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Abstract. Data from two Voluntary Observing Ship (VOS)
(2005–2007) augmented with data subsets from ten cruises
(1987–2005) were used to investigate the spatiotemporal
variations of the CO2 fugacity in seawater (f COsw

2 ) in the
North Sea at seasonal and inter-annual time scales. The ob-
served seasonalf COsw

2 variations were related to variations
in sea surface temperature (SST), biology plus mixing, and
air-sea CO2 exchange. Over the study period, the seasonal
amplitude inf COsw

2 induced by SST changes was 0.4–0.75
times those resulting from variations in biology plus mix-
ing. Along a meridional transect,f COsw

2 normally decreased
northwards (−12 µatm per degree latitude), but the gradient
disappeared/reversed during spring as a consequence of an
enhanced seasonal amplitude off COsw

2 in southern parts
of the North Sea. Along a zonal transect, a weak gradient
(−0.8 µatm per degree longitude) was observed in the an-
nual meanf COsw

2 . Annually and averaged over the study
area, surface waters of the North Sea were CO2 undersatu-
rated and, thus, a sink of atmospheric CO2. However, during
summer, surface waters in the region 55.5–54.5◦ N were CO2
supersaturated and, hence, a source for atmospheric CO2.
Comparison off COsw

2 data acquired within two 1◦×1◦ re-
gions in the northern and southern North Sea during differ-
ent years (1987, 2001, 2002, and 2005–2007) revealed large
interannual variations, especially during spring and summer
when year-to-yearf COsw

2 differences (≈160–200 µatm) ap-
proached seasonal changes (≈200–250 µatm). The spring-
time variations resulted from changes in magnitude and tim-
ing of the phytoplankton bloom, whereas changes in SST,
wind speed and total alkalinity may have contributed to the
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summertime interannualf COsw
2 differences. The lowest in-

terannual variation (10–50 µatm) was observed during fall
and early winter. Comparison with data reported in Octo-
ber 1967 suggests that thef COsw

2 growth rate in the central
North Sea was similar to that in the atmosphere.

1 Introduction

The ocean takes up about 25% of the annual carbon emis-
sions that result from fossil fuel burning and cement man-
ufacturing (Canadell et al., 2007). So far, the oceanic sink
has accounted for about half of the CO2 emitted from fossil-
fuel consumption and cement-manufacturing since the on-
set of the industrial revolution (Sabine et al., 2004). Tra-
ditionally, marginal seas have been ignored when consider-
ing the exchange of carbon between atmosphere and ocean,
due to their small surface area. Currently, however, these
regions are receiving increased attention partly because the
uptake of atmospheric carbon dioxide (CO2) over shelf seas
can be particularly effective. This is the case when subse-
quent formation of subsurface water and the transport to deep
ocean takes place so that the absorbed carbon is isolated from
the surface ocean-atmosphere-system for a prolonged period
of time. A number of studies (e.g. Tsunogai et al., 1999;
Yool and Fasham, 2000; Thomas et al., 2004; Borges, 2005;
Borges et al., 2005; Cai et al., 2006; Chen and Borges, 2009)
have suggested that shelf seas may substantially contribute
to the global ocean’s uptake of atmospheric CO2 through
the “continental shelf pump” – a term coined by Tsunogai
et al. (1999), describing the mechanisms that transfer car-
bon from the atmosphere via the continental shelf to the deep
ocean.
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The North Sea (Fig. 1), as one of the best studied shelf
seas, has been the subject of several basin wide and local
investigations of the marine inorganic carbon cycle (Kel-
ley, 1970; Kempe and Pegler, 1991; Hoppema, 1990, 1991;
Borges and Frankignoulle, 1999, 2002; Brasse et al., 1999;
Frankignoulle and Borges, 2001; Thomas et al., 2004, 2005,
2007, 2008; Bozec et al., 2005, 2006; Schiettecatte et al.,
2006, 2007; Borges et al., 2008). Thomas et al. (2004)
showed that the North Sea acts as a sink for atmospheric
CO2 and as a continental shelf pump, although the shallow
southern part acts as a source during summer but an annual
weak sink of atmospheric CO2 (Schiettecatte et al., 2007).
Furthermore, Thomas et al. (2007) suggested that the ther-
modynamic driving force of the sink (the gradient of fugac-
ity of CO2 (f CO2) at the air-sea interface1f CO2=f COsw

2 -
f COatm

2 ) has declined between 2001 and 2005 because
f COsw

2 increased faster than its atmospheric counterpart due
to the invasion of anthropogenic carbon.

Despite being one of the best studied shelf seas, neither the
seasonalf COsw

2 cycle nor its year-to-year variability is well
documented in the North Sea. To improve this situation, the
North Sea VOS (Voluntary Observing Ship) line has been ini-
tiated in 2005 and funded by the EU Integrated Project CAR-
BOOCEAN; http://www.carboocean.org/. Semi-continuous
(ca. every 3 min) measurements for surface seawaterf COsw

2
and sea surface temperature (SST) are made aboard the con-
tainership MSTrans Carrierwhich crosses the North Sea in
a south-north direction on a weekly basis. Additionally, an-
other CARBOOCEAN funded VOS line – the North Atlantic
VOS line aboard MVNuka Arctica– crosses the northern
North Sea in a west-east direction ca. once every three weeks
(Olsen et al., 2008).

Measurements from these two VOS lines constitute the
first high frequency and season resolvingf COsw

2 dataset
which covers most of the oceanographic regions in the North
Sea. This work primarily analyses the above dataset with the
focus on the spatiotemporal variations off COsw

2 in the North
Sea, from seasonal to interannual time scales.

1.1 Hydrographical regions and water masses in the
North Sea

The North Sea (Fig. 1) is located on the north-western Euro-
pean continental shelf. In the east and southeast it is bounded
by the European continent, by the British Isles in the west
and south, and by the Norwegian west coast in the northeast.
The circulation is anti-cyclonic and the sea receives warm
water from the North Atlantic Current (NAC) through the
north-west openings and fresh water mainly from Baltic Sea
outflow and European rivers.

