption studies have shown that at the

calcite-water interface these so-called Jahn-Teller distortions can be overcome and a solid

solution CuxCa(1-x)CO3 forms (Schlosseler and others, 1999). It has been proposed that

copper in calcite is present in clusters, based on studying the transformation of vaterite

to calcite (Nassrallah-Aboukaïs and others, 1996; 1998). Recent XAFS work, however,

has shown that this mechanism is not applicable to calcite surfaces (Elzinga and Reeder,

2002). This rather unusual complexation behavior would suggest that sorption and sub-

sequent incorporation into the crystal lattice for copper is limited to part of the crystal

surface only. This, in turn, would result in a lower partition coefficient for copper than

expected based on its ionic radius only.

Contrary to these results, it has been shown that during inorganic coprecipitation exper-

iments Cu is incorporated in calcite with a distribution coefficient (KCu) of 23 and con-

stant under a range of Cu-concentrations (Kitano and others, 1980). In the initial stage

of calcification, the KCu can be even higher (40) probably due to the strong affinity of

Cu(OH)2 for calcite surfaces (Franklin and Morse, 1982; Pickering 1983; Papadopoulos

and Rowell, 1989). This indicates that the Jahn-Teller distortions are easily overcome

during calcification.

Generally, divalent cations with an ionic radius close to Ca (=1.0 Å) have a partition coef-

ficient in calcite close to 1. Cd has an ionic radius of 0.95 (Shannon, 1976) and is incor-

porated in both planktonic and benthic species with a D between 1 and 4 (Boyle, 1981;

1988; Havach and others, 2001), independent of temperature (Marchitto, 2004). Sr (ionic

radius =1.31 Å) is incorporated in foraminiferal calcite with a D of 0.11-0.19, measured

in several planktonic genera (Bender and others, 1975) and 0.05-0.25 in Cibicidoides
(Elderfield and others, 1996). Coretop studies on Cibicides and Uvigerina show that Ba

(1.47 Å) is incorporated with a partition coefficient of 0.3-0.4 at 3º C (Lea and Boyle,

1989). In the planktonic genera Globorotalia and Globoquadrina, Ba is incorporated with

a D of 0.19 (Lea and Boyle, 1991). Cu has an ionic radius close to Mg (0.73 and 0.72 Å,

respectively), but the partition coefficient of Mg is much lower (0.1-1x10-3; Bender and

others, 1975; Delaney and others, 1985) than the measured 0.1-0.3 for Cu (fig 7). The
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large difference between the foraminifer-mediated Cu-incorporation and the inorganic

incorporation of Cu in calcite indicates that much energy is spent on removal of Cu at

the site of calcification.

Biological control on DCu

Since magnesium inhibits calcite growth (Berner, 1975; Mucci and Morse, 1983) and

high levels of Mg are likely to be present in foraminiferal calcifying reservoirs, it is nec-

essary for foraminifera to remove Mg before calcification. It has been suggested that

foraminifera actively pump Mg from their calcifying reservoir in order to stimulate

CaCO3 precipitation. Usually, Cu is present only in very low concentrations in seawater

and therefore no need exists to actively remove Cu from calcifying reservoirs, despite its

ability to modify the crystalline structure of calcite. Although under high Cu-concentra-

tions it may be beneficial to remove Cu from calcifying reservoirs, apparently the

foraminifera does not do so, as the DCu is similar for high and low Cu-concentrations.

Alternatively, the concentrations used in our experiments may still be too low to serious-

ly impede CaCO3 precipitation.

Another reason for active removal of trace elements from calcifying reservoirs is that

these elements are necessary for cellular processes. Since Cu is known to play only

minor roles in eukaryotic metabolic processes (Bruland and others, 1991; Sunda and

Huntsman, 1995; Chang and Reinfelder, 2000), it is unlikely that the DCu is affected by

cellular needs.

Organic compounds may increase Mg contents in foraminiferal calcite (Bentov and Erez,

2006). High concentrations of Mg in the primary organic membrane (Hemleben and oth-

ers, 1986) may explain the observed intra-test variability of Mg/Ca (e.g. Toyofuku and

Kitazato, 2005). Cu also has a strong affinity for organic compounds (see below), so that

the DCu may be partly determined by the presence of organic compounds in the calcite.

Bresler and Yanko (1995) showed that some benthic, epiphytic foraminifera have trypto-

fan-containing proteins that can bind Cu2+ and prevent intracellular Cu-concentrations

from becoming harmful. When a significant part of the Cu2+ would have been immobi-

lized by these Cu-binding proteins this would also have lowered the Cu activity in the

solution and thus DCu. Since we have not observed such a decrease, it is unlikely that

such molecules play a major role in decreasing intracellular Cu-concentrations.

Seawater pH is a potentially important modulator of trace metal uptake (Lea and others,

1999; Zeebe and Sanyal, 2002). To investigate the potential effect we compared species

with and without symbionts. In the symbiont-bearing H. depressa the photosynthetic

activity of the symbionts changes the local carbonate chemistry because CO2 is taken up

and pH lowered during light conditions. However, the lack of any systematic offset in

Cu/Ca between the H. depressa and A. tepida suggests no significant effect of pH on Cu

incorporation. 

Test deformation and mortality

A number of studies over the last 20 years have attempted to correlate the number of

deformed tests to environmental pollution (Alve, 1991; Elberling and others, 2003;

Armynot du Châtelet and others, 2004). The empirical correlation between number of

deformed tests and for instance heavy metal or hydrocarbon concentration levels was
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interpreted to signify a causal relationship. Although in several of our experiments Cu-

concentrations were well above levels found at even the most polluted sites not a single

deformed chamber alignment was observed. Although the limited number of observa-

tions does not allow a statistical evaluation, our results strongly suggest that high levels

of Cu do not cause test deformities. This is also shown by Alve and Olsgard (1999), who

found no test deformities in foraminifera living in seawater with high Cu-concentra-

tions. Therefore, we think that relative abundances of deformed tests in fossil samples

are not suitable to reconstruct past copper concentrations. Most likely other environ-

mental factors, co-varying with environmental trace metal levels must have been

responsible for the observed increase in test deformities. The complete absence of defor-

mations in our experiments is in high contrast to the low but still detectable levels of

natural occurring test deformities under environmental pristine conditions. This sug-

gests that the protected environment of the culture trays may actually have shielded our

foraminifera from hydrodynamical turbidity, predators or other factors contributing to

the test deformaties.

In seawater with the highest concentration of Cu (2,000 ppb), none of the

Heterostegina's survived and only one specimen grew new chambers when cultured at

1,000 ppb. Since the growth or survival of Ammonia tepida did not appear to be ham-

pered by high concentrations of Cu, we hypothesize that either the symbionts of the

tropical foraminifera are vulnerable to high Cu-concentrations (Brandt and others,

1986), or that individuals of  A. tepida are adapted to cope with (occasional) high levels

of heavy metals. 

Application of Cu/Ca ratios in foraminiferal calcite

In order to quantify pollution levels, heavy metal concentrations are often analyzed

using strong acid extractions and subsequent ICP-MS analyses of bulk sediment. Since

heavily polluted sites are frequently characterized by high concentrations of (labile)

organic matter, polluted sediments are often anoxic with high levels of sulphate reduc-

tion and associated production of free sulfide. These high sulfide-levels result in immo-

bilization of heavy metals such as Zn, Cu, Cd and Pb, which are precipitated as the high-

ly insoluble minerals PbS, CuS and ZnS, or as co-precipitates in pyrite. Because these

metals are no longer bioavailable they do not reflect toxicity of the overlying water to, for

instance, benthic biota. Actual analyses of the overlying water itself or organisms living

in these waters would give a much more applicable concentration to assess pollution.

This becomes even more important when at a later stage organic loads decrease and/or

the oxygen level increases, (e.g. after improved wastewater treatment). Under these con-

ditions lower sedimentary trace metal levels could result in higher actual toxicity as

these metals are remobilized by progressive reoxidation of the sediment and escape to

the overlying water. Monitoring foraminiferal test Cu/Ca ratios could be used to estab-

lish the bioavailable fraction of Cu and potentially also could record relatively short

episodes with elevated bottom water Cu-levels.

Sludge dump sites and associated elevated concentration levels of heavy metals are

mostly limited to coastal and estuarine environments. These settings experience consid-

erably varying seasonal and even daily temperatures and salinity levels. A significant

impact of either temperature or salinity on partition coefficients would, therefore, ren-
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der foraminiferal trace metal records useless for any reliable reconstruction and/or

monitoring of such dump sites. Since the obtained DCu is not markedly dependent on

either temperature or salinity, foraminiferal Cu/Ca ratios are a powerful proxy for the

quantitative reconstruction of past heavy metal pollution, even in highly variable envi-

ronments. 

CONCLUSIONS

Copper is incorporated into foraminiferal calcite with a partitioning coefficient of about

0.2 +/- 0.1 with respect to sea water Cu/Ca values. No additional effects could be

observed with the experimental setup used here. Additional experiments are needed to

better constrain DCu and unravel the effects of other likely important environmental fac-

tors such as temperature, salinity and seawater carbonate chemistry.
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CHAPTER 8

CONCLUSIONS

Anthropogenic influences on ecosystems

Most chapters of this thesis deal with benthic foraminifera in environments that are

subjected to human-induced pollution. Some types of pollution can be directly recon-

structed with results that are presented here (like heavy metal pollution; see chapter 7

and below), while other types (e.g. eutrophication) may not be so easily inferred from

our results, as the samples across the Frisian Front (and their environmental differ-

ences) do not provide a solid analogue for the different stages of eutrophication. In this

chapter, we will summarize the conclusions of this thesis and discuss implications for

reconstructing the history of shallow water environments.

Heavy metal pollution

Heavy metal pollution (HMP) in marine ecosystems affects survival, growth and repro-

duction of organisms in harbors, near heavy industry and mines, and in environments

where riverine input is high. Although HMP has declined in many coastal areas over the

last decades, past HMP may still affect modern and future ecosystems. Sludge that is

dumped in the past may have contained high concentrations of heavy metals (HMs) as

well as large amounts of organic material, the latter causing anoxia of the sediment thus

immobilizing HMs. When these sites are re-oxygenated due to decreased organic pollu-

tion, the HMs may become bio-available again. To investigate the long-term (decadal)

effects of HMP on ecosystems, we need proxies to reconstruct bio-available concentra-

tions of HMs.

We have shown that foraminferal Cu/Ca ratios can serve as a proxy for paleo-Cusea water

concentrations. The low partition coefficient for Cu (0.1-0.3) indicates that this method

can only be successfully applied if seawater of paleoenvironments contained high levels

of bio-available Cu. These levels may be reached in near-shore, heavy polluted areas,

near mines or near hydrothermal vents. A lack of dependence of the derived partition

coefficient on temperature and salinity, together with minor inter-species differences,

indicate that (Cu/Ca)foraminiferal calcite may serve as a proxy under a wide range of environ-

mental settings and that potentially many foraminiferal species can be used to recon-

struct paleo Cu-concentrations.

Eutrophication

Organic carbon supply and oxygen availability are suggested to be the most important

factors in controlling foraminiferal niche partitioning (Jorissen and others, 1995; Van

der Zwaan and others, 1999), foraminifera in turn are therefore thought to be good indi-
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cators for the magnitude of organic pollution. Many authors have shown the effect of

ongoing eutrophication (and usually subsequent anoxia) on foraminiferal community

structure in the subrecent history (Alve, 1995a; Barmawidjaja and others, 1995; Thomas

and others, 2000; Platon and others, 2005; Tsujimoto and others, 2006). Commonly,

eutrophication leads to a loss of foraminiferal diversity and increasing dominance of

one or a few species. 

The southern North Sea and the Wadden Sea are both naturally rich in organic matter

and therefore, the additional effects of human-induced eutrophication might be limit-

ing (see Alve, 1995b for comparable analysis of seasonal flux of organic matter). Below,

we will argue that in systems where environmental variability is high, the effects of

eutrophication on the foraminiferal community structure could be limited. Of course,

in oligotrophic or stable environments foraminifera are more likely to be influenced by

eutrophication and/ or bottom water anoxia.

Implications for transfer functions

Murray (1991; 2001) has pointed out that (a combination of) many factors can limit

foraminiferal distributions. This implies that in some cases the distribution of a species

is limited by one environmental variable (e.g. low salinity), while elsewhere it is limited

by another (e.g. abundance of a predator). This in turn, may explain why sometimes a

species' distribution is correlated to one environmental parameter and sometimes to

another. Therefore, transfer functions are potentially unreliable and should only be used

to reconstruct the environmental parameters that are likely to be limiting foraminiferal

abundances in that particular paleoenvironment. 

Many foraminifera-based transfer functions are developed to reconstruct bottom water

oxygen concentrations and organic carbon flux (Sen Gupta and others, 1996; Kaiho,

1999; Kuhnt and others, 1999; Wollenburg and Kuhnt, 2000; Osterman and others,

2005). Organic flux probably is the most important variable controlling foraminiferal

abundances in deep sea environments, since most other factors are relatively stable or

do not limit foraminferal growth or reproduction. Also in some fjords it has been shown

that temporal anoxia of bottom waters are among the most important variables structur-

ing the foraminiferal community. Therefore, foraminiferal records from such environ-

ments may indeed be used to reconstruct organic flux and/or oxygen concentrations

(e.g. Gustafsson and Nordberg, 1999). 

