1 Introduction
The study focuses on the effects of different observational error covariance structures on the assimilation in ensemble based Kalman filters with domain localization. With the domain localization methods, disjoint domains in the physical space are considered as domains on which the analysis is performed. Therefore, for each sub-domain an analysis step is performed independently using observations not necessarily belonging only to that sub-domain. Results of the analysis local steps are pasted together and then the global forecast step is performed.

The method of observational error covariance localization (Hunt et al. 2007) modifies the structure of the observational error covariance matrix for the subdomain depending on the distance of observation to the analysis point. We investigate use of different correlation structures together with this method in order to examine the relationship between correlation function used for weighting of observations and true observational error covariance of the data being assimilated.

Companions are done for estimation of ocean circulation via assimilation of satellite measurements of dynamical ocean topography (DOT) into the global finite-element ocean model (FEOM). The DOT data are derived from a complex analysis of multi-mission altimetry data combined with a referenced earth geoid. We are using domain localized SEIK algorithm with observational error covariance localization and different correlation models for localization.

2 Covariance function of observed dynamic ocean topography
The dynamical ocean topography is obtained by combining altimetric data with a high resolution reference field. In first approximation the altimetric data can be considered uncorrelated and the correlations of the DOT can be identified with the correlations of the geoid plus a constant variance of the altimetry part.

3 Experimental set-up
The data cover the period between January 2004 and January 2005. They are interpolated onto the model grid so that the observations are available at every point of the model grid every ten days. In the polar areas, part of Indonesian region and in Mediterranean sea, the observational data were substituted by the values of the ETOOS mean dynamical topography (MDT). These areas are characterized by low data accuracy due to presence of ice or of complex coastal/bottom topography.

The study was performed using the Finite-Element Ocean circulation Model (FEOM) [3] configured on a global almost regular triangular mesh with the spatial resolution of 1.5°. There are 24 unevenly spaced levels in the vertical direction. FEOM solves the standard set of hydrostatic ocean dynamic primitive equations using continuous linear representations for the horizontal velocity, surface elevation, temperature and salinity.

The local SEIK filter algorithm as implemented within PDAF [4] is used in order to update the full ocean state, consisting of temperature, salinity, SSH and velocity fields at a given time at all grid points.

The analysis for each water column of the model depends only on observations within a specified influence region. Thirteen ensemble members are used in the implementation of the local SEIK algorithm. Observational error variance was set to 25 cm².

4 Effects on accuracy of weighting of observations
The two correlation models used are plotted in Fig. 4 and compared to uniform weighting. The use of correlation models improves the accuracy of forecast compared to uniform weighting (figure not shown here).

5 Spectral results
Following the same iterative procedure used in the computation of the geodetic DOT, it is possible to extend also the forecast field and the analysis field over the entire Earth’s surface. Then spherical harmonic analysis can be applied to obtain the harmonic spectrum of each field or of their differences. The same procedure is applied to the forecast and to the analysis field.

In this first study only the error in the mean DOT (stationary part) obtained by averaging over 10 day outputs is considered. We consider the differences as function of the harmonic degree and order, computing the following index:

\[s^2(T) = \frac{\sum_{n,m} (T_{nm} - \overline{T}_{nm})^2}{\sum_{n,m} T_{nm}^2} \]

where \(T_{nm}\) are spectral coefficients and \(T_{nm}\) can be \(i = 1 \ldots 7\) for the forecast result. Spectral properties in forecast field show similar structure as for analysis, only the amplitudes have increased. This is true for all three methods.

The weighting by 5th order polynomial shows almost evenly distributed error structures for all scales. Note that since data itself have spectral coefficients only up to order 35, everything above 35 is the error that was introduced by analysis scheme and further amplified by the forecast. For the two weighting results shown this error is quite small.

6 Effects on non-observed model variables
Finally we consider the effects on temperature field and steric height. We compared the standard deviation of the observations and standard deviation of the steric height calculated from the analysis. In many regions of the world ocean there is a good correspondence between these two fields. However also structures that are not present in the observations appear in the steric height. Standard deviations indicating scales introduced by assimilation.

7 Conclusion
The use of observational weighting improves the accuracy of the analysis. In the case considered the true covariance matrix of the observations has a long length scales and the best possible approximation for use with domain decomposition method is sought after.

The results of two correlation models used are similar, and more accurate than uniform weighting.

The weighting of the observations by the 5th order polynomial produced spectral results that are closest to the data. The weighting by 5th order polynomial shows almost evenly distributed error structures for all scales.

Structures that are not present in the observations appear in the steric height standard deviations indicating scales introduced by assimilation.

References

The mean difference between the dynamical topography obtained from the observations and from analysis is shown in Fig. 4 (right).