Generally, the deeper northern and central parts are strati-
fied during summer while much of the shallow south is per-
manently mixed. Stratification in different areas can occur
in salinity or (seasonally) in temperature. The VOS lines
consistently cover six of the nine hydrographical regions and
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 Fig. 1. Map of the North Sea, including the most persistent tracks
(blue) of the VOS ships (Nuka ArcticaandTrans Carrier) during
2005–2007, names of water masses (as initials) and their corre-
sponding hydrographic regions (dotted grey, after Lee, 1980). Solid
rectangle (at the southern tip of Norway) indicates the area where
the two VOS tracks crossover and from which data on Fig. 3 was
acquired. Dashed rectangles indicate two sites at which the inter-
annual variability is investigated using data from years and loca-
tions shown on the insets where blue indicates VOS tracks; red,
green, and grey denote underwayf COsw

2 cruise tracks; black show
stations. Water masses shown on the map are CCW: Continental
Coastal Water; NAW: North Atlantic Water; SW: Skagerrak Water;
SCW: Scottish Coastal Water; ECW: English Coastal Water; CW:
Channel Water; T1–T3: transitional water 1–3.

their corresponding water masses as identified by Lee (1980)
(Fig. 1). The Continental Coastal Water (CCW) flows along
the European continent from Dover Strait to about 56◦ N and
is permanently mixed, except in some small places where
freshwater plumes from major rivers, e.g. Rhine and Elbe,
produce local salinity stratification. The low salinity Skager-
rak Water (SW) flows along the Norwegian coast and is salin-
ity stratified. The warm saline North Atlantic Water (NAW)
enters from the north-west opening and extends as far south
as approximately 55◦ N where, during summer, it is over-
lain by a combination of fresher coastal and/or SW. NAW is
thermally stratified except around the Dogger Bank (centered
≈55◦ N, 3◦ E) where it is permanently mixed. The Scot-
tish Coastal Water (SCW), English Coastal Water (ECW),
and Channel Water (CW) all flow along the eastern coast
of Britain and the track ofMS Trans Carriertransects these
waters only occasionally. Moreover, SCW is influenced by
fresh river water and, thus, seasonally stratified by salinity,
whereas the ECW and CW are permanently mixed. The re-
maining three water masses (T1, T2, T3) are transition waters
being mixtures of the adjacent water masses (Fig. 1).
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2 Data and methods

2.1 VOS data and co-located parameters

Underway measurements off COsw
2 and sea surface temper-

ature (SST) were obtained aboard two containerships MS
Trans Carrier (operated by Seatrans AS, Norwaywww.
seatrans.no) and MV Nuka Arctica(Royal Arctic Lines of
Denmark). The route of MSTrans Carrierhas changed over
time and today the ship crosses the North Sea along a tran-
sect at roughly 5◦ E (Fig. 1). At the start of the project, the
ship track had a triangular shape as the ship also called on
the port of Immingham (UK) in addition to Bergen (Norway)
and Amsterdam (The Netherlands). For the present analyses,
we use data exclusively from the line connecting Norway and
The Netherlands, since it has been the most persistent track.
Note that even within this transect the ship track can change
slightly, for example, due to weather conditions. Moreover,
north of 58.5◦ N the ship frequently stopped at several small
ports before Bergen. For consistency, data acquired within
the geographic rectangle 53.2◦ N–58.5◦ N and 4.4◦ E–5.5◦ E
(henceforth the NS-transect) and during September 2005–
December 2007 are used for the present analyses. Between
February and December 2006, the VOS line was serviced by
a sister ship MSNorcliff using the same measurement sys-
tem.

The second ship, MVNuka Arctica, crosses the North Sea
approximately every three weeks along a transect (henceforth
the WE-transect) between 59.5–57.7◦ N heading southeast
until 7◦ E, and then continues east until 10◦ E, where it turns
south and enters the port of Alborg, Denmark. Thef COsw

2
system was installed onboard during 2004, but the data anal-
ysed here are from 2005 through 2007.

The measurement method used aboard MSTrans Carrier
is identical to that used aboard MVNuka Arctica, which was
described in detail by Olsen et al. (2008). The instruments
aboard the two ships are replicates and are a modified version
of those described by Feely et al. (1998) and Wanninkhof and
Thoning (1993). Briefly, for both ships, thef COsw

2 instru-
ment uses a non-dispersive infrared (NDIR) CO2/H2O gas
analyzer (LI-COR 6262) to determine the CO2 concentration
in a headspace air in equilibrium with a continuous stream of
seawater. Every 3 min an analysis is done and the instrument
is calibrated roughly every six hours with three reference
gases with approximate concentrations of 200 ppm, 350 ppm,
and 430 ppm, which are traceable to reference standards pro-
vided by National Oceanic and Atmospheric Administra-
tion/Earth System Research Laboratory (NOAA/ESRL). The
zero and span of the NDIR response are determined once a
day using a CO2-free gas (N2) and the reference standard
with highest CO2 concentration, respectively.

The seawater temperature in the equilibrator (T eq) and
SST (measured at a dedicated seawater intake 2–4 m below
water level; 2 m in 2005 for M/SNuka Arcticaand 4 m for all
other data) were also recorded along with the raw mole frac-

tion data (xCO2) from the NDIR. The temperature measure-
ments were done using Hart Model 1521digital thermome-
ters from Hart Scientific, Inc.

xCO2 is converted to seawaterf CO2 in two steps. First,
f CO2 at the equilibrator temperature is computed according
to (Körtzinger, 1999):

f COeq
2 = xCOeq

2 (peq
−pH2O)exp(peqB +2δ

RT eq ) (1)

wherepeq is equilibrator pressure,pH2O is the vapour pres-
sure (Weiss and Price, 1980),R is the gas constant, andB
andδ are the first and second cross virial coefficients (Weiss,
1974).