Our results, however, do not show a clear response of foraminiferal species composition

to oxygen concentrations or total organic carbon content. Rather, we suggest that

foraminifera from the Wadden Sea and North Sea can be used to reconstruct the type of

food available and environmental variability.

Type of food

Lee (1974) has summarized a number of tracer studies that have shown that

foraminifera are very  selective in their feeding habit. Of the 28 algal species offered to

different species of foraminifera (including Ammonia beccarii) only 4-5 were consumed

in significant quantities. Some bacterial species are also ingested by foraminifera,

although the consumed biomass is much lower than that of the ingested algae. It is also

shown that the concentration of the food source is important for the growth rate of indi-
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vidual foraminifera (Lee, 1974 and references therein).

In chapter 3, we have suggested that the composition of available food may be very

important in structuring foraminiferal species composition. Several intertidal species

are reported to have specific food preferences (Murray and Alve, 2000) or even test adap-

tations to feed on specific food sources (Austin and others, 2005). Various species of the

genus Ammonia are regularly described to be able to feed on detritus and bacteria (A.
tepida: Hohenegger and others, 1989: A. beccarii: Goldstein and Corliss, 1994) or are

shown not to contain algal symbionts (A. tepida: Knight and Mantoura, 1985). On the

other hand, Haynesina germanica and Elphidium excavatum have both been reported to

feed primarily on fresh (living) phytodetritus or labile organic matter in general (Lopez,

1979; Alexander and Banner, 1984; Knight and Mantoura, 1985; Bernhard and Bowser;

1999; Gustafsson and Nordberg, 1999; Ward and others, 2003; Austin and others, 2005)

and not on refractory organic matter (Ward and others, 2003; Topping and others, 2006).

Abundances of these taxa could be used to develop simple transfer functions of food

quality, given enough  data on seasonal variation in the composition of organic carbon.

Environmental variability

Both surveyed environments are characterized by a high variability of environmental

parameters. In the southern North Sea there are large seasonal differences in sea water

temperature, bottom chlorophyll a content and nitrate availability (e.g. Gieskes and

Kraay, 1977; Radach and others, 1990; Howarth and others, 1993; Hydes and others,

1999). In the Wadden Sea, these seasonal fluctuations are accompanied by large semi-

diurnal variations in temperature, salinity and physical disturbance. It has been suggest-

ed that foraminiferal diversity is usually low at intertidal flats due to low salinity

(Hayward and Hollis, 1994) or high variability in temperature and salinity, despite high

abundance of food (e.g. Alve and Murray, 1994). Only few species are able to withstand

these fluctuations. Presence of such species at the Frisian Front (i.e. Elphidium excava-
tum and Ammonia tepida) may therefore indicate that habitats across the Frisian Front

are characterized by high environmental variability. 

The habitat of Eggerella scabra represents the area that is least affected by seasonal dif-

ferences in temperature and food supply. Although variability in food supply, tempera-

ture, etc. also exists at the north edge of the front, they are likely to be less extreme than

at or at the southern edge of the benthic front. This suggests that the realized niche of

E. scabra is determined by a moderate influence of environmental variability and that

the presence of this species is indicative for relatively stable conditions in shallow seas.

Wadden Sea

Three species are often described to live in temperate, intertidal mudflats: Ammonia tep-
ida (sometimes referred to as A. beccarii forma tepida), Elphidium excavatum and

Haynesina germanica (e.g. Murray 1991; Debenay and others, 2006). In our sampling

surveys we have found mainly A. tepida and H. germanica, although others have

described other combinations (e.g. A. tepida and E. excavatum; Hohenegger and others,

1989). Sen Gupta (1996) has suggested that the ratio between Ammonia parkinsoniana
and Elphidium excavatum (i.e. the Ammonia-Elphidium index) can be used to recon-

struct hypoxia. In our field surveys, however, relative numbers of Ammonia and
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Elphidium do not reflect bottom water hypoxia, but other sources of stress (or even dis-

turbance) caused by a great amplitude of physico-chemical extremes. Furthermore,

Ammonia may be replaced by H. germanica, depending on the type of food supplied.

Therefore, we believe that the relative abundances of Ammonia, Elphidium and

Haynesina in intertidal areas are determined by two other factors: type of food available

and environmental variability, and their relative abundances can thus be used to semi-

quantitatively characterize the environment in these terms. We will further refer to the

relation between these environmental variables and the three foraminiferal species as

the troika-model (fig 1).

In chapter 6, we described the development of foraminiferal species composition in

Mok Bay in the past two centuries. The community composition shows a marked shift

in dominance from Elphidium excavatum to Haynesina germanica. According to our troi-

ka-model, the shift in foraminiferal dominance in Mok Bay reflects primarily a change

in environmental variability (fig 1). Besides the human-induced environmental changes

in the Dutch Wadden Sea (completion of the Afsluitdijk in 1932, sealing of the former

Zuiderzee; see Chapter 6) one of the reasons for this increase of local environmental

amplitude may well be the progressive shallowing of the Mok Bay, reducing the buffer

capacity of the water column against seasonal variations. Since the sampling location

has always been subtidal, however, a constant supply of relatively fresh phytoplankton is

assured, explaining the lack of excursions towards the Ammonia corner in fig 1. In con-
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Figure 1: The troika-model: hypothetical relation between the relative abundances of

Ammonia, Elphidium and Haynesina and their relation to environmental variability

and quality of organic matter. Historical changes in Mok Bay is indicated by a black

line. Average seasonal values near Den Oever are shown in open circles: from top to

bottom circles represent samples taken in April, May, May, and June (number of sam-

ples: 12, 64, 24, and 48 respectively). See text and chapters 3 and 6 for more details.



trast, the living assemblages from the Den Oever mud flat (chapter 3) reveals another

type of variability. This intertidal area is permanently exposed to semidiurnal/seasonal

temperature and salinity changes. Hence, all samples plot at the high-variability side of

the graph. No change in the environmental variability signal was to be expected, and

accordingly none was found in fig 1. Instead, we see that the seasonal development in

food quality dominates.

Southern North Sea

Our study of the Frisian Front (chapter 5) shows that within a short bathymetrical range,

completely different foraminiferal communities can exist. High abundances of

Ammonia tepida and Elphidium excavatum indicate that, like at intertidal flats, across the

Frisian Front there is relatively much environmental variability. Especially at the south

edge of the benthic front, where abundances of these species are highest, there may be

much variation in the arrival of organic matter and there may be occasional physical dis-

turbance by tidal wave action. The location and timing of peak abundances of E. excava-
tum coincide with the organically enriched zone where input of fresh matter is tem-

porarily high (fig 2). The distribution of A. tepida (higher in winter and at the center of

the front), fits its common description of being able to feed primarily on refractory

organic material.

Across the Frisian Front, Eggerella scabra is dominant in the northernmost stations, char-

acterized by stratification and likely to experience relatively low environmental variabil-

ity. The erratic occurrence of Stainforthia fusiformis confirms its opportunistic lifestyle

(Alve, 1994; 1995b). The net result of the distribution of these species (see chapter 5 for

details) is that the foraminiferal community structure correlates well with different

hydrodynamic regimes. In the southern North Sea, high relative abundances of

Elphidium excavatum indicate an environment with a high input of labile organic mat-

ter. Eggerella scabra on the other hand, represents an environment that is relatively sta-

ble: i.e. the area characterized by spring and summer stratification of the water layer, not

influenced by tidal wave action, limited activity of bioturbators and a relative stable sup-
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germanica accross the Frisian Front. Center of the benthic front is located at 53º 42'.



ply of food. Obviously, we do not know whether such patterns are found in the rest of

the North Sea too. It could well be that in deeper, northern parts there is a correlation

between organic flux and community structure since inter-seasonal differences are less

pronounced and food is less abundant.

Perhaps, our most remarkable observation is that microhabitat separation apparently

does not occur in our shallow water associations. this is in marked contrast with deep-

er water muddy environments. We suggest that this is due to the dynamics of the envi-

ronment. Bioturbation and sediment movement cause regular disturbance of microhab-

itats and individual specimens are brought in regularly into the aerated surface layer,

thus escaping the anoxic zone which is kept in place by the abundant organic matter.
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SAMENVATTING

Overal op aarde zorgt bevolkingsgroei en de daarmee gepaard gaande bouw van infra-

structuur, industrialisatie en een toenemende energieconsumptie voor een achteruit-

gang van de biodiversiteit (o.a. Kerr en Currie, 1995; Pimm et al., 1995; Vitousek et al.,

1997). Volgens schattingen heeft anthropogene activiteit tot op heden voor het uitster-

ven van ongeveer 20.000 á 2 miljoen soorten geleid (Wilson en Peter, 1998; Meyers,

1998; 1990). Dit verlies is vooral te wijten aan habitat-fragmentatie en habitat-destructie

(Bellwood en Hughes, 2001; Travis, 2003), terwijl de recente stijging in temperatuur ook

bijdraagt aan deze massa-extinctie (o.a. Root et al., 2003; Pounds et al., 2006). Afgezien

van het uitsterven van soorten, zijn ook het functioneren van ecosystemen (Tilman,

1987; Duffy, 2003) en de kringloop van sommige elementen (o.a. Rast en Thornton,

1996; Exley, 2003) in de afgelopen eeuwen sterk aan verandering onderhevig.

Kustgebieden bestaan uit zeer diverse ecosystemen (Ray, 1988), maar behoren tegelij-

kertijd tot de meest bedreigde ecosystemen die er bestaan. Enerzijds worden deze gebie-

den bedreigd door sterke eutrofiëring doordat hoge concentraties nutrienten en orga-

nisch materiaal worden aangevoerd door rivieren, anderzijds worden de habitats van

ondiepe zeeën vernield door visserij en de bouw van dijken, inpoldering, etc. (o.a. Casey

en Myers, 1998; Hutchings, 2000; Jackson et al., 2001; Lotze en Milewski, 2004).

De samenstelling en het functioneren van een ecosysteem is echter ook onderhevig aan

veranderingen die natuurlijke oorzaken hebben, bijvoorbeeld door schommelingen in

het klimaat. Om de effecten van de menselijke bijdrage aan ecosysteem-veranderingen

goed te kunnen schatten, is inzicht in deze natuurlijke 'achtergrondvariatie' essentieel.

Helaas zijn lange-termijn biologische monitoringsprogramma's zeldzaam en bevatten

zij nooit de situatie van vóór het menselijk ingrijpen. Daarom kunnen we veranderin-

gen in ecosystemen op lange termijn alleen onderzoeken met behulp van geologisch

materiaal dat de resten bevat van vroegere omgevingen. Zulke resten zijn er in veel soor-

ten en maten, waaronder fossielen, mineralen, stabiele isotopen, luchtbellen in

Antarctisch ijs en specifieke moleculen van micro-organismen. Ieder van deze resten

(zogenaamde proxies) kan worden gebruikt om een bepaald aspect van een vroeger eco-

systeem of van het klimaat uit die tijd te reconstrueren. Door verschillende proxies te

combineren (een multi-proxy benadering), kan een volledige reconstructie gemaakt

worden van het klimaat, of een gebied of ecosysteem door de tijd heen.

Foraminiferen (Protisten) zijn nauwe verwanten van de amoeben, die vooral in de zee

leven en een bijzondere eigenschap hebben dat de meeste soorten tot populaire proxies

maakt: veelal maken deze organismen tijdens hun leven een schaaltje van van calcium-

carbonaat (kalk). Omdat deze organismen veelvuldig voorkomen in de wereldzeeën en

hun schaaltjes relatief makkelijk bewaard worden in de zeebodem, worden ze vaak

gebruikt om het klimaat van vroeger te reconstrueren. Foraminiferen kunnen op twee

manieren als proxy gebruikt worden. De eerste manier is door het tellen van verschil-

117



lende soorten in fossiel materiaal, waardoor de omgeving uit die periode aflezen kan

worden aan de hand van het voorkomen van specifieke soorten. Zo'n aanpak is vooral

succesvol als we goed weten welke soorten foraminiferen tegenwoordig indicator soor-

ten zijn van bepaalde omgevingen. Om het voorkomen van levende foraminiferen in de

ruimte en in de tijd te onderzoeken, worden er veldstudies gedaan tijdens welke er aller-

lei omgevingsvariabelen worden vergeleken met het voorkomen van verschillende fora-

miniferen. Positieve correlaties die gevonden zijn, kunnen vervolgens gebruikt worden

om van fossiele monsters die omgevingsvariabelen te reconstrueren.

