

A modeling study with the regional climate model HIRHAM

- 1) Specification of aerosol from Global Aerosol Data Set (GADS)
- 2) Input from GADS into climate model:
 - for each grid point in each vertical level: aerosol mass mixing ratio (0.5°, 19 vertical)
 - optical aerosol properties for short- and longwave spectral intervals f(RH) aerosol was distributed homogeneously between 300 - 2700m altitude, no transport
- Climate model run with and without aerosol → aerosol radiative forcing months March (1989 - 1995)

Components of the Global Aerosol Data Set								
No.	Aerosol Component	Name	r _m [um]	σ	ρ [_{[a/cm} 3]			
1	Water-insoluble	INSO	4.71E-1	2.51	2.0			
2	Water-soluble	WASO	2.12E-2	2.24	1.8			
3	Soot	SOOT	1.18E-2	2.00	1.0			
4	Sea-salt (accumulation mode)	SSAM	2.09E-1	2.03	2.2			
5	Sea-salt (coarse mode)	SSCM	1.75E+0	2.03	2.2			
6	Mineral (nucleus mode)	MINM	7.00E-2	1.95	2.6			
7	Mineral (accumulation mode)	MIAM	3.90E-1	2.00	2.6			
8	Mineral (coarse mode)	MICM	1.90E+0	2.15	2.6			
9	Mineral-transported	MITR	5.00E-1	2.20	2.6			
10	H ₂ SO ₄ -Droplets	SUSO	6.95E-2	2.03	1.7			

→ Arctic Haze: WASO, SOOT, SSAM

Properties taken from ASTAR 2000 case (local), so overestimation of aerosol effect

Direct climatic effect of Arctic aerosols in climate model HIRHAMANN ()

<u>Direct effect</u> of Arctic Haze

"Aerosol run minus Control run", March ensemble

2m temperature change

 ΔF_{srfc} = 5 to -3 W/m² 1d radiative model studies:

1d radiative model studies ΔF_{srfc} =-0.2 to -6 W/m²

<u>Direct+indirect effect</u> of Arctic Haze

Rinke et al., 2004

Conclusion modeling:

- Critical parameters are:
 - Surface albedo, rel. humidity, aerosol height (especially in comparison to clouds) (indirect: liquid water)
 - But aerosol properties were prescribed here so no direct statement on sensitivity of aerosol properties (single scat. albedo...) according to GADS,
 - however: chemical composition, concentration and size distribution of aerosol did show strong influence on results (surface temperature)
- aerosol has the potential to modify global-scale circulation via affected teleconnection patterns

Radiosonde launch: 11UT (RS82)

11. Mar: cold and wet: diamond dust possible

For 30. Oct, 17. Nov: ΔT of 1.5 C needed for saturation

Conclusion FTIR observation:

 Observational facts: grey excess radiance was found for some days where back trajectories suggest pollution diamond dust unlikely for 30 Oct, 17 Nov.

 So IR forcing by small (0.2µm) Arctic aerosol? Consider: complex index of refraction at 10µm for sulfate, water-soluble, seasalt and soot (much) higher than for visible light! ("Atmospheric Aerosols") example

$\lambda \setminus \text{specimen}$	sulfate	water-solu.	soot	oceanic
0.5 µ	1.43+1e-8i	1.53+5e-3i	1.75+0.45i	1.382+6.14e-9i
10µ	1.89+4.55e-1i	1.82+9e-2i	2.21+0.72i	1.31+4.06e-2i

Mie calculation (spheres 0.2 μ m, sulfate): vis: no absorption, ω =1 IR: almost no scat. ω =0

so: ω , n, phase function are all (λ)

Scattering properties by remote sensing?

- Have seen: single scattering very important, depend on index of refraction.
- Multi wavelengths Raman lidars can principally calculate / estimate size distribution & refractive index (n) => scattering characteristics.

forward problem:

• One difficulty: estimation of n:

$$\min_{vd\in\mathfrak{R}^k} \left\| M_n \cdot vd - d \right\| > \min_{vd\in\mathfrak{R}^k} \left\| M_{n_{true}} \cdot vd - d \right\|$$

d: data; vd: coefficients of volume distribution function

M: matrix of scattering efficiencies (λ , k), depend on n