Next, the CO2 fugacity at in situ temperature (f COsw
2 )

was computed by taking into account the difference between
equilibration and in situ temperatures (SST-T eq<0.5◦C) ac-
cording to (Takahshi et al., 1993):

f COsw
2 = f COeq

2 exp[0.0423(SST−T eq)] (2)

Data for sea surface salinity (SSS) and monthly mean sea-
level pressure (MSLP) were co-located with the VOS data
from gridded fields obtained from different publicly accessi-
ble databases along the tracks of the ships. The SSS data are
an ocean analyses product of the Met Office’s Forecasting
Ocean Assimilation Model (Bell et al., 2006). The MSLP
data were made available by Physical Science Division of
NOAA/ERSL (http://www.cdc.noaa.gov/cdc/).

Monthly data for atmosphericxCO2 were obtained from
the NOAA/ESRL Global Monitoring Division (ftp://140.
172.192.211/ccg/co2/flask/month/) for the two stations Mace
Head, Ireland (53.33◦ N, 9.9◦ W) and station Mike (66◦ N,
2◦ E) for the years 2005 to 2007. In order to account for the
latitudinal dependency, the monthlyxCO2 data have been fit-
ted to linear functions of latitude. Hence, the atmospheric
xCO2 value was determined for eachf COsw

2 sample point.
The resulting mole fractions were converted to atmospheric
fugacity of CO2, f COatm

2 , using Eq. (1) except that SST and
MSLP were used instead ofT eq andpeq, respectively.

VOS data consistency and temporal coverage

The VOS data used in this study were acquired along the
NS-transect during 4 months in 2005, 7 months in 2006
and 12 months in 2007, and along the WE-transect dur-
ing 9 months in 2005, 7 months in 2006 and 11 months in
2007 (Fig. 2). In late winter, MVNuka Arcticasailed on
a track slightly different from the WE-transect and, thus,
all data from March were excluded from the present anal-
yses. Measurements from the two VOS lines coincided 3
months in 2005, 4 months in 2006, and 11 months for 2007
(Fig. 2). Data from these 18 months were used to assess
the consistency between measurements from the two ships
within the crossover area (bounded by 57.94–58.3◦ N, 5.23–
5.5◦ E; see Fig. 1). For this purpose, the data from each ship

www.ocean-sci.net/6/77/2010/ Ocean Sci., 6, 77–89, 2010

www.seatrans.no
www.seatrans.no
http://www.cdc.noaa.gov/cdc/
ftp://140.172.192.211/ccg/co2/flask/month/
ftp://140.172.192.211/ccg/co2/flask/month/


80 A. M. Omar et al.: Spatiotemporal variations off CO2 in the North Sea

1 2 3 4 5 6 7 8 9 1011120

5000

10000
NS-transect

1 2 3 4 5 6 7 8 9 1011120

2000

4000
WE-transect

N
um

be
r o

f o
bs

er
va

tio
ns

Month

 

 

2005 2006 2007

Fig. 2. Number off COsw
2 observations per month made from 2005

to 2007 along the NS- and WE-transects. Note that only data used
in this study is reported on the plot (other data were discarded due
to various reasons detailed in Sect. 2).

have been organized into 0.27◦ E× 0.38◦ N × 7 days bin av-
erages for each year. Linear regressions between the aver-
aged data (Fig. 3) resulted in residuals of 0±0.6◦C for SST
and 1±13 µatm forf COsw

2 meaning that there are no (or neg-
ligible) systematic differences between data acquired by the
two measurement systems. Moreover, the large standard de-
viations of the residuals (±0.6◦C and±13 µatm) most prob-
ably reflect the weekly and mesoscale spatial variability.

2.2 Cruise data

Data acquired by scientific cruises and those measured
aboard VOS ships are often complementary in the sense that
the latter contains high frequency measurements but is lim-
ited in space and parameters while the former is limited in
time but can be basin wide and normally contain a whole
suit of parameters. In this work, we take advantage of this
typical complementarity by augmenting the VOS data with
subsets of data from ten cruises. Five of the cruises were
conducted in the North Sea aboard RVPelagia(18 August–

Fig. 3. A comparison off COsw
2 (upper) and SST (lower) data ac-

quired from the NS- and WE-transects in the crossover area (57.94–
58.32◦ N, 5.23–5.5◦ E, see Fig. 1). Data from each transect have
been organized into 0.27◦ E×0.38◦ N×7 days bin averages for each
year in order to minimize differences due to spatial and/or temporal
variations.

13 September 2001, 6–29 November 2001, 11 February–5
March 2002, 6–26 May 2002, and 17 August–6 September
2005). These data have been described in detail by others
(Thomas et al., 2004, 2007; Bozec et al., 2005). Briefly,
the RVPelagiacruises covered the North Sea during all four
seasons and obtained station data with a sampling resolution
of 1◦ and underway data with one minute frequency sam-
pling. During each cruise, water samples were collected for
parameters including (but not limited to) dissolved inorganic
carbon (DIC), total alkalinity (AT), salinity and temperature.
The DIC concentrations were determined by the coulomet-
ric method (e.g. Johnson et al., 1993) with a precision bet-
ter than 1.5 µmol kg−1. UnderwaypCO2 has been measured
semi-continuously (every minute) for surface water (pumped
from 3 m below the sea surface) using a continuous flow sys-
tem as described by K̈ortzinger et al. (1996). The water
was pumped with a flow of 2–3 L min−1 through the main
equilibrator and the difference between in-situ and equili-
brator temperature was typically less than 0.5◦C. The sys-
tem was calibrated against standards provided by the NOAA.
Also, SST and SSS were determined in an underway mode

Ocean Sci., 6, 77–89, 2010 www.ocean-sci.net/6/77/2010/
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Fig. 4. Hovmöller diagrams of SST (A andE), SSS (B andF), f COsw
2 (C andG), and1f CO2 (D andH) along the NS-transect (left

column) and WE-transect (right column). For (D) and (H), note the change of contour intervals from 25 to 20 each sides of the 0 contour
(dashed). The seasonal cycles shown in the figure are for a composite year consisting of the months depicted on Fig. 2 (above). For (G) and
(H), the month March is filled by interpolation.