De tweede manier waarop foraminiferen gebruikt kunnen worden om het paleomilieu

te reconstrueren, is door het analyseren van de chemische samenstelling van hun

schaaltje. De verhouding van zuurstof-isotopen in foraminiferen-kalk reflecteert bijvoor-

beeld de temperatuur van het zeewater en de totale hoeveelheid poolijs in de periode

waarin het schaaltje groeide. Tijdens het produceren van het kalk (calcificatie) worden

ook allerlei spore-elementen (zoals Mg, Ba, Cd, Zn, Cu) ingebouwd in het CaCO3-roos-

ter door te substitueren voor Ca. Naast de concentratie van deze spore-elementen of -

metalen in het zeewater, zijn veel omgevingsparameters bepalend voor de hoeveelheid

hiervan die wordt ingebouwd in het calciumcarbonaat. De inbouw van magnesium bij-

voorbeeld wordt in grote mate bepaald door de temperatuur van het zeewater waarin cal-

cificatie plaatsvindt. Zodoende wordt de concentratie Mg in fossiel kalk van foraminife-

ren (uitgedrukt als de Mg/Ca ratio) gebruikt als een afspiegeling van de vroegere zeewa-

ter temperatuur. De afhankelijkheid van een spore-element/ Ca ratio op temperatuur,

saliniteit, pH en haar afhankelijkheid van de cellulaire activiteit van de foraminifeer is

onbekend voor de meeste spore-elementen. Daarom is er biologisch onderzoek naar cal-

cificatie nodig om de proxy-waarde van spore-elementen in kalk nader te bepalen.

Het oorspronkelijke doel van dit promotieonderzoek was te onderzoeken wat de relatie

was tussen natuurlijke en menselijke invloeden op het functioneren van Nederlandse

kustecosystemen gedurende de afgelopen 5.000 jaar. De groei van de menselijke popu-

latie in Europa heeft er in de afgelopen eeuwen voor gezorgd dat steeds meer nutriën-

ten werden afgevoerd door rivieren, waardoor de primaire productie toenam in kustwa-

teren en de hoeveelheid organisch materiaal dat op de bodem terechtkwam, steeg. Via

boorkernen genomen in de Noordzee, hoopten we te zien wat de effecten zijn geweest

van de verschillende stadia van groei van de menselijke druk op op het functioneren van

het mariene ecosysteem. Helaas bleek geschikt kernmateriaal, met daarin de geschiede-

nis van de afgelopen duizenden jaren in voldoende detail gedocumenteerd, niet voor-

handen. In plaats daarvan richtte het onderzoek zich op het ontwikkelen van proxies om

vervuiling te kunnen reconstrueren in ondiep water door foraminiferen te bestuderen

uit de Noord- en Waddenzee. Resultaten uit deze studies zijn gebruikt om de geschie-

denis te analyseren van de westelijke Waddenzee in de afgelopen twee eeuwen. In deze

analyse wordt duidelijk dat ondanks natuurlijke variaties, de menselijke invloeden dra-

matische en plotselinge effecten kunnen hebben op de dynamiek van dit ecosysteem. 

Onze resultaten laten ook zien dat in zulke omgevingen de soortensamenstelling van

totale gemeenschap van benthische foraminiferen wellicht niet geschikt is als proxy om

eutrofiëring te reconstrueren. Wat de soortensamenstelling van foraminiferen in ondie-

pe zeeën blijkbaar wel goed laat zien, zijn de kwaliteit van het aanwezige organisch
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materiaal en verschillende hydrografische regimes. Als boormateriaal met een substan-

tieel deel van het Holoceen beschikbaar zou zijn, denken we dat benthische foraminife-

ren bij uitstek geschikt zijn om de hydrografische evolutie van de Noordzee te recon-

strueren. Of de soortensamenstelling van de foraminiferen-gemeenschap daarnaast ook

nog beïnvloed wordt door eutrofiëring moet nog onderzocht worden door middel van

experimenten of door veldstudies rondom hydrografische fronten in minder eutrofe

gebieden.

In foraminiferen-onderzoek, wordt Bengaals Rood vaak gebruikt als zogenaamde vital
staining technique om levende individuen te kunnen onderscheiden van lege schaaltjes

of dode individuen. Helaas kleurt Bengaals Rood alle eiwit-bevattende schaaltjes, zodat

individuen die net zijn doodgegaan ook worden gekleurd en dus als levend worden

geteld, wat op zijn beurt resulteert in een overschatting van de het aantal levende indi-

viduen in een genomen monster. In hoofdstuk 2, wordt MTT gepresenteerd als een vital

staining technique als alternatief voor het vaak gebruikte Bengaals Rood. MTT is een

zogenaamd tetrazoliumzout dat wordt getransformeerd door enzymen van een gele,

opgeloste stof in paarse formazan kristallen. Wanneer levende foraminiferen worden

geïncubeerd met MTT, resulteert dat in een paarse kleuring van actieve individuen. We

laten in dit hoofdstuk ook zien dat dagen na hun dood, individuen kunnen kleuren door

aanwezige bacteriën die zich voeden met celmateriaal van de foraminiferen. Deze false

positives worden zijn echter makkelijk te onderscheiden van levende, gekleurde indivi-

duen.

Ruimtelijke variatie in het voorkomen van foraminiferen (patchiness) zorgt voor een

ander probleem bij het doen van veldonderzoek. In hoofdstuk 3 presenteren we resul-

taten van een aantal kleine studies naar de ruimtelijke verspreiding van foraminiferen

op een getijdeplaat in de Waddenzee. Deze studie bestaat uit drie verschillende onder-

delen: één is uitgevoerd om de variatie op kleine schaal (centimeters) in kaart te bren-

gen, de tweede is gedaan om de variatie op een grotere schaal (0,1-100 meter) te onder-

zoeken en de derde is uitgevoerd om de relatie in kaart te brengen tussen het voorko-

men van foraminiferen en hun afstand tot de hoog- en laagwaterlijn. De resultaten laten

zien dat de twee dominante soorten die in de Waddenzee leven (Ammonia tepida en

Haynesina germanica) voorkomen in clusters met hoge aantallen van 175-300 cm2 en dat

de locatie van de clusters van de twee soorten sterk positief gecorreleerd zijn aan elkaar.

Alleen op de grootste schaal (>50 meter) lijkt er ook een niet-willekeurige verspreiding

te zijn van foraminiferen, terwijl er geen relatie is gevonden tussen aantallen foramini-

feren en het hoog- of laagwater niveau. Het bleek ook dat ondanks grote verschillen in

totale aantallen, de verhouding tussen de twee soorten overal opmerkelijk constant was.

Deze verhouding echter, veranderde wel gedurende het jaar. Het lijkt erop alsof een sei-

zonale parameter (bijvoorbeeld het type voedsel dat aanwezig is in de Waddenzee)

ervoor zorgt dat de relatieve aantallen van H. germanica hoog zijn in het voorjaar en dat

de aantallen A. tepida hoog zijn in de zomermaanden. Ruimtelijke variatie in het voor-

komen van beide soorten lijkt daarentegen bepaald te worden door een andere parame-

ter (bijvoorbeeld de totale hoeveelheid voedsel op een plek kunnen zijn).
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In hoofdstuk 4 presenteren we resultaten van een veldstudie waarin aantallen foramini-

feren rondom het Friese Front (zuidelijke Noordzee) zijn onderzocht. Rondom dit tidal
mixing front zijn verschillende hydrodynamische omgevingen aanwezig (constant

gemengde waterlaag, een zone met een verhoogde productie en een gebied dat een

gelaagde waterkolom heeft in de zomermaanden), die resulteren in een verscheiden-

heid aan bodemhabitats. Stations in deze verschillende habitats zijn bemonsterd in vier

verschillende seizoenen om ruimtelijke en seizoensgebonden variaties in het voorko-

men van soorten te kwantificeren. De resultaten laten zien dat de aanwezige soorten,

meestal in zones op specifieke afstanden van het centrum van het front voorkomen.

Verschillen tussen de seizoenen qua voorkomen van soorten waren relatief klein, terwijl

seizoensgebonden verschillen in de dieptedistributie in de bovenste 5 centimeter van

het sediment wel veranderde door de tijd. In de wintermaanden zijn individuen overwe-

gend gelijk verdeeld in het sediment, terwijl in de zomer relatief veel individuen zich in

de bovenste centimeter van de bodem ophouden. Deze resultaten suggereren dat deze

soorten reageren op de komst van vers organisch materiaal op de zeebodem in de lente

en in de vroege zomer door te migreren naar het sediment-water oppervlak of door een

verhoogde reproductie in het ondiepe sediment.

De resultaten van de veldstudie uit hoofdstuk 4 zijn vergeleken met eenzelfde soort stu-

die naar foraminiferen rondom het Friese Front in 1988 en 1989 (Moodley, 1990) en dit

wordt gepresenteerd in hoofdstuk 5. De macrofauna in de bodem rondom het Friese

Front is ook onderzocht in de periode 1982-2002, waarbij een plotselinge verandering

werd gesignaleerd in de samenstelling van de fauna. Vóór 1992 werd de bodem van het

Friese Front gedomineerd door de slangster Amphiura filiformis, een organisme dat zijn

voedsel vergaart door het zeewater te filteren. Na 1995 domineerde de kreeft Calianassa
subterranea de bodem rondom het Friese Front, die uitgebreide gangenstelsels graaft en

zijn voedsel niet primair uit het water, maar uit de bodem haalt. Ondanks de effecten

van deze regime shift op de fysieke staat van het Friese Front (er komt meer fijn materi-

aal in de waterkolom, de bodem wordt intensiever omgewoeld), is de soortensamenstel-

ling van de foraminiferen relatief constant gebleven. Dit betekent dat het voorkomen

van de foraminiferen rondom het Friese Front niet sterk wordt beïnvloed door deze eco-

logische en fysische veranderingen en dat zij kunnen dienen als robuuste proxies voor

de verschillende habitats die worden bepaald door de aanwezigheid van het Friese Front.

Een reconstructie van bodem-ecosystemen in de Waddenzee, gebaseerd op het voorko-

men van foraminiferen, wordt gepresenteerd in hoofdstuk 6. Dit wordt gedaan aan de

hand van een boorkern die genomen is in de Mokbaai (westelijke Waddenzee) en die

bestaat uit materiaal van de afgelopen 180 jaar. Het sediment in deze kern (2,8 meter

lang) is gelamineerd, wat betekend dat het materiaal bestaat uit afwisselende, dunne

laagjes van verschillende sediment-typen. De kern is in plakjes van 1 centimeter gesne-

den, waarna van elk van de monsters de totale hoeveelheid organisch materiaal is geme-

ten. Tegelijkertijd is de korrelgrootte van het sediment in elk van de 280 monsters

bepaald, en zijn van elke tweede centimeter de benthische foraminiferen geteld. De

resultaten van de verschillende bronnen worden vergeleken met historische data om tot

een nauwkeurige reconstructie te komen van het Waddengebied. De foraminiferen
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laten een plotselinge omslag in dominantie zien: vóór 1930 is Elphidium excavatum de

dominante soort en na 1935 dalen deze aantallen en gaat Haynesina germanica domine-

ren. De timing van deze verschuiving suggereert dat de bouw van de Afsluitdijk in 1932

een groot effect heeft gehad op het ecosysteem van de Waddenzee. Met de ecologische

kennis van de twee besproken soorten (hoofdstukken 3 en 4), denken we dat de toege-

nomen variabiliteit in temperatuur en saliniteit in de Mokbaai na de constructie van de

Afsluitdijk verantwoordelijk is voor de verschuiving in dominantie van de foraminife-

ren.

In hoofdstuk 7 worden de resultaten gepresenteerd van experimenten die als doel had-

den om te analyseren hoe foraminiferen koper (Cu) in hun kalk (CaCO3) inbouwen.

Deze relatie tussen de hoeveelheid koper in zeewater en de hoeveelheid koper die

terechtkomt in het calciet van foraminiferen, kan worden uitgedrukt als de partitiecoëf-

ficient van koper (DCu). Om de DCu te bepalen, hebben we individuen van twee soorten

foraminiferen in cultuur gebracht en ze aan verschillende concentraties Cu blootge-

steld. De Cu/Ca ratio in calciet die werd gevormd tijdens de experimenten werd geme-

ten met een combinatie van laser-ablatie en massa-spectrometrie. Door deze combina-

tie van methodes is het mogelijk om de chemische samenstelling te analyseren van een

enkele kamer (ongeveer 80 μm of 0,08 mm in doorsnede) van de individuen die tijdens

het experiment nieuw kalk hadden gemaakt. Na metingen bleek dat foraminiferen

koper inbouwden met een DCu van 0,1-0,3. De effecten van temperatuur en saliniteit op

de DCu was niet significant, terwijl de DCu voor beide soorten gelijk was ondanks de aan-

wezigheid (in Heterostegina depressa) of afwezigheid (in Ammonia tepida) van fotosynthe-

tiserende symbionten. We denken dat met deze resultaten de Cu/Ca ratios in fossiele

benthische foraminiferen gebruikt kunnen gaan worden om zware metalen-vervuiling

te reconstrueren.