in one-minute intervals. The underwaypCO2 data were con-
verted tof COsw

2 by subtracting 0.3% (Weiss, 1974).
Five earlier cruises were conducted in the coastal North

Sea along the Netherlands in 1987 (9–12 March, 13–16
April, 13–14 July, 3–4 August, and 23–25 November).
Cruises in March, April and November were carried out with
the research ship “Aurelia” of the Netherlands Institute for
Sea Research. The two summer cruises were made with the
research vessel “Holland” of the Ministry of Water Manage-
ment of the Netherlands. Samples were taken from 2 m depth
for the determination ofAT and DIC in addition to SST and
SSS. DIC andAT were measured with a potentiometric titra-
tion with strong acid (HCl) with a measurement precision of
0.3%. A more detailed description of the surveys and mea-
surement methods can be found in Hoppema (1990, 1991).

The 1987 cruise data for DIC andAT were converted to
f COsw

2 values using the constants of Mehrbach et al. (1973)
refit by Dickson and Millero (1987) and simultaneously ac-
quired data for seawater temperature, salinity, phosphate and
silicate. For the few samples of which no nutrient data were
available, silicate and phosphate were set to 0, a choice that
has negligible effects on the results. The random uncertainty
associated with the computedf COsw

2 values was estimated
to be±20 µatm. It was difficult to assess the systematic er-
rors since the measurements were done before the availabil-
ity of any Certified Reference Material and the data are from
a highly variable coastal area.

3 Results and discussion

3.1 Seasonal and spatial variations

Figure 4 shows the seasonal and spatial variations of SST,
SSS,f COsw

2 , and 1f CO2 along the two transects in the
North Sea for a composite year.

For the NS-transect, SST shows seasonal changes with an
amplitude of over 11◦C being lowest during winter, increas-
ing throughout spring, reaching maximum during summer
and decreasing throughout fall until reaching again minimum
winter values (Fig. 4a). SST increases southwards along the
transect (Fig. 4a), due to the solar radiation input which de-
creases with latitude in the North Sea (Otto et al., 1990). Lin-
ear regression between SST and latitude resulted in statisti-
cally significant and negative slopes (Table 1) throughout the
year. The magnitude of the gradient, however, is smallest
during winter and strongest during fall (Table 1).

The spatial variations of SSS (Fig. 4b) depict the different
water masses; SW is located north of 58◦ N, but can extend
southwards during summer; together with a diluted version
of NAW (SSS>34 for most of the year), they dominate the
central part of the transect (58◦ N–54.5◦ N), while CCW is
confined south of 54◦ N, but extends northwards during sum-
mer (to∼54.5◦ N). Moreover, seasonality is evident for the
former two water masses, being most fresh during summer

www.ocean-sci.net/6/77/2010/ Ocean Sci., 6, 77–89, 2010
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Table 1. Monthly distribution of latitudinal gradients inf COsw
2 and SST. Slopes (a, in µatm◦N−1 or ◦C◦N−1) and corresponding statistics

obtained from linear regressions betweenf COsw
2 or SST and latitude are shown. Positive values indicate properties increasing northwards

and vice versa. Forf COsw
2 the gradient was determined for two regions, 54.5–58.5◦ N and 54.5–53.25◦ N. For clarity, p-values are shown

only where these are>0.05.

Month Annual

For: 1 2 3 4 5 6 7 8 9 10 11 12 mean

SST a −0.1 −0.1 −0.1 −0.3 −0.5 −0.3 −0.3 −0.3 −0.7 −0.7 −0.6 −0.3 −0.4
r 0.4 0.4 0.4 0.9 0.9 0.9 0.8 0.8 1 0.9 0.9 0.8 1.0
p

f COsw
2 (54.5–58.5◦ N) a −4 −4 −9 −6 −2 −11 −23 −27 −27 −23 −10 −4 −12

R 0.6 0.8 0.7 0.5 0 0.5 0.9 0.9 0.9 0.9 0.8 0.5 0.9
p 0.54

f COsw
2 (54.5–53.25◦ N) a 13 14 81 106 41 29 80 55 66 43 24 23 48

r 0.9 0.8 0.9 0.9 0.9 0.9 0.9 0.9 0.8 0.8 0.7 0.8 0.9
p

and most saline during winter and early spring, and with in-
creasing/decreasing salinity throughout fall/spring.

The most remarkable feature in the seasonalf COsw
2 cy-

cle along the NS-transect (Fig. 4c) is the decrease during
spring whenf COsw

2 reaches values<320 µatm everywhere
due to biological carbon uptake during the spring phyto-
plankton bloom (Frankignoulle and Borges, 2001; Thomas et
al., 2004). During the rest of the year, thermodynamic, rem-
ineralization and mixing processes take over the control of
f COsw

2 (the importance of the different controls forf COsw
2 is

discussed in Sect. 3.1.1) which shows values≥360 µatm, ex-
cept for areas north of 56◦ N where values<360 µatm persist
until October. Apart from the southern end of the transect
(south of 54◦ N), f COsw

2 increases southwards (Fig. 4c and
Table 1) throughout the year although the gradient is statis-
tically insignificant during May (Table 1). Thef COsw

2 gra-
dient is partly due to the above-mentioned SST gradient (an-
nual mean:−0.36◦C◦ N−1, Table 1) which theoretically ac-
counts for about half of the observedf COsw

2 gradient (an-
nual mean:−12.4 µatm◦ N−1, Table 1) becausef COsw

2 in-
creases by about 4% for every 1◦C increase in temperature
(Takahashi et al., 1993). The rest of thef COsw

2 gradient is
probably due to the fact that in the shallow southern parts
of the North Sea permanent mixing brings up remineralized
carbon into the surface and elevatesf COsw

2 , whereas in the
central and northern parts stratification prevents remineral-
ized carbon from reaching the surface (Thomas et al., 2004).
This hypothesis draws support from the fact that the gradi-
ent is strongest during summer and early fall (Table 1) when
the majority of the organic matter formed during the pro-
ductive season is remineralized. Approaching at the coast
of the Netherlands (south of 54◦ N), however,f COsw

2 de-
creases sharply southwards throughout the year (Fig. 4c and
Table 1). Additionally, cruise data acquired along the NS-
transect show that this region exhibits a surfaceAT-SSS re-
lationship (Table 2) that is almost identical to the one re-

Table 2. Values of coefficients and statistical parameters
for two relationships betweenAT (µmol kg−1) and salinity
(AT=a·salinity+b). The relationships were obtained by linear re-
gressions using data acquired along the two transects (see Fig. 1)
during four RVPelagiacruises (in 2001 and 2002) and during the
1987 coastal cruises. Data from north of the 54◦ N have been de-
spiked by binning it into 0.5◦ N×0.5◦ E grid prior to regressions.

Parameter NS-transect WE-transect

a 13.3±3.2 −11.3±1.7 13.86±1.44
b 1835±110 2698±54 1817.46±48.02
Standard error
of the estimate ±9 ±28 ±6
r 0.75 0.74 0.95
p <0.001 <0.0001 <0.0001
Geographic limit 54–60◦ N 52.5–54◦ N 57.5–59◦ N

ported for the German Bight (Brasse et al., 1999) where
the surface seawater receives excess total alkalinity due to
river runoff from the central European rivers (Kempe and
Pegler, 1991) and water-sediment interaction (Brasse et al.,
1999; Thomas et al., 2009). Therefore, excess total alka-
linity from the above-mentioned processes conceivably re-
sults in the relatively lowerf COsw

2 in the southernmost part
of the transect. Furthermore, a closer inspection of Fig. 4c
reveals that the south is characterised by a strongerf COsw

2
spring drawdown resulting in enhanced seasonal amplitude
(≈230 µatm) compared to central (≈180 µatm) and northern
regions (≈100 µatm).

The seasonal cycle of1f CO2 (Fig. 4d) resembles that
of f COsw

2 (Fig. 4c) because the seasonal amplitude of
f COatm

2 (∼10 µatm, not shown) is negligible compared to
that of f COsw

2 (above). The surface waters along the en-
tire NS-transect are nearly at CO2 equilibrium with the at-
mosphere during winter (1f CO2 ≈ −30–−15 µatm). Strong
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Table 3. Monthly distribution of longitudinal gradients inf COsw
2 and SST. Slopes (a, in µatm◦E−1 or◦C◦E−1) and corresponding statistics

obtained from linear regressions betweenf COsw
2 or SST and longitude are shown. Positive values indicate properties increasing eastwards

and vice versa. For clarity, p-values are shown only where these are>0.05.

Month Annual

For: 1 2 3 4 5 6 7 8 9 10 11 12 mean

SST a −0.1 −0.3 0 −0.1 0.1 0.3 0.3 0.4 0.3 0.1 0 −0.1 0.1
r 0.9 0.9 0 0.5 0.9 0.9 0.9 0.9 0.9 0.9 0 0.8 0.9
p 0.4

f COsw
2 a −0.3 0.1 0 −4.1 1.2 2 1.6 −0.2 −1.3 −2.7 −3.4 −1.2 −0.8

r 0 0 0 0.5 0.3 0.6 0.5 0 0.3 0.6 0.9 0.5 0.5
p 0.3 0.8 0.2 0.6 0.2

CO2 undersaturation (1f CO2 ≈−50–170 µatm) is observed
during spring, while during summer and early fall, sur-
face waters in the southern area become supersaturated
(1f CO2 >0). This seasonal cycle of1f CO2 is in good
agreement with the one reported by Thomas et al. (2004) who
constructed seasonal averages off COsw

2 based on data from
four basin-wide cruises in the North Sea.

Data from the WE-transect (Fig. 4e–h) confirm the sea-
sonal variations reported above for the northernmost part of
the NS-transect. Additionally, this data subset enables us to
compare east-to-west and north-to-south gradients for SST
and f COsw

2 . SST shows seasonal change with an ampli-
tude of over 10◦C, being coldest in February and March and
warmest in August (Fig. 4e). Furthermore, during winter and
early spring, SST decreases eastwards (Table 3), but from
late spring through fall the SST gradient reverses as a result
of decreased mixed layer combined with solar radiation input
that increase eastwards in the North Sea (Otto et al., 1990).

The spatial variations of SSS depict the water masses: the
saline NAW (SSS>35) is usually encountered in the west-
ern part of the transect (Fig. 4f), the fresh SW in the east.
Also evident from Fig. 4f is the seasonality for SW, be-
ing more fresh (SSS<31) during summer (July) and more
saline (SSS>33) during winter (January). Additionally, the
35 isohaline retreats westwards during summer as also was
reported by Lee (1980).

Values of f COsw
2 are highest (360–380 µatm) during

late fall and winter and lowest (≈260 µatm) during spring
(Fig. 4g). Furthermore, the lowf COsw

2 values during spring
seem to appear first in the eastern side around April and prop-
agate westwards. In the region west of the Prime Meridian,
the lowestf COsw

2 values occur in June. Conversely, the re-
covery off COsw

2 towards maximum winter values seems to
start in the west around August and propagate eastwards.
Apart from these two features,f COsw

2 values do not show
any systematic gradients along the WE-transect (Table 3).
Nevertheless, a linear regression between annualf COsw

2
data and longitude resulted in a statistically significant, but
weak slope with poor statistics (Table 3, last column). The

most important feature in1f CO2 (Fig. 4h) is that it is nega-
tive everywhere along the transect, showing that the area is a
year-round sink for atmospheric CO2.