De conclusies van al deze hoofdstukken zijn samengevat in hoofdstuk 8. Ook de conse-

quenties van de besproken resultaten voor het gebruik van foraminiferen om ecosyste-

men van kustwateren te reconstrueren worden hierin vermeld. In het zuiden van de

Noordzee en in de Waddenzee lijkt het er niet op dat het voorkomen van foraminiferen

beperkt of gereguleerd wordt door de hoeveelheid voedsel die aanwezig is of door de

beschikbare hoeveelheid zuurstof (iets dat regelmatig wordt geclaimd). Ook lijkt het

voorkomen van foraminiferen niet bepaald te worden door de aanwezige macrofauna,

maar we denken dat de distributie van benthische foraminiferen vooral bepaald wordt

door het type organisch materiaal dat aanwezig is en door de mate van omgevingsvari-

abiliteit in het systeem. Verschillende combinaties van deze twee parameters zijn aan-

wezig rondom hydrodynamische fronten en daarom zijn foraminiferen in ondiepe

wateren vooral geschikt om hydrodynamische regimes te reconstrueren.

121



ACKNOWLEDGEMENTS

This is it. My thesis is finished, but -needless to say- I haven't done it all by myself. It all

started with Bert van der Zwaan asking me to join the strat/pal group in 2002 to work on

Holocene foraminifera from the North Sea. Although the focus of my project changed a

number of times over the years, he and my daily supervisor Ivo Duijnstee stimulated and

supported me both scientifically and personally. In particular, Bert's talent for 'selling'

scientific results and Ivo's honesty and enthusiasm for multivariate statistics (!) were

truly inspirational.

Along the way, I profited greatly from input by Gert-Jan Reichart. Despite the analytical

and technical problems, I never regretted plunging into the subject of calcification by

foraminifera. On the contrary, I hope that in the future we will continue to collaborate by

further analyzing the biological control on biomineralization. Sander Ernst proved to be

more than just a roommate: his accuracy with which he read my manuscripts helped

much of the presented research. A third person who has been of particular importance

was Sandra Langezaal, who amongst others, always patiently listened to my complaints

(I hate science!).

Obviously, all of my direct (former) colleagues working on benthic forams have been of

great help. Natasja Jannink, Tanja Kouwenhoven, Yvonne van Lith, Anja Mourik, Mike

Rogerson, Magali Schweizer and Mariëtte Wolthers made my time at strat/pal more than

a pleasure: I could not have wished for more supportive and stimulating colleagues. The

other strat/pal colleagues have been of great help too. Hemmo Abels, Jan van Dam, Frits

Hilgen, Kees Hordijk, Lucas Lourens, Albert van der Meulen, Johan Meulenkamp, Jelle

Reumer, Lucy Stap, Wilma Wessels and Martin Ziegler all helped me in their own way. 

Of great help during sampling surveys (chapters 3 and 6) were Peter Bijl, Nina Bonis,

Robin Deltrap, Wouter Feldmeijer, Sander Houben, Natacha Leenstra, Saskia Meuffels,

Marjolein Pijnappels, Tuvit Schlomi and Sake Timmermans. I also learned much from

supervising Marianne Heijkoop's master research on individual-based models in forami-

niferal population dynamics.

Many thanks to Thilo Behrends, Wim Boer, Marjolein Boonstra, Rob van Galen, Tony

Gon Netscher, Pieter Kleingeld, Jaqueline Landsheer, Gijs Nobbe, Bertil van Os, Marjan

Reith, Willem Renema, Erik van Vilsteren and Helen de Waard for practical support of

various kinds. The crews of the R.V.'s Alkor and Pelagia made the sampling surveys on

the North Sea (chapters 4 and 5) a success. Of particular practical importance were Gerrit

in 't Veld and Geert Itmann who washed and  sieved all of my samples.

Other UU-colleagues that I would like to thank include: Henk Brinkhuis, Jaqueline

Claessens, Adriana Dueñas-Bohòrquez, Tom Jilbert, Lenny Kouwenberg, Paul Mason,

122



Shauna Ní Flaithhearta and Jeroen Warnaar. Many thanks to a number of people outside

the UU: Teresa Amaro, Magda Bergman, Joan Bernhard, Jelle Bijma, Gerard Duineveld,

Erik Epping, Helena Filipsson, Emanuelle Geslin, Henk de Haas, Lydie Hervoirt, Hiroshi

Kitazato, Cindy van der Looy, John Murray, Henko de Stigter and Ellen Thomas.

On the personal level, many thanks to all of my friends: in particular I would like to men-

tion those that know what it is like to write a thesis: Wout Cornelissen, Michiel Kwantes,

Marijn Luijten and Arvi Wattel. My parents Ad and Lia, as well as my brother Lion have

been a great support during the past years. They may have criticized my choice to live in

Nijmegen, but hey: whose province will be in trouble with a meter sea level rise the next

century?

Gert Jan Bosgra did a wonderful job on the lay-out of this book: it is all about style, right?

The reading committee -Elizabeth Alve, Jack Middelburg, Joachim Schönfeld, Theo

Wong and Kees van der Zwan- is thanked for their careful judgment of the manuscript.

A special thanks goes out to my paranymphs: Karoliina Koho and Seyno van Es have both

been of enormous support on many personal and intellectual levels.

Finally, I would like to mention the one person who made all the difference. Léonne:

thanks.

CURRICULUM VITAE

Lennart Jan de Nooijer was born on December 4th, 1978 in the city of Middelburg, the

Netherlands. After secondary school, he started in 1996 with the higher laboratory edu-

cation in Nijmegen. In 1997, he switched to study biology at the Radboud University

(formerly called the Catholic University of Nijmegen). During his masters, he did a

research project on population dynamics in benthic foraminifera at the Utrecht

University and a project on the modelling of mating behavior at the University of Essex

(UK). After his graduation in 2002, he started a PhD at the Utrecht University under the

supervision of Prof Dr van der Zwaan and Dr Duijnstee, working on living and subre-

cent benthic foraminifera from the Dutch Wadden Sea and southern North Sea.

123



APPENDIX I

In-sediment oxygen profiles measured at stations across the Frisian Front. Values are

in %, relative to completely saturated seawater as measured before profiling.
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Depth in sediment (cm) 53º 39' 53º 45' 53º54' 54º 00'

4.5 98 93

1.8 64 63 98

0.95 84 73

0.45 92

0.3 88 85 89

0.15 59 61 73 63 88

0 (sediment-water interface) 50 83 25 36 61 49 62

-0.15 24 38 9.1 11 32 28 15

-0.3 9.2 13 5.3 6.0 20 20 5.9

-0.45 4.1 8.2 3.8 3.7 8.1 13 4.4

-0.6 2.0 5.7 2.3 1.5 8.1 3.8 3.7

-0.75 1.0 3.3 1.5 0.75 2.7 3.8 2.9

-0.9 0 1.6 0.76 0.75 1.4 1.3 1.5

-1.05 0 0.82 1.4 1.3 1.5

-1.2 0 0.82 0.74

-1.3 0 0.82

-1.8 0 0.82 0 0 1.4 1.3

-2.2 0.74

-2.8 0 0.82 0 0 1.35 0

-3.2 0

-3.8 0 0

after profiling:

1.25 70 64

1.8 59 74 90

4.5 65 73

Table 1: Oxygen profiles measured in December.
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Depth in sediment (cm) 53º 22' 53º 42'

0.2 66 78 43 51

0.1 67 66 43 43

0 (sediment-water interface) 65 34 42 22

-0.1 48 15 32 10

-0.2 32 7.7 21 5.0

-0.3 11 2.8 6.9 1.8

-0.4 3.1 1.4 2.0 0.9

-0.5 2.8 1.2 1.8 0.8

-0.6 1.5 1.2 1.0 0.8

-0.7 1.4 1.2 0.9 0.8

-0.8 1.4 0 0.9 0

Table 2: Oxygen profiles measured in February.
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In all figures the scale bar represents 100 μm.

Plate 1

A Ammonia tepida
B Bolivina dilatata
C Bolivina pseudoplicata
D Bolivina seminuda
E Bolivina spathulata
F Bulimina elongata
G Buliminella elegantissima
H Elphidium excavatum
I Epistominella vitrea
J Hopkinsina pacifica
K Nonion depressulus
L Quinqueloculina sp.

M Stainforthia fusiformis
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Plate 2

A Acostata mariae
B Eggerella scabra
C Leptohalysis scottii
D Textularia sp.



APPENDIX III

Foraminiferal abundances at various sample moments and stations. Replicate samples

are indicated by A and B. n.a. = not available.

December 2002, 53° 39' A

depth-interval (cm)

0-0.5 0.5-1.0 1.0-1.5 1.5-2.0 2.0-3.0 3.0-4.0 4.0-5.0

Acostata mariae 4 0 3 4 2 4 4

Ammodiscus sp. 0 0 0 0 0 0 0

Ammonia tepida 81 64 47 57 99 89 68

Asterigerinata mamilla 0 0 0 1 1 2 2

Bolivina dilatata 4 0 3 3 4 7 4

Bolivina pseudoplicata 0 0 1 2 5 6 6

Bolivina seminuda 1 9 7 10 4 8 4

Bolivina spathulata 0 0 0 0 0 0 0

Bulimina marginata/ elongata 7 4 10 12 37 20 33

Buliminella elegantissima 2 2 9 7 9 26 40

Caronia sylvestrii 0 0 0 0 0 0 0

Cassidulina sp. 0 0 0 0 0 0 0

Dentalina sp. 0 0 0 0 0 0 0

Eggerella scabra 47 71 64 59 159 193 126

Elphidium advenum 0 0 0 0 0 0 0

Elphidium excavatum 55 18 14 33 114 253 508

Epistominella exigua 0 0 0 0 0 0 3

Epistominella vitrea 0 0 0 0 0 0 0

Fissurina sp. 2 0 0 0 0 2 2

Haynesina germanica 7 0 0 0 0 0 0

Hopkinsina pacifica 4 14 59 38 44 38 21

Hyalinea baltica 0 0 0 0 0 1 0

Lagena sp. 0 0 0 0 0 0 0

Lenticulina sp. 0 0 0 0 0 0 0

Leptohalysis scottii 1 0 0 0 0 1 0

Nonion depresslus 1 10 5 6 9 9 14

Nonionella turgida 0 1 1 0 0 0 0

Pyrgo williamsoni 0 0 0 0 0 0 0

Quinqueloculina spp. 35 36 19 39 42 29 22

Rosalina sp. 0 0 0 0 0 0 0

Saccamina sp. 0 0 0 0 0 0 0

Stainforthia fusiformis 9 35 70 39 75 70 95

Textularia sp. 2 0 2 5 8 11 6

indeterminable 2 0 0 1 2 0 2

total 264 264 314 316 614 769 960
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December 2002, 53° 39' B

depth-interval (cm)

0-0.5 0.5-1.0 1.0-1.5 1.5-2.0 2.0-3.0 3.0-4.0 4.0-5.0

Acostata mariae 12 9 1 8 18 15 14

Ammodiscus sp. 0 0 0 0 0 0 0

Ammonia tepida 89 93 75 47 65 41 52

Asterigerinata mamilla 0 0 0 0 0 0 0

Bolivina dilatata 5 11 8 1 4 8 3

Bolivina pseudoplicata 9 9 4 5 7 4 5

Bolivina seminuda 0 1 0 2 0 0 0

Bolivina spathulata 2 0 4 0 6 2 0

Bulimina marginata/ elongata 27 12 6 14 18 14 5

Buliminella elegantissima 0 7 2 2 9 15 10

Caronia sylvestrii 0 0 0 0 0 0 0

Cassidulina sp. 0 0 0 0 0 0 0

Dentalina sp. 0 0 0 0 0 0 0

Eggerella scabra 44 54 54 57 98 139 113

Elphidium advenum 0 0 0 0 0 0 0

Elphidium excavatum 136 49 56 33 74 129 222

Epistominella exigua 0 0 0 0 0 0 0

Epistominella vitrea 3 3 0 0 2 2 1

Fissurina sp. 5 0 0 0 5 0 0

Haynesina germanica 1 1 0 1 0 0 0

Hopkinsina pacifica 0 13 13 17 63 53 27

Hyalinea baltica 0 0 0 0 0 0 0

Lagena sp. 0 0 0 0 0 0 0

Lenticulina sp. 0 0 0 0 0 0 0

Leptohalysis scottii 0 0 0 0 0 0 0

Nonion depresslus 2 5 0 3 0 2 0

Nonionella turgida 3 3 0 0 0 0 0

Pyrgo williamsoni 0 0 0 0 0 0 0

Quinqueloculina spp. 37 23 20 8 13 15 8

Rosalina sp. 2 0 0 0 2 2 2

Saccamina sp. 0 0 0 0 0 0 0

Stainforthia fusiformis 10 14 19 43 82 31 21

Textularia sp. 0 0 2 2 26 15 11

indeterminable 0 0 0 0 0 0 0

total 387 308 264 244 491 487 494
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December 2002, 53° 45' A

depth-interval (cm)

0-0.5 0.5-1.0 1.0-1.5 1.5-2.0 2.0-3.0 3.0-4.0 4.0-5.0

Acostata mariae 13 5 5 4 2 17 14

Ammodiscus sp. 0 0 1 0 0 0 0

Ammonia tepida 104 104 66 47 78 95 129

Asterigerinata mamilla 0 1 0 0 0 3 0

Bolivina dilatata 6 24 32 18 35 29 15

Bolivina pseudoplicata 4 6 9 5 2 16 3

Bolivina seminuda 5 13 28 30 11 4 6

Bolivina spathulata 12 0 3 3 8 13 21

Bulimina marginata/ elongata 42 38 35 9 14 46 35

Buliminella elegantissima 8 4 3 7 19 24 21

Caronia sylvestrii 0 0 0 0 0 0 0

Cassidulina sp. 0 0 0 0 0 0 1

Dentalina sp. 1 0 0 0 0 0 0

Eggerella scabra 266 285 219 169 238 353 368

Elphidium advenum 0 0 0 0 0 0 0

Elphidium excavatum 62 47 34 32 38 102 53

Epistominella exigua 0 0 1 1 0 0 0

Epistominella vitrea 0 0 0 0 0 2 3

Fissurina sp. 1 0 5 3 0 0 0

Haynesina germanica 0 0 0 0 0 0 0

Hopkinsina pacifica 39 56 106 117 156 196 173

Hyalinea baltica 0 0 0 0 0 0 0

Lagena sp. 0 0 0 2 0 0 0

Lenticulina sp. 2 2 2 4 0 0 0

Leptohalysis scottii 0 0 2 0 1 0 0

Nonion depresslus 0 8 1 1 0 3 0

Nonionella turgida 4 0 15 4 6 0 1

Pyrgo williamsoni 0 0 0 0 0 0 0

Quinqueloculina spp. 24 15 14 9 8 16 10

Rosalina sp. 2 0 0 0 0 0 2

Saccamina sp. 0 0 0 0 0 0 0

Stainforthia fusiformis 22 54 111 127 150 66 75

Textularia sp. 0 3 4 2 0 6 2

indeterminable 2 0 3 1 2 0 1

total 619 665 699 595 768 991 933
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December 2002, 53° 45' B

depth-interval (cm)

0-0.5 0.5-1.0 1.0-1.5 1.5-2.0 2.0-3.0 3.0-4.0 4.0-5.0

Acostata mariae 3 1 1 4 4 5 1

Ammodiscus sp. 0 0 0 1 0 0 0

Ammonia tepida 107 86 54 49 56 53 54

Asterigerinata mamilla 0 0 0 0 0 0 0

Bolivina dilatata 8 5 18 6 19 10 4

Bolivina pseudoplicata 8 0 1 4 11 7 4

Bolivina seminuda 1 0 4 2 2 0 2

Bolivina spathulata 23 6 25 4 6 0 2

Bulimina marginata/ elongata 22 14 25 9 23 19 13

Buliminella elegantissima 5 2 3 5 3 17 7

Caronia sylvestrii 0 0 0 0 0 0 0

Cassidulina sp. 0 0 1 0 0 0 0

Dentalina sp. 0 0 0 0 0 0 0

Eggerella scabra 238 117 170 109 177 180 154

Elphidium advenum 0 0 0 0 0 0 0

Elphidium excavatum 31 11 21 25 23 26 32

Epistominella exigua 0 0 0 0 0 0 0

Epistominella vitrea 3 1 4 2 1 2 0

Fissurina sp. 0 0 5 0 5 0 5

Haynesina germanica 0 0 0 0 0 0 0

Hopkinsina pacifica 23 15 61 46 55 46 61

Hyalinea baltica 0 0 0 0 0 0 0

Lagena sp. 0 0 0 0 0 0 0

Lenticulina sp. 0 0 0 1 2 2 0

Leptohalysis scottii 0 0 0 0 0 0 0

Nonion depresslus 0 0 0 0 2 0 0

Nonionella turgida 1 0 0 1 3 0 0

Pyrgo williamsoni 0 0 0 0 0 0 0

Quinqueloculina spp. 10 6 4 4 4 0 2

Rosalina sp. 2 0 2 0 5 2 0

Saccamina sp. 3 1 4 2 1 0 7

Stainforthia fusiformis 19 3 28 9 38 17 19

Textularia sp. 0 2 3 2 5 3 0

indeterminable 0 0 0 0 0 0 0

total 506 270 434 284 445 390 367
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December 2002, 53° 54' A

depth-interval (cm)

0-0.5 0.5-1.0 1.0-1.5 1.5-2.0 2.0-3.0 3.0-4.0 4.0-5.0

Acostata mariae 1 1 5 7 6 7 15

Ammodiscus sp. 0 0 0 0 0 0 0

Ammonia tepida 23 11 9 7 15 13 10

Asterigerinata mamilla 0 0 0 0 0 0 0

Bolivina dilatata 5 6 7 6 7 5 0

Bolivina pseudoplicata 7 0 1 0 0 2 3

Bolivina seminuda 11 3 1 1 1 0 1

Bolivina spathulata 7 0 3 3 0 3 2

Bulimina marginata/ elongata 13 4 1 0 4 5 1

Buliminella elegantissima 10 3 6 6 25 20 3

Caronia sylvestrii 0 0 0 0 0 0 0

Cassidulina sp. 2 0 1 0 0 0 0

Dentalina sp. 0 0 0 0 0 0 0

Eggerella scabra 89 94 83 139 337 293 315

Elphidium advenum 0 2 0 0 0 0 0

Elphidium excavatum 5 8 6 0 12 10 16

Epistominella exigua 0 0 0 0 0 0 0

Epistominella vitrea 0 0 0 0 0 4 3

Fissurina sp. 2 0 0 0 0 1 0

Haynesina germanica 0 0 1 0 1 0 0

Hopkinsina pacifica 8 16 39 29 76 53 8

Hyalinea baltica 0 0 0 0 0 0 0

Lagena sp. 1 2 3 4 6 5 0

Lenticulina sp. 0 0 0 0 0 1 0

Leptohalysis scottii 8 1 0 2 4 11 4

Nonion depresslus 0 0 0 0 0 1 0

Nonionella turgida 9 3 6 6 7 0 0

Pyrgo williamsoni 0 0 0 0 0 0 0

Quinqueloculina spp. 3 5 1 2 4 8 4

Rosalina sp. 0 0 0 0 0 0 0

Saccamina sp. 0 0 0 0 0 0 5

Stainforthia fusiformis 8 6 15 14 27 36 5

Textularia sp. 2 2 2 0 2 0 8

indeterminable 3 2 2 0 0 0 1

total 217 169 192 226 534 478 405
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December 2002, 53° 54' B

depth-interval (cm)

0-0.5 0.5-1.0 1.0-1.5 1.5-2.0 2.0-3.0 3.0-4.0 4.0-5.0

Acostata mariae 31 5 0 1 13 5 8

Ammodiscus sp. 0 0 0 0 0 0 1

Ammonia tepida 38 10 3 6 13 6 10

Asterigerinata mamilla 0 0 0 0 0 0 0

Bolivina dilatata 14 8 3 1 8 0 5

Bolivina pseudoplicata 15 1 0 1 0 1 5

Bolivina seminuda 0 1 1 0 1 0 0

Bolivina spathulata 8 0 0 0 0 0 0

Bulimina marginata/ elongata 26 4 4 5 3 2 4

Buliminella elegantissima 16 7 2 2 7 3 17

Caronia sylvestrii 0 0 0 0 0 0 0

Cassidulina sp. 0 0 0 0 0 0 0

Dentalina sp. 1 0 0 0 0 0 0

Eggerella scabra 491 196 53 94 194 168 333

Elphidium advenum 0 0 0 0 0 0 0

Elphidium excavatum 27 4 1 1 7 1 11

Epistominella exigua 0 0 0 0 0 0 0

Epistominella vitrea 3 2 0 0 1 0 0

Fissurina sp. 0 0 0 0 0 0 0

Haynesina germanica 0 0 0 0 0 0 0

Hopkinsina pacifica 15 13 6 25 21 32 30

Hyalinea baltica 0 0 0 0 0 0 0

Lagena sp. 0 0 0 0 1 0 1

Lenticulina sp. 0 0 0 0 0 0 0

Leptohalysis scottii 0 0 0 2 0 0 0

Nonion depresslus 0 0 0 0 0 1 0

Nonionella turgida 13 1 7 0 0 0 0

Pyrgo williamsoni 1 0 0 0 0 0 0

Quinqueloculina spp. 6 1 3 2 1 0 6

Rosalina sp. 0 0 0 0 0 0 0

Saccamina sp. 70 20 2 9 25 7 31

Stainforthia fusiformis 9 10 5 3 17 5 12

Textularia sp. 3 0 0 0 2 3 0

indeterminable 0 0 0 0 0 0 1

total 785 285 90 153 313 236 476
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December 2002, 54° 00' A

depth-interval (cm)

0-0.5 0.5-1.0 1.0-1.5 1.5-2.0 2.0-3.0 3.0-4.0 4.0-5.0

Acostata mariae 0 4 1 6 7 2 n.a.

Ammodiscus sp. 0 0 0 0 0 0 n.a.

Ammonia tepida 21 18 5 5 3 3 n.a.

Asterigerinata mamilla 0 0 0 0 0 0 n.a.

Bolivina dilatata 2 6 4 3 2 4 n.a.

Bolivina pseudoplicata 1 1 0 0 0 0 n.a.

Bolivina seminuda 0 3 0 0 0 0 n.a.

Bolivina spathulata 3 6 2 0 0 2 n.a.

Bulimina marginata/ elongata 4 6 3 4 2 2 n.a.

Buliminella elegantissima 2 2 10 4 3 11 n.a.

Caronia sylvestrii 0 0 1 0 0 0 n.a.

Cassidulina sp. 0 0 0 0 0 0 n.a.

Dentalina sp. 0 0 0 0 0 0 n.a.

Eggerella scabra 133 215 172 115 189 222 n.a.

Elphidium advenum 0 0 0 0 0 0 n.a.

Elphidium excavatum 0 3 1 0 1 1 n.a.

Epistominella exigua 0 0 0 0 0 0 n.a.

Epistominella vitrea 2 0 0 1 0 1 n.a.

Fissurina sp. 0 0 0 0 0 0 n.a.

Haynesina germanica 0 0 0 0 0 0 n.a.

Hopkinsina pacifica 4 4 7 0 3 4 n.a.

Hyalinea baltica 0 0 0 0 0 0 n.a.

Lagena sp. 0 2 3 2 0 2 n.a.

Lenticulina sp. 0 0 0 0 0 0 n.a.

Leptohalysis scottii 0 0 0 1 1 1 n.a.

Nonion depresslus 0 0 0 0 1 0 n.a.

Nonionella turgida 0 3 3 0 0 0 n.a.

Pyrgo williamsoni 0 0 0 0 0 0 n.a.

Quinqueloculina spp. 2 4 4 3 0 1 n.a.

Rosalina sp. 0 0 0 0 0 0 n.a.

Saccamina sp. 0 0 0 7 3 3 n.a.

Stainforthia fusiformis 0 3 6 0 4 4 n.a.

Textularia sp. 0 1 1 3 3 0 n.a.

indeterminable 0 0 0 0 0 0 n.a.

total 174 281 223 154 222 263 n.a.
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December 2002, 54° 00' B

depth-interval (cm)

0-0.5 0.5-1.0 1.0-1.5 1.5-2.0 2.0-3.0 3.0-4.0 4.0-5.0

Acostata mariae 5 1 1 9 4 9 6

Ammodiscus sp. 0 0 0 0 0 0 0

Ammonia tepida 10 5 3 4 0 2 4

Asterigerinata mamilla 0 0 0 0 0 0 0

Bolivina dilatata 3 6 3 1 3 1 3

Bolivina pseudoplicata 3 1 1 1 3 1 1

Bolivina seminuda 1 1 0 1 0 0 2

Bolivina spathulata 6 0 4 2 2 0 2

Bulimina marginata/ elongata 8 6 0 8 6 3 4

Buliminella elegantissima 2 3 9 14 40 3 23

Caronia sylvestrii 0 0 0 0 0 0 0

Cassidulina sp. 0 0 0 0 0 0 0

Dentalina sp. 0 0 0 0 0 0 0

Eggerella scabra 162 102 223 249 251 182 201

Elphidium advenum 0 0 0 0 0 0 0

Elphidium excavatum 1 3 1 1 14 2 4

Epistominella exigua 0 0 0 0 0 0 0

Epistominella vitrea 2 2 4 2 0 1 2

Fissurina sp. 0 0 0 0 5 0 0

Haynesina germanica 0 0 0 0 0 0 0

Hopkinsina pacifica 2 4 6 15 9 4 6

Hyalinea baltica 0 0 0 0 0 0 0

Lagena sp. 0 0 1 1 1 0 1

Lenticulina sp. 0 0 0 0 0 0 0

Leptohalysis scottii 0 0 0 0 0 2 0

Nonion depresslus 0 0 0 0 0 0 0

Nonionella turgida 0 0 3 0 1 1 0

Pyrgo williamsoni 0 0 0 0 0 0 0

Quinqueloculina spp. 5 2 2 0 6 0 2

Rosalina sp. 0 0 0 0 0 0 0

Saccamina sp. 51 43 72 42 44 45 25

Stainforthia fusiformis 2 3 7 21 19 0 5

Textularia sp. 3 0 6 2 8 3 1

indeterminable 0 0 0 0 0 0 0

total 265 184 345 375 415 260 293
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June 2003, 53° 39' A

depth-interval (cm)