The controls off COsw
2

We decomposed the seasonal signal off COsw
2 data into

individual components due to variations in SST, in air-sea
CO2 exchange, in SSS, and in combined mixing and biol-
ogy (a choice to be explained shortly), according to Olsen et
al. (2008):

dobsf COsw
2 = dsstf COsw

2 +dasef COsw
2 +dsssf COsw

2

+dm&bf COsw
2 (3)

where dobs f COsw
2 is the observed monthly change in

f COsw
2 , dsst f COsw

2 is the change due to SST changes,dase
f COsw

2 is the change due to air-sea gas exchange, anddsss
f COsw

2 anddm&b f COsw
2 are the changes due to salinity vari-

ations and mixing plus biology, respectively. Details on the
computations of each term are given by Olsen et al. (2008).
Here, we only mention that; (i) no nutrient data were ac-
quired along the transects and, thus,dm&b f COsw

2 is deter-
mined as a residual i.e. as the monthly change inf COsw

2
that is left unexplained by the other processes, (ii) The de-
termination ofdsssf COsw

2 requires the knowledge ofAT in
the surface seawater, whiledasef COsw

2 requires estimates of
the air-sea CO2 flux (F ase). We usedAT versus SSS rela-
tionships observed along the NS- and WE-transects, based
on data collected during the fourRV Pelagiacruises con-
ducted in 2001 and 2002. TheAT-SSS relationships and their
statistics are given in Table 2. For the computation ofF ase,
we used 6-hourly wind speed data from NCEP/NCAR (Na-
tional Centers for Environmental Prediction/The National
Center for Atmospheric Research). Gas transfer velocity was
computed from wind speed using the relationship of Wan-
ninkhof (1992).

Figure 5 shows the decomposition of various processes on
the seasonal variations off COsw

2 obtained from Eq. (3) for
the two transects (columns 1 and 5 starting from left), for the
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Fig. 5. Monthly changes inf COsw
2 as observed (first row) and expected due to: SST changes (second row), air-sea CO2 exchange (third

row), SSS changes (fourth row) and biology plus mixing (last row). Negative values reflect a decrease inf COsw
2 and vice versa. The changes

are shown for five cases: along the NS-transect (first column starting from left), for the period 2005/2006 (2nd column), for the year 2007
(3rd column), for the region south of 55.5◦ N (4th column), and for the WE-transect (last column). The latter is referred to as north of the
57.5◦ N in Sect. 3.1.1 of the main text.

periods 2005/2006 and 2007 (columns 2 and 3) and for the
southern and northern regions of the North Sea (columns 4
and 5). Generally, the largest monthlyf COsw

2 changes are
observed from February to July. During this six month pe-
riod, f COsw

2 decreases during the first three months and in-
creases during the last three (Fig. 5, row 1). During the rest
of the year, both the magnitude and direction of monthly
f COsw

2 change is highly dependent on the region and on
the year. For instance,f COsw

2 increases from August to
November in the north (panel U), while during the same pe-
riod, f COsw

2 decreases in the south (panel P). Similarly, data
from 2005/2006 show a markedf COsw

2 decrease during Au-
gust and September (panel F), whereas for the same period
in 2007, a small increase was observed (panel K).

As to the importance of differentf COsw
2 drivers, monthly

f COsw
2 changes brought about by mixing and biology

(row 5) dominate (−80 to 40 µatm month−1) together with
SST-induced changes (row 2,−40 to 60 µatm month−1),
whereas changes due toF ase(row 3) are of intermediate im-
portance (−10 to 35 µatm month−1) and changes from SSS
(row 4) are negligible (<5 µatm month−1) (Fig. 5). Note
that the changes from SSS are strongest on the WE-transect
(≈10 µatm month−1), which is strongly influenced by SW,
the water mass with most significant seasonal variation in
SSS (Fig. 4f).

The combination of the second, third and last rows of
Fig. 5 suggests that the increasing effect of warming on
f COsw

2 from March to July cannot completely compensate
for the decreasing effect of biological uptake of carbon and
shoaling of mixed layer depth. This imbalance induces CO2
undersaturation of surface waters which drives a CO2 flux
into the ocean (Fig. 5, row 3). Conversely, from August
onwards, the decreasing effect of cooling onf COsw

2 nearly
equals the increasing effect of deepening mixed-layer depth
which entrains deeper water into the surface layer and, thus,
brings regenerated and new nutrients and CO2 into the sur-
face water. Consequently, the observed monthlyf COsw

2
change in this period is small, but variable from one year to
another and from one region to another (Fig. 5, row 1). This,
in turn, produces seawaterf COsw

2 values that are close to
atmospheric equilibrium and, thus, monthlyf COsw

2 changes
resulting from air-sea exchange (dasef COsw

2 ) are negligible
from August to December on a basin scale (panel C), but
variable from year to year and from region to region (panels
H–W). Thus, in the north,dasef COsw

2 is positive through-
out the year (Fig. 5, panel W) while it reverses from July
onwards for regions south of the 55.5◦ N (Fig. 5, panel R).
Another difference between northern and southern regions is
that the decreasing effect of shallow mixed layer and biolog-
ical uptake seem to be more short-lived in the south lasting
from February to May (panel T) compared to the north where
this effect lasts from March to August (panel Y).