0-0.5 0.5-1.0 1.0-1.5 1.5-2.0 2.0-3.0 3.0-4.0 4.0-5.0

Acostata mariae 27 5 0 5 5 2 2

Ammodiscus sp. 0 0 0 0 0 0 0

Ammonia tepida 131 14 6 4 26 48 47

Asterigerinata mamilla 0 0 0 0 0 0 0

Bolivina dilatata 11 2 1 0 2 2 7

Bolivina pseudoplicata 4 1 0 4 1 17 5

Bolivina seminuda 5 4 0 0 0 0 4

Bolivina spathulata 1 0 0 0 0 0 1

Bulimina marginata/ elongata 35 28 1 1 4 9 3

Buliminella elegantissima 37 0 9 12 14 7 10

Caronia sylvestrii 0 0 0 0 0 0 0

Cassidulina sp. 0 0 0 0 0 0 0

Dentalina sp. 0 0 0 0 0 0 0

Eggerella scabra 138 15 8 18 25 34 15

Elphidium advenum 0 0 0 0 0 0 0

Elphidium excavatum 704 171 74 38 102 139 153

Epistominella exigua 0 0 0 0 0 0 0

Epistominella vitrea 0 0 1 0 0 1 0

Fissurina sp. 1 0 0 0 0 1 0

Haynesina germanica 0 0 0 0 0 0 0

Hopkinsina pacifica 29 3 3 2 0 12 43

Hyalinea baltica 0 0 0 0 0 0 0

Lagena sp. 0 0 0 0 0 0 0

Lenticulina sp. 0 0 0 0 0 0 1

Leptohalysis scottii 5 4 0 0 0 0 0

Nonion depresslus 11 0 0 0 0 0 0

Nonionella turgida 7 9 0 0 2 0 5

Pyrgo williamsoni 0 0 0 0 0 0 0

Quinqueloculina spp. 65 5 2 0 0 3 2

Reophax monoliformis 0 0 0 1 0 0 0

Rosalina sp. 0 0 0 0 2 0 1

Saccamina sp. 1 0 1 0 0 0 1

Stainforthia fusiformis 76 56 30 19 37 21 43

Textularia sp. 18 4 0 0 0 7 0

indeterminable 6 0 1 0 4 2 0

total 1312 321 137 104 224 305 343
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June 2003, 53° 39' B

depth-interval (cm)

0-0.5 0.5-1.0 1.0-1.5 1.5-2.0 2.0-3.0 3.0-4.0 4.0-5.0

Acostata mariae 28 7 1 1 0 3 3

Ammodiscus sp. 0 0 0 0 0 0 0

Ammonia tepida 98 14 8 9 23 31 25

Asterigerinata mamilla 0 0 1 0 0 0 0

Bolivina dilatata 21 4 1 0 1 7 6

Bolivina pseudoplicata 10 5 2 2 0 14 5

Bolivina seminuda 8 0 0 1 0 0 0

Bolivina spathulata 2 0 0 1 0 0 0

Bulimina marginata/ elongata 32 8 2 0 7 7 5

Buliminella elegantissima 49 19 7 0 4 3 3

Caronia sylvestrii 0 0 0 0 0 0 0

Cassidulina sp. 0 0 0 0 0 0 0

Dentalina sp. 0 0 0 0 0 0 0

Eggerella scabra 163 22 12 5 11 21 35

Elphidium advenum 0 0 0 0 0 0 0

Elphidium excavatum 1098 228 78 47 34 112 89

Epistominella exigua 0 0 0 0 0 0 0

Epistominella vitrea 0 0 1 0 0 0 0

Fissurina sp. 0 0 1 0 0 0 0

Haynesina germanica 0 0 0 0 0 0 0

Hopkinsina pacifica 41 27 2 2 7 14 70

Hyalinea baltica 0 0 0 0 0 0 0

Lagena sp. 0 0 0 0 0 0 0

Lenticulina sp. 0 0 0 0 0 0 0

Leptohalysis scottii 8 2 0 0 0 0 2

Nonion depresslus 3 0 0 0 0 0 0

Nonionella turgida 19 0 0 0 1 13 0

Pyrgo williamsoni 0 0 0 0 0 0 0

Quinqueloculina spp. 119 16 4 4 2 3 1

Reophax monoliformis 0 0 0 0 0 0 0

Rosalina sp. 0 0 1 0 0 1 0

Saccamina sp. 6 0 0 0 0 0 0

Stainforthia fusiformis 128 55 25 12 20 21 43

Textularia sp. 10 2 0 0 0 2 0

indeterminable 5 3 1 1 0 2 1

total 1848 413 147 85 109 253 287
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June 2003, 53° 50' A

depth-interval (cm)

0-0.5 0.5-1.0 1.0-1.5 1.5-2.0 2.0-3.0 3.0-4.0 4.0-5.0

Acostata mariae 10 0 0 1 1 0 0

Ammodiscus sp. 0 0 0 0 0 0 0

Ammonia tepida 27 11 1 20 15 23 27

Asterigerinata mamilla 0 0 0 0 0 0 0

Bolivina dilatata 16 7 0 0 0 4 0

Bolivina pseudoplicata 18 3 0 1 0 1 3

Bolivina seminuda 5 0 2 0 0 1 1

Bolivina spathulata 18 6 0 0 6 12 6

Bulimina marginata/ elongata 11 0 1 3 0 5 12

Buliminella elegantissima 21 36 13 3 3 13 10

Caronia sylvestrii 1 0 0 0 0 0 0

Cassidulina sp. 0 0 0 0 0 0 0

Dentalina sp. 0 0 0 0 0 0 0

Eggerella scabra 302 27 9 16 31 16 57

Elphidium advenum 0 0 0 0 0 0 0

Elphidium excavatum 56 13 8 3 5 3 20

Epistominella exigua 0 0 0 0 0 0 0

Epistominella vitrea 4 0 0 1 0 2 0

Fissurina sp. 0 0 0 0 0 0 0

Haynesina germanica 0 0 0 0 0 0 0

Hopkinsina pacifica 41 68 18 11 21 27 103

Hyalinea baltica 0 0 0 0 0 0 0

Lagena sp. 2 0 0 0 0 1 0

Lenticulina sp. 0 0 0 0 0 0 0

Leptohalysis scottii 2 2 2 0 5 0 0

Nonion depresslus 7 1 0 0 1 0 0

Nonionella turgida 13 11 4 0 0 0 2

Pyrgo williamsoni 0 0 0 0 0 0 0

Quinqueloculina spp. 266 15 7 6 0 8 3

Reophax monoliformis 0 0 0 0 0 0 0

Rosalina sp. 5 0 0 0 0 0 0

Saccamina sp. 2 0 1 0 1 1 1

Stainforthia fusiformis 87 91 24 7 7 35 30

Textularia sp. 15 2 0 0 0 0 2

indeterminable 1 1 0 0 0 1 0

total 930 294 90 72 96 153 277
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June 2003, 53° 50' B

depth-interval (cm)

0-0.5 0.5-1.0 1.0-1.5 1.5-2.0 2.0-3.0 3.0-4.0 4.0-5.0

Acostata mariae 5 0 0 1 0 1 0

Ammodiscus sp. 0 0 0 0 0 0 0

Ammonia tepida 43 8 26 14 25 16 16

Asterigerinata mamilla 0 0 0 0 0 0 0

Bolivina dilatata 5 4 8 4 4 5 10

Bolivina pseudoplicata 4 3 5 1 7 4 0

Bolivina seminuda 6 4 4 1 2 1 1

Bolivina spathulata 4 10 8 0 2 4 10

Bulimina marginata/ elongata 12 5 12 10 6 3 11

Buliminella elegantissima 28 5 7 12 5 7 24

Caronia sylvestrii 0 0 0 0 0 0 0

Cassidulina sp. 0 0 0 0 0 0 0

Dentalina sp. 1 0 0 0 0 0 0

Eggerella scabra 94 27 74 47 17 46 57

Elphidium advenum 0 0 0 0 0 0 0

Elphidium excavatum 52 9 26 21 13 4 16

Epistominella exigua 0 0 0 0 0 0 0

Epistominella vitrea 3 0 0 0 0 0 0

Fissurina sp. 0 0 0 0 5 0 0

Haynesina germanica 0 0 0 0 0 0 0

Hopkinsina pacifica 67 279 194 110 63 27 53

Hyalinea baltica 0 0 0 0 0 0 0

Lagena sp. 1 0 1 0 0 0 0

Lenticulina sp. 0 0 0 0 0 0 0

Leptohalysis scottii 2 4 0 2 4 0 0

Nonion depresslus 2 1 1 0 0 0 1

Nonionella turgida 17 13 10 16 18 6 18

Pyrgo williamsoni 0 0 0 0 0 0 0

Quinqueloculina spp. 153 24 13 8 25 11 11

Reophax monoliformis 0 0 0 0 0 0 0

Rosalina sp. 0 0 2 2 0 2 0

Saccamina sp. 0 0 0 0 0 1 0

Stainforthia fusiformis 38 71 47 57 59 42 33

Textularia sp. 8 0 0 2 0 2 0

indeterminable 1 0 1 0 0 0 0

total 546 467 439 308 255 182 261
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June 2003, 53° 54' A

depth-interval (cm)

0-0.5 0.5-1.0 1.0-1.5 1.5-2.0 2.0-3.0 3.0-4.0 4.0-5.0

Acostata mariae 5 1 1 9 1 8 0

Ammodiscus sp. 0 0 0 0 0 0 0

Ammonia tepida 8 7 4 7 11 11 3

Asterigerinata mamilla 0 0 0 0 0 0 0

Bolivina dilatata 9 4 0 0 3 4 3

Bolivina pseudoplicata 0 1 1 1 0 1 0

Bolivina seminuda 9 0 0 0 0 1 0

Bolivina spathulata 1 0 2 0 0 0 0

Bulimina marginata/ elongata 8 1 0 0 0 1 2

Buliminella elegantissima 13 5 9 7 16 3 10

Caronia sylvestrii 0 0 0 0 0 0 0

Cassidulina sp. 0 0 0 0 0 0 0

Dentalina sp. 0 0 0 0 0 0 0

Eggerella scabra 69 35 42 84 119 140 128

Elphidium advenum 0 0 0 0 0 0 0

Elphidium excavatum 2 4 3 1 4 1 3

Epistominella exigua 0 0 0 0 0 0 0

Epistominella vitrea 1 0 0 0 1 0 2

Fissurina sp. 1 0 0 0 0 0 0

Haynesina germanica 0 0 0 0 0 0 0

Hopkinsina pacifica 7 13 6 15 8 2 15

Hyalinea baltica 0 0 0 0 0 0 0

Lagena sp. 4 0 0 0 1 1 0

Lenticulina sp. 0 0 0 0 0 0 0

Leptohalysis scottii 1 0 0 0 0 0 0

Nonion depresslus 4 0 2 0 0 0 0

Nonionella turgida 2 3 6 6 1 6 3

Pyrgo williamsoni 0 0 0 0 0 0 0

Quinqueloculina spp. 43 9 5 2 2 3 2

Reophax monoliformis 0 0 0 0 0 0 0

Rosalina sp. 0 0 0 0 0 0 0

Saccamina sp. 1 1 1 1 2 1 1

Stainforthia fusiformis 52 17 24 26 43 10 38

Textularia sp. 2 2 0 2 0 0 0

indeterminable 8 0 0 1 0 0 0

total 267 103 106 162 212 193 210
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June 2003, 53° 54' B

depth-interval (cm)

0-0.5 0.5-1.0 1.0-1.5 1.5-2.0 2.0-3.0 3.0-4.0 4.0-5.0

Acostata mariae 6 8 6 3 9 10 6

Ammodiscus sp. 0 0 0 0 0 0 0

Ammonia tepida 3 8 6 2 3 6 8

Asterigerinata mamilla 0 0 0 0 0 0 0

Bolivina dilatata 3 0 3 5 3 0 1

Bolivina pseudoplicata 1 1 4 1 0 5 0

Bolivina seminuda 0 0 0 0 0 0 0

Bolivina spathulata 0 0 2 2 0 0 2

Bulimina marginata/ elongata 0 2 1 0 2 5 0

Buliminella elegantissima 7 7 16 7 7 24 5

Caronia sylvestrii 0 0 0 0 0 0 0

Cassidulina sp. 0 0 0 0 0 0 0

Dentalina sp. 0 0 0 0 0 0 0

Eggerella scabra 133 128 97 65 131 168 143

Elphidium advenum 0 0 0 0 0 0 0

Elphidium excavatum 12 9 6 3 3 7 5

Epistominella exigua 0 0 0 0 0 0 0

Epistominella vitrea 2 3 5 1 1 1 1

Fissurina sp. 0 5 0 0 0 0 0

Haynesina germanica 0 0 0 0 0 0 0

Hopkinsina pacifica 9 6 6 4 13 9 4

Hyalinea baltica 0 0 0 0 0 0 0

Lagena sp. 3 1 0 2 0 1 0

Lenticulina sp. 0 0 0 0 0 0 0

Leptohalysis scottii 0 0 0 0 0 4 0

Nonion depresslus 0 0 1 0 0 1 0

Nonionella turgida 3 0 6 3 0 0 0

Pyrgo williamsoni 0 0 0 0 0 0 0

Quinqueloculina spp. 81 75 80 35 58 21 7

Reophax monoliformis 0 0 0 0 0 0 0

Rosalina sp. 0 0 0 0 0 2 0

Saccamina sp. 0 6 1 0 11 2 1

Stainforthia fusiformis 24 23 26 10 21 31 12

Textularia sp. 5 2 3 0 0 0 0

indeterminable 0 1 2 0 0 0 0

total 292 285 271 143 262 297 195
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June 2003, 54° 00' A

depth-interval (cm)

0-0.5 0.5-1.0 1.0-1.5 1.5-2.0 2.0-3.0 3.0-4.0 4.0-5.0

Acostata mariae 5 3 10 5 3 4 9

Ammodiscus sp. 0 0 0 0 0 0 0

Ammonia tepida 16 3 3 5 3 6 6

Asterigerinata mamilla 0 0 0 0 0 0 0

Bolivina dilatata 30 4 3 1 0 0 5

Bolivina pseudoplicata 15 0 3 4 1 5 4

Bolivina seminuda 5 0 0 0 0 0 0

Bolivina spathulata 2 0 0 0 0 0 6

Bulimina marginata/ elongata 8 1 3 1 1 1 3

Buliminella elegantissima 144 45 36 30 23 14 24

Caronia sylvestrii 0 0 0 0 0 0 0

Cassidulina sp. 0 0 0 0 0 0 0

Dentalina sp. 2 1 0 0 0 0 0

Eggerella scabra 269 113 158 157 124 174 178

Elphidium advenum 0 0 0 0 0 0 0

Elphidium excavatum 74 6 1 10 7 11 6

Epistominella exigua 1 0 0 0 0 0 0

Epistominella vitrea 5 1 1 2 2 1 0

Fissurina sp. 20 0 0 5 0 0 0

Haynesina germanica 0 0 0 0 0 0 0

Hopkinsina pacifica 23 6 4 6 4 9 4

Hyalinea baltica 0 0 0 0 0 0 0

Lagena sp. 10 1 2 2 1 0 2

Lenticulina sp. 1 0 0 0 0 0 0

Leptohalysis scottii 41 4 10 6 0 0 6

Nonion depresslus 0 0 0 0 0 0 0

Nonionella turgida 21 4 0 0 3 0 0

Pyrgo williamsoni 0 0 0 0 0 0 0

Quinqueloculina spp. 56 2 5 12 2 0 2

Reophax monoliformis 0 0 0 0 0 0 0

Rosalina sp. 5 0 0 0 0 0 0

Saccamina sp. 0 0 1 0 10 0 0

Stainforthia fusiformis 480 78 35 42 21 23 19

Textularia sp. 23 0 4 2 3 3 0

indeterminable 11 0 0 0 0 0 0

total 1267 272 279 290 208 251 274
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June 2003, 54° 00' B

depth-interval (cm)

0-0.5 0.5-1.0 1.0-1.5 1.5-2.0 2.0-3.0 3.0-4.0 4.0-5.0

Acostata mariae 6 6 8 5 12 4 8

Ammodiscus sp. 0 0 0 0 0 0 0

Ammonia tepida 6 2 2 3 3 8 11

Asterigerinata mamilla 0 0 0 0 0 0 0

Bolivina dilatata 10 4 3 1 3 4 1

Bolivina pseudoplicata 12 3 4 1 1 4 3

Bolivina seminuda 0 0 2 0 1 0 1

Bolivina spathulata 0 0 2 0 0 0 0

Bulimina marginata/ elongata 0 4 2 4 4 0 4

Buliminella elegantissima 31 30 26 26 28 17 5

Caronia sylvestrii 0 0 0 0 0 0 0

Cassidulina sp. 0 0 0 0 0 0 0

Dentalina sp. 0 0 0 0 0 0 0

Eggerella scabra 129 94 153 124 223 160 258

Elphidium advenum 0 0 0 0 0 0 0

Elphidium excavatum 20 19 22 12 16 2 2

Epistominella exigua 0 0 0 0 0 0 0

Epistominella vitrea 5 11 12 6 6 2 2

Fissurina sp. 0 0 0 0 0 0 0

Haynesina germanica 0 0 0 0 0 0 0

Hopkinsina pacifica 8 2 8 2 11 4 15

Hyalinea baltica 0 0 0 0 0 0 0

Lagena sp. 1 0 3 4 4 1 0

Lenticulina sp. 0 0 0 0 0 0 0

Leptohalysis scottii 14 0 0 0 0 0 0

Nonion depresslus 1 0 0 0 0 1 0

Nonionella turgida 0 0 0 0 0 0 0

Pyrgo williamsoni 0 0 0 0 0 0 0

Quinqueloculina spp. 24 5 5 7 2 4 1

Reophax monoliformis 0 0 0 0 0 0 0

Rosalina sp. 0 0 0 0 0 0 0

Saccamina sp. 0 0 0 5 0 5 0

Stainforthia fusiformis 45 71 31 30 19 5 7

Textularia sp. 8 3 3 2 8 0 0

indeterminable 0 0 0 0 0 0 0

total 321 253 286 232 340 222 318
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August 2004, 53° 30' A

depth-interval (cm)

0-0.5 0.5-1.0 1.0-1.5 1.5-2.0 2.0-3.0 3.0-4.0 4.0-5.0

Acostata mariae 0 0 0 0 0 0 0

Ammodiscus sp. 0 0 0 0 0 0 0

Ammonia tepida 2 1 5 4 0 4 2

Asterigerinata mamilla 0 1 1 0 1 0 0

Bolivina dilatata 1 0 0 0 0 0 0

Bolivina pseudoplicata 0 0 0 0 0 0 0

Bolivina seminuda 0 0 0 0 0 0 0

Bolivina spathulata 0 0 0 0 0 0 0

Bulimina marginata/ elongata 2 0 0 0 0 0 0

Buliminella elegantissima 0 2 1 0 0 0 0

Caronia sylvestrii 0 0 0 0 0 0 0

Cassidulina sp. 0 0 0 0 0 0 0

Dentalina sp. 0 0 0 0 0 0 0

Eggerella scabra 0 0 0 0 0 0 0

Elphidium advenum 0 0 0 0 0 0 0

Elphidium excavatum 2 2 1 0 3 0 0

Epistominella exigua 0 0 0 0 0 0 0

Epistominella vitrea 0 0 0 0 0 0 0

Fissurina sp. 0 0 1 0 0 0 0

Haynesina germanica 0 0 0 0 0 0 0

Hopkinsina pacifica 0 0 0 0 0 0 0

Hyalinea baltica 0 0 0 0 0 0 0

Lagena sp. 0 0 0 0 0 0 0

Lenticulina sp. 0 0 0 0 0 0 0

Leptohalysis scottii 0 0 0 0 0 0 0

Nonion depresslus 0 1 0 1 2 1 0

Nonionella turgida 0 0 0 0 0 0 0

Pyrgo williamsoni 0 0 0 0 0 0 0

Quinqueloculina spp. 5 2 1 0 2 0 0

Reophax monoliformis 0 0 0 0 0 0 0

Rosalina sp. 0 0 0 0 0 0 0

Saccamina sp. 0 0 0 0 0 0 0

Stainforthia fusiformis 0 0 0 0 0 0 0

Textularia sp. 0 0 0 0 0 0 0

indeterminable 0 0 0 0 0 0 0

total 12 9 10 5 8 5 2
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August 2004, 53° 39' A

depth-interval (cm)

0-0.5 0.5-1.0 1.0-1.5 1.5-2.0 2.0-3.0 3.0-4.0 4.0-5.0

Acostata mariae 14 0 4 1 1 3 3

Ammodiscus sp. 0 0 0 0 0 0 0

Ammonia tepida 171 53 26 16 3 11 16

Asterigerinata mamilla 0 0 0 0 0 0 0

Bolivina dilatata 1 0 0 0 1 0 1

Bolivina pseudoplicata 5 4 1 0 0 0 1

Bolivina seminuda 7 2 1 0 0 0 0

Bolivina spathulata 6 0 0 0 0 0 0

Bulimina marginata/ elongata 18 3 2 1 0 0 3

Buliminella elegantissima 3 3 7 9 14 0 3

Caronia sylvestrii 0 0 0 0 0 0 0

Cassidulina sp. 0 0 0 0 0 0 0

Dentalina sp. 0 0 0 0 0 0 0

Eggerella scabra 165 39 27 33 31 27 34

Elphidium advenum 0 0 0 0 0 0 0

Elphidium excavatum 42 13 20 29 35 9 17

Epistominella exigua 0 0 0 0 0 0 0

Epistominella vitrea 0 0 0 0 0 0 0

Fissurina sp. 5 0 5 0 0 0 0

Haynesina germanica 1 0 1 0 0 0 0

Hopkinsina pacifica 27 9 4 2 8 0 9

Hyalinea baltica 0 0 0 0 0 0 0

Lagena sp. 0 0 0 0 0 0 0

Lenticulina sp. 0 0 0 0 0 0 0

Leptohalysis scottii 36 44 4 4 2 1 0

Nonion depresslus 3 0 3 0 0 1 2

Nonionella turgida 3 0 0 0 0 0 0

Pyrgo williamsoni 0 0 0 0 0 0 0

Quinqueloculina spp. 261 38 22 9 10 9 13

Reophax monoliformis 0 0 0 0 0 0 0

Rosalina sp. 0 0 1 0 0 2 2

Saccamina sp. 0 0 0 0 0 0 0

Stainforthia fusiformis 9 5 2 3 10 7 7

Textularia sp. 6 5 2 0 0 0 0

indeterminable 0 0 0 0 0 0 0

total 783 219 133 108 115 69 112
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August 2004, 53° 39' B

depth-interval (cm)

0-0.5 0.5-1.0 1.0-1.5 1.5-2.0 2.0-3.0 3.0-4.0 4.0-5.0

Acostata mariae 9 4 3 1 0 1 4

Ammodiscus sp. 0 0 0 0 0 0 0

Ammonia tepida 187 52 10 36 15 12 38

Asterigerinata mamilla 0 0 0 0 0 0 0

Bolivina dilatata 9 3 3 1 0 4 0

Bolivina pseudoplicata 7 0 0 4 0 0 1

Bolivina seminuda 2 1 0 1 0 0 0

Bolivina spathulata 0 0 0 0 0 0 0

Bulimina marginata/ elongata 27 3 1 5 0 2 1

Buliminella elegantissima 2 3 3 5 0 2 3

Caronia sylvestrii 0 0 0 0 0 0 0

Cassidulina sp. 0 0 0 0 0 0 0

Dentalina sp. 0 0 0 0 0 0 0

Eggerella scabra 150 56 39 33 33 33 69

Elphidium advenum 0 0 0 0 0 0 0

Elphidium excavatum 24 35 18 30 14 20 17

Epistominella exigua 0 0 0 0 0 0 0

Epistominella vitrea 0 0 0 0 0 0 0

Fissurina sp. 0 0 0 5 5 0 0

Haynesina germanica 0 0 0 0 0 0 0

Hopkinsina pacifica 40 2 8 6 4 11 6

Hyalinea baltica 0 0 0 0 0 0 0

Lagena sp. 0 0 0 0 0 0 0

Lenticulina sp. 0 0 0 0 0 0 0

Leptohalysis scottii 55 24 6 4 2 8 0

Nonion depresslus 0 0 3 3 0 0 0

Nonionella turgida 9 3 0 0 0 0 0

Pyrgo williamsoni 0 0 0 0 0 0 0

Quinqueloculina spp. 262 30 19 11 10 6 11

Reophax monoliformis 0 0 0 0 0 0 0

Rosalina sp. 0 0 0 0 0 0 0

Saccamina sp. 0 0 0 0 0 0 0

Stainforthia fusiformis 10 5 9 5 6 5 2

Textularia sp. 3 3 3 0 2 2 2

indeterminable 0 0 0 0 0 0 0

total 796 224 124 150 91 106 154
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August 2004, 54° 00' A

depth-interval (cm)