Ocean Sci., 6, 77–89, 2010 www.ocean-sci.net/6/77/2010/



A. M. Omar et al.: Spatiotemporal variations off CO2 in the North Sea 85

100

200

300

400

500
A

2 3 4 5 6 7 8 9 10 11 12100

200

300

400

500
B

0

5

10

15

20

25

2 3 4 5 6 7 8 9 10 11 120

10

20

30

Month Month

2 3 4 5 6 7 8 9 10 11 12

1

1

1

2 3 4 5 6 7 8 9 10 11 121

fC
O

2 (µ
at

m
)

fC
O

2 a
t 1

2o C 
(µ

at
m

)
SS

T 
(o C)

Ch
la

 (m
g 

 m
-3

)

C

D

100

200

300

400

500
E

2 3 4 5 6 7 8 9 10 11 12100

200

300

400

500
F

0

5

10

15

20

25

2 3 4 5 6 7 8 9 10 11 120

10

20

30

1

2 3 4 5 6 7 8 9 10 11 121

1

2 3 4 5 6 7 8 9 10 11 121

fC
O

2 (µ
at

m
)

fC
O

2 a
t 1

2o C 
(µ

at
m

)
SS

T 
(o C)

Ch
la

 (m
g 

 m
-3

)

G

H

VOS: 2007 2006 2005 2002 2001 1987Cruises: 2005

Fig. 6. Seasonal cycles forf COsw
2 (A and E), temperature normalizedf COsw

2 (B and F), SST (C and G), and co-located SeaWiFS

Chlorophyll-a (D andH) for different years. All data were averaged weekly. For chl-a, only values between 0 and 30 mg m−3 are considered
realistic and plotted. Panels (A)–(D) show data acquired from a 1.0◦

×1.0◦ site on the northern North Sea (57.5–58.5◦ N, 4.8–5.8◦ E; see
Fig. 1) for which underwayf COsw

2 and SST data from 2001, 2002, and 2005–2007 are available. Panels E–H show data acquired from
a 0.6◦×1.0◦ site in the southern North Sea (52.5–53.1◦ N, 3.6–4.6◦ E; see Fig. 1) for which also station data from 1987 are available in
addition to underway data from 2001, 2002, and 2005–2007.

The seasonal amplitudes off COsw
2 due to the two most

important drivers (changes in SST and biology plus mixing)
can be estimated by integrating the monthly values ofdsst
f COsw

2 and ofdm&b f COsw
2 , respectively. Peak-to-peak val-

ues of the integrals give the magnitude of the seasonal am-
plitudes and were computed from data shown on rows 2 and
5 of Fig. 5. For the NS-transect and using data from all years
(panels B and E), we obtained seasonal amplitudes of 144
and−185 µatm due to changes of SST and biology plus mix-
ing, respectively. However, the seasonal amplitudes due to
changes of SST and biology plus mixing were respectively
195 and−169 µatm for 2005/2006, and 119 and−210 µatm
for 2007. Thus, in the North Sea, the non-thermal control (bi-
ology plus mixing) dominated if either the whole study pe-
riod or the single year 2007 were considered. During 2006,
however, the SST control dominated an inter-annual differ-
ence that resulted from greater seasonal SST amplitude in
2006 (below, Fig. 6c and g).

The above seasonal amplitudes were also variable from
one region to another. For the region north of 57.5◦ N (Fig. 5,
panels V and Y), seasonal amplitudes due to changes of SST
and biology plus mixing were 80 and−200 µatm, respec-
tively. For the region south of the 55.5◦ N (panels Q and
T), seasonal amplitudes due to changes of SST and biology
plus mixing were 120 and−160 µatm, respectively. While
this confirms that the non-thermal control dominated in the
North Sea over the study period, it also shows that in the
southern region, the SSTf COsw

2 driver was stronger and the
biological plus mixing driver was weaker compared to the
northern region. The above finding agrees well with the re-
sults of Schiettecatte et al. (2007) who, based on data from
monthly surveys in the Southern Bight of the North Sea, esti-
mated the temperature and biologicalf COsw

2 drivers using a
calculation scheme proposed by Takahashi et al. (2002) and
found that, over one annual cycle, the ratio of temperature
control to the biological control is≈0.70, in good agreement
with our result, 120/160=0.75.
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3.2 Interannual f COsw
2 variations and trends

The interannual variability off COsw
2 in the North Sea was

investigated in two regions, which were chosen on the ba-
sis of data availability (Fig. 1). The seasonal cycles for
f COsw

2 , SST and co-located chlorophyll-a (chl-a) data from
SeaWiFS (Sea-viewing Wide Field-of-view Sensor;http://
oceancolor.gsfc.nasa.gov) in the two regions from different
years is depicted in Fig. 6. In both regions, the VOSf COsw

2
shows substantial year-to-year variations especially during
spring and summer when interannual differences (≈160–
200 µatm) are comparable to the seasonal changes (≈200–
250 µatm) (Fig. 6a and e). Fall and early winter show the
smallest interannualf COsw

2 variations, 10–50 µatm. Both
seasonal and interannual variations appear to be somewhat
larger in the southern site.

In order to comprehend the importance of the observed
interannualf COsw

2 changes for the air-sea CO2 flux (F ase),
we used a linear relationship between monthly1f CO2 and
F asevalues (y=−0.0035(±0.0003)·x; R=0.95;p <0.0001),
which was identified during the evaluation of Eq. (3)
(above). The difference in the annual mean1f CO2 between
2005/2006 and 2007 is in the range of 15–25 µatm. Assum-
ing this difference is representative for the whole NS-transect
and using the aforementioned function, we estimated that ob-
servedf COsw

2 changes have the potential to produce flux
changes of 0.6–1.1 mol C m−2 yr−1, which is 50%–90% of
meanF asecomputed for the NS-transect using data from all
years (1.2 mol C m−2 yr−1). However, interannualF asevari-
ations in the North Sea are most probably substantially less
than 90% because; (i) the southern region is characterised
by enhanced seasonalf COsw

2 changes (Fig. 6e–h) and, thus,
it is likely that this location is more susceptible to interan-
nual changes than the rest of North Sea, and (ii) interan-
nual f COsw

2 variations can be accompanied by changes in
wind speed with an opposing effect onF ase. Indeed, when
we computedF asefor the whole NS-transect using first data
from 2005/2006 and then data from 2007, we obtained a
year-to-yearF asevariation of 0.6 (=1.5–0.9) mol C m−2 yr−1

i.e. 50% of the meanF ase.
As to the cause of the observed interannualf COsw

2
changes, several features of Fig. 6 deserve attention. Firstly,
a comparison between the curves for the years 2006 and 2007
(Figs. 5e and 6a) reveals that the springtimef COsw

2 draw-
down by phytoplankton blooms starts some weeks earlier in
2007. Additionally, chl-a (Fig. 6d and h) indicate that the
phytoplankton bloom in 2007 was stronger. In the southern
region, mean chl-a concentration from March to April was
21±6 mg m−3 in 2007 and only 4.3±2.1 mg m−3 in 2006
(Fig. 6h). In the northern region, mean chl-a in late March
was 13.7±1.5 mg m−3 in 2007 and only 0.7±0.1 mg m−3 in
2006 (Fig. 6d). Hence, the interannual variations in spring-
timef COsw

2 most probably result from changes in magnitude
and timing of the spring phytoplankton bloom.