0-0.5 0.5-1.0 1.0-1.5 1.5-2.0 2.0-3.0 3.0-4.0 4.0-5.0

Acostata mariae 4 10 3 5 14 9 12

Ammodiscus sp. 0 0 0 0 0 0 0

Ammonia tepida 26 34 6 9 13 17 13

Asterigerinata mamilla 0 0 1 0 0 0 1

Bolivina dilatata 6 1 1 3 1 1 3

Bolivina pseudoplicata 1 1 1 1 1 1 1

Bolivina seminuda 1 0 0 1 0 1 1

Bolivina spathulata 4 0 2 0 2 6 8

Bulimina marginata/ elongata 3 0 4 0 8 4 7

Buliminella elegantissima 16 10 14 7 24 7 21

Caronia sylvestrii 0 0 0 0 0 0 0

Cassidulina sp. 0 0 0 0 0 0 0

Dentalina sp. 0 0 0 0 0 0 0

Eggerella scabra 124 130 87 78 291 173 209

Elphidium advenum 0 0 0 0 0 0 0

Elphidium excavatum 4 0 0 0 0 2 1

Epistominella exigua 0 0 0 0 0 0 0

Epistominella vitrea 0 0 0 0 1 0 0

Fissurina sp. 11 0 0 5 5 0 0

Haynesina germanica 1 0 0 0 0 0 0

Hopkinsina pacifica 11 8 6 2 30 6 11

Hyalinea baltica 0 0 0 0 0 0 0

Lagena sp. 1 0 1 1 1 0 1

Lenticulina sp. 0 0 0 0 0 0 0

Leptohalysis scottii 11 2 0 0 0 8 8

Nonion depresslus 0 0 0 0 0 0 0

Nonionella turgida 3 0 0 0 2 3 3

Pyrgo williamsoni 0 0 0 0 0 0 0

Quinqueloculina spp. 14 11 7 3 6 1 3

Reophax monoliformis 0 0 0 0 0 0 0

Rosalina sp. 0 0 0 0 0 0 0

Saccamina sp. 4 1 8 0 6 1 7

Stainforthia fusiformis 0 3 2 5 26 7 9

Textularia sp. 5 3 0 7 3 1 0

indeterminable 0 0 0 0 0 0 0

total 250 215 142 127 435 248 318
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August 2004, 54° 00' B

depth-interval (cm)

0-0.5 0.5-1.0 1.0-1.5 1.5-2.0 2.0-3.0 3.0-4.0 4.0-5.0

Acostata mariae 4 1 10 5 9 3 9

Ammodiscus sp. 1 0 0 0 0 0 0

Ammonia tepida 16 9 8 3 11 11 4

Asterigerinata mamilla 0 0 0 1 1 1 1

Bolivina dilatata 11 3 1 3 0 1 1

Bolivina pseudoplicata 0 0 0 3 1 0 1

Bolivina seminuda 1 0 0 0 0 2 1

Bolivina spathulata 0 2 2 2 0 0 2

Bulimina marginata/ elongata 3 1 0 1 1 6 1

Buliminella elegantissima 10 16 10 3 24 10 17

Caronia sylvestrii 0 0 0 0 0 0 0

Cassidulina sp. 0 0 0 0 0 0 0

Dentalina sp. 0 0 0 0 0 0 0

Eggerella scabra 111 95 103 79 204 162 146

Elphidium advenum 0 0 0 0 0 0 0

Elphidium excavatum 6 4 4 5 6 7 6

Epistominella exigua 0 0 0 0 0 0 0

Epistominella vitrea 0 0 0 0 0 0 0

Fissurina sp. 5 0 5 0 0 0 5

Haynesina germanica 0 3 1 0 0 0 0

Hopkinsina pacifica 17 6 9 6 15 6 8

Hyalinea baltica 0 0 0 0 0 0 0

Lagena sp. 0 1 0 0 0 1 0

Lenticulina sp. 0 0 0 0 0 0 0

Leptohalysis scottii 14 4 4 2 2 0 0

Nonion depresslus 0 0 0 0 0 0 0

Nonionella turgida 0 3 0 0 6 0 0

Pyrgo williamsoni 0 0 0 0 0 0 0

Quinqueloculina spp. 1 9 6 1 1 2 1

Reophax monoliformis 0 0 0 0 0 0 0

Rosalina sp. 0 0 0 0 0 0 0

Saccamina sp. 1 0 0 0 0 0 0

Stainforthia fusiformis 5 3 10 5 14 2 10

Textularia sp. 8 6 4 3 0 0 3

indeterminable 1 0 0 0 0 0 0

total 216 165 179 122 296 214 217
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February 2005, 53° 22' A

depth-interval (cm)

0-0.5 0.5-1.0 1.0-1.5 1.5-2.0 2.0-3.0 3.0-4.0 4.0-5.0

Acostata mariae 0 0 0 0 0 0 0

Ammodiscus sp. 0 0 0 0 0 0 0

Ammonia tepida 0 0 0 0 4 0 3

Asterigerinata mamilla 0 0 0 0 0 0 0

Bolivina dilatata 0 0 0 0 0 0 0

Bolivina pseudoplicata 0 0 0 0 0 0 0

Bolivina seminuda 0 0 0 0 0 0 0

Bolivina spathulata 0 0 0 0 0 0 0

Bulimina marginata/ elongata 0 0 0 0 0 0 0

Buliminella elegantissima 0 0 0 0 0 0 0

Caronia sylvestrii 0 0 0 0 0 0 0

Cassidulina sp. 0 0 0 0 0 0 0

Dentalina sp. 0 0 0 0 0 0 0

Eggerella scabra 0 0 0 0 0 0 0

Elphidium advenum 0 0 0 0 0 0 0

Elphidium excavatum 0 0 0 0 0 0 0

Epistominella exigua 0 0 0 0 0 0 0

Epistominella vitrea 0 0 0 0 0 0 0

Fissurina sp. 0 0 0 0 0 0 0

Haynesina germanica 0 0 0 0 0 0 0

Hopkinsina pacifica 0 0 0 0 0 0 0

Hyalinea baltica 0 0 0 0 0 0 0

Lagena sp. 0 0 0 0 0 0 0

Lenticulina sp. 0 0 0 0 0 0 0

Leptohalysis scottii 0 0 0 0 0 0 0

Nonion depresslus 0 0 0 0 0 0 0

Nonionella turgida 0 0 0 3 0 0 0

Pyrgo williamsoni 0 0 0 0 0 0 0

Quinqueloculina spp. 5 0 7 0 7 3 0

Reophax monoliformis 0 0 0 0 0 0 0

Rosalina sp. 0 0 0 0 0 0 0

Saccamina sp. 0 0 0 0 0 0 0

Stainforthia fusiformis 0 0 0 0 0 0 0

Textularia sp. 0 0 0 0 0 0 0

indeterminable 0 0 0 0 0 0 0

total 5 0 7 3 11 3 3
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February 2005, 53° 22' B

depth-interval (cm)

0-0.5 0.5-1.0 1.0-1.5 1.5-2.0 2.0-3.0 3.0-4.0 4.0-5.0

Acostata mariae 0 0 0 0 0 0 0

Ammodiscus sp. 0 0 0 0 0 0 0

Ammonia tepida 0 2 2 0 2 3 0

Asterigerinata mamilla 0 0 0 0 0 0 0

Bolivina dilatata 0 0 0 1 0 1 0

Bolivina pseudoplicata 1 1 0 0 0 0 0

Bolivina seminuda 0 0 0 0 0 0 0

Bolivina spathulata 0 0 0 0 0 0 0

Bulimina marginata/ elongata 1 0 0 0 0 0 0

Buliminella elegantissima 0 0 0 0 0 0 0

Caronia sylvestrii 0 0 0 0 0 0 0

Cassidulina sp. 0 0 0 0 0 0 0

Dentalina sp. 0 0 0 0 0 0 0

Eggerella scabra 0 0 0 0 0 0 0

Elphidium advenum 0 0 0 0 0 0 0

Elphidium excavatum 1 1 0 0 0 0 0

Epistominella exigua 0 0 0 0 0 0 0

Epistominella vitrea 0 0 0 0 0 0 0

Fissurina sp. 0 0 0 0 0 0 0

Haynesina germanica 0 0 0 0 0 0 0

Hopkinsina pacifica 0 0 0 0 0 0 0

Hyalinea baltica 0 0 0 0 0 0 0

Lagena sp. 0 0 0 0 0 0 0

Lenticulina sp. 0 0 0 0 0 0 0

Leptohalysis scottii 0 0 0 0 0 0 0

Nonion depresslus 0 0 0 0 0 0 0

Nonionella turgida 0 0 0 0 0 0 0

Pyrgo williamsoni 0 0 0 0 0 0 0

Quinqueloculina spp. 2 5 0 0 0 1 3

Reophax monoliformis 0 0 0 0 0 0 0

Rosalina sp. 0 0 0 0 0 0 0

Saccamina sp. 0 0 0 0 0 0 0

Stainforthia fusiformis 0 0 0 0 0 0 0

Textularia sp. 0 0 0 0 0 0 0

indeterminable 0 0 0 0 0 0 0

total 5 9 2 1 2 5 3
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February 2005, 53° 42' A

depth-interval (cm)

0-0.5 0.5-1.0 1.0-1.5 1.5-2.0 2.0-3.0 3.0-4.0 4.0-5.0

Acostata mariae 6 4 4 0 1 3 1

Ammodiscus sp. 0 0 0 0 0 0 0

Ammonia tepida 90 85 114 65 109 90 95

Asterigerinata mamilla 1 1 1 1 0 1 0

Bolivina dilatata 0 14 4 5 4 5 0

Bolivina pseudoplicata 3 3 3 0 0 0 1

Bolivina seminuda 0 5 4 0 0 0 0

Bolivina spathulata 2 2 2 2 0 2 0

Bulimina marginata/ elongata 7 7 8 4 6 7 4

Buliminella elegantissima 2 3 10 7 5 7 3

Caronia sylvestrii 0 0 0 0 0 0 0

Cassidulina sp. 0 0 0 0 0 0 0

Dentalina sp. 0 0 0 0 0 0 0

Eggerella scabra 182 199 164 134 191 156 204

Elphidium advenum 0 0 0 0 0 0 0

Elphidium excavatum 26 13 16 13 10 19 10

Epistominella exigua 0 0 0 0 0 0 0

Epistominella vitrea 0 0 0 0 0 0 0

Fissurina sp. 0 0 0 0 0 0 0

Haynesina germanica 0 0 0 0 0 0 0

Hopkinsina pacifica 21 32 34 51 46 34 11

Hyalinea baltica 0 0 0 0 0 0 0

Lagena sp. 1 0 0 0 0 0 0

Lenticulina sp. 0 0 0 0 0 0 0

Leptohalysis scottii 0 0 0 2 2 6 0

Nonion depresslus 0 2 0 0 0 0 0

Nonionella turgida 3 6 3 3 0 0 0

Pyrgo williamsoni 0 0 0 0 0 0 0

Quinqueloculina spp. 15 5 3 7 5 7 3

Reophax monoliformis 0 0 0 0 0 0 0

Rosalina sp. 0 0 0 0 0 0 0

Saccamina sp. 0 0 0 0 0 0 0

Stainforthia fusiformis 2 3 2 2 0 7 2

Textularia sp. 3 2 0 0 3 0 0

indeterminable 0 0 0 0 0 0 0

total 363 385 371 295 381 343 336
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February 2005, 53° 42' B

depth-interval (cm)

0-0.5 0.5-1.0 1.0-1.5 1.5-2.0 2.0-3.0 3.0-4.0 4.0-5.0

Acostata mariae 4 6 5 4 0 4 1

Ammodiscus sp. 0 0 0 0 0 0 0

Ammonia tepida 52 61 74 43 58 48 35

Asterigerinata mamilla 0 0 0 0 0 0 0

Bolivina dilatata 5 4 10 5 3 0 1

Bolivina pseudoplicata 1 3 3 3 4 1 0

Bolivina seminuda 0 1 3 1 0 0 0

Bolivina spathulata 0 2 6 0 0 0 0

Bulimina marginata/ elongata 9 7 3 2 4 4 2

Buliminella elegantissima 5 7 10 3 9 2 10

Caronia sylvestrii 0 0 0 0 0 0 0

Cassidulina sp. 0 0 0 0 0 0 0

Dentalina sp. 0 0 0 0 0 0 0

Eggerella scabra 75 157 130 128 159 179 114

Elphidium advenum 0 0 0 0 0 0 0

Elphidium excavatum 40 24 8 14 7 6 10

Epistominella exigua 0 0 0 0 0 0 0

Epistominella vitrea 0 0 0 0 0 0 0

Fissurina sp. 5 0 0 0 0 0 0

Haynesina germanica 0 0 0 0 0 0 0

Hopkinsina pacifica 8 13 53 28 36 19 9

Hyalinea baltica 0 0 0 0 0 0 0

Lagena sp. 0 0 0 0 0 0 0

Lenticulina sp. 0 0 0 0 0 0 0

Leptohalysis scottii 0 0 0 0 0 0 0

Nonion depresslus 0 0 0 0 0 0 0

Nonionella turgida 3 9 3 3 0 0 0

Pyrgo williamsoni 0 0 0 0 0 0 0

Quinqueloculina spp. 34 10 3 0 5 0 3

Reophax monoliformis 0 0 0 0 0 0 0

Rosalina sp. 0 0 0 0 0 0 0

Saccamina sp. 0 0 0 0 0 0 0

Stainforthia fusiformis 0 2 2 2 9 3 2

Textularia sp. 4 3 0 3 5 2 3

indeterminable 0 0 0 0 0 0 0

total 245 309 313 241 297 269 191
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