Secondly, interannualf COsw
2 changes during summer

can be partly accounted for by changes in SST. To ver-
ify this, we normalizedf COsw

2 values to a constant SST
(12◦C; Fig. 6b and f). A comparison between normal-
ized f COsw

2 for 2006 and 2007 reveals that SST changes
account for the differences inf COsw

2 in the northern re-
gion during July and August (Fig. 6b). On the other hand,
f COsw

2 differences between 2005 and 2007 observed in the
northern region during July and August cannot be attributed
to SST changes since the 2005 summertimef COsw

2 re-
mained at elevated values even after temperature normal-
ization (Fig. 6b). These elevated summertimef COsw

2 val-
ues might be explained by changes in wind speed. High
winds prevailed in the North Sea throughout 2005, with
NCAR/NCEP wind speeds on average 2.4–2.7 m s−1 higher
than in 2006 and 2007. This would maintain enhanced car-
bon flux from the atmosphere into the ocean during spring
and, thus, could result in higher summertimef COsw

2 val-
ues. As to a third possible cause,AT variations were
most probably not responsible for interannual summertime
f COsw

2 variations in the northern site because the mean value
of salinity normalized surfaceAT (AT35), computed from
data acquired between 58.5◦ N–54◦ N during the RVPela-
gia cruises, was 2301±5 µmol kg−1 and 2303±14 for Au-
gust/September 2001 and August/September 2005, respec-
tively. This indicates that essentially allAT variations along
this part of the NS-transect can be attributed to evapora-
tion/dilution, a process which has equal effects onCT andAT
and, thus, a negligible effect onf COsw

2 . For the southern re-
gion, the temperature normalization accounted for about half
of thef COsw

2 differences between 2006 and 2007 observed
during August (Fig. 6f). Additionally,AT variations resulting
from changes of river runoff and/or sediment-water interac-
tions might play a significant role in the interannualf COsw

2
variations at this site. Thomas et al. (2009) reported that in
the shallow southeastern North Sea, anaerobic degradation
of organic matter releases total alkalinity which buffers the
f COsw

2 increase from decaying phytoplankton blooms. It is
likely that this alkalinity source varies between years due to
the aforementioned variability in the biological productivity
and, thus, produces some of the interannualf COsw

2 varia-
tions observed in the southern site.

One particular implication of the observed high interan-
nual variability is that it can conceal the trend inf COsw

2 re-
sulting from the equilibration of the surface waters with the
increasing atmospheric CO2. For instance, a full equilibra-
tion with the atmospheric CO2 in the last two decades, which
would increasef COsw

2 in the North Sea approximately by
30 µatm (=1.6 µatm yr−1

×20 yr) would be indiscernible from
the interannual variability, which is>30 µatm for most of
the year (Fig. 6a and e). This is confirmed by the fact that
the overlain older cruise data (squares, diamonds, and trian-
gle) in Fig. 6a and f are not systematically lower than the
VOS data. However, the VOS data acquired in January and
February at the northern site showed the minimum observed
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year-to-year differences (±10 µatm, Fig. 6a) suggesting that
only observations from these months may be appropriate for
the determination of the trend. At present, there are too few
data from these months for a robust analysis on this matter.
For periods much longer than 20 years, however, using win-
ter/fall data might be able to discern the long-term trend.

Kelley (1970) reported mean surface seawaterxCO2 value
of ≈308±25 ppm in the North Sea. Kelley’s samples were
taken early October 1967 at locations approximately on the
4◦ E, most likely from the central North Sea as the ship
sailed on the transatlantic route from Hamburg (Germany) to
Boston (USA) which matched closely that of Buch (1939)
(Kelley, 1970). Therefore, we converted the 1967 mean
xCO2 value tof COsw

2 as described in Sect. 2.1, assuming
equilibration pressure and temperature of 1 atmosphere and
14◦C. The result was subtracted from the meanf COsw

2 value
measured between 55◦ N–57◦ N on 1–15 October over the
three years 2005, 2006, and 2007. We obtained anf COsw

2 in-
crease of 61±33 µatm (=364±22–303±24) for the 40 years
elapsed since 1967. This implies that the surface water in
central North Sea has tracked more or less the atmospheric
CO2 increase (≈1.6 µatm yr−1 at Mauna Loa, Hawaii) in
agreement with thef COsw

2 growth rate recently reported
for the North Atlantic (Takahashi et al., 2009). This find-
ing is, however, somewhat surprising since rapid and marked
changes at decadal time-scales have been reported in the
whole North Sea for SST (Edwards et al., 2002), phyto-
plankton biomass (McQuatters-Gollop et al., 2007) and food-
web structure (e.g. Beaugrand, 2004). Despite the above-
mentioned physical and biological decadal changes, it seems
that the influence of water inputs from the North Atlantic,
whose waters track more or less closely the atmospheric
CO2 increase (e.g. Lefèvre et al., 2004), governs thef COsw

2
growth rate in the central North Sea. Thus, the abovef COsw

2
growth rate may be applicable in the northern North Sea as
well since this region, too, receives large inputs of NAW.
Conversely, the above estimatedf COsw

2 growth rate prob-
ably should not be extrapolated to the southern parts of the
North Sea whereAT changes and eutrophication has stronger
influence onf COsw

2 (Thomas et al. 2009; Gypens et al.,
2009).
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