Emissions of Bromine and Iodine from the Marine Environment in New Zealand


Contact
Robyn.Schofield [ at ] awi.de

Abstract

As noted in the WMO/UNEP Scientific Assessment of Ozone Depletion: 2006, halogenated very short-lived substances (VSLS) contribute to the atmospheric budget of halogens and thereby lead to substantial decreases in ozone and increases in surface UV radiation in the tropics and mid-latitudes. Halogenated VSLS are primarily of natural origin; oceanic emissions constitute the largest source providing 90-95% of the total global flux to the atmosphere. Macro algae in the ocean appear to be an important source of polyhalogenated VSLS. Oxidation of halogenated VSLS in the atmosphere (i.e. photolysis and reactions with OH) produces halogen oxide radicals (e.g. ClO, BrO, IO) which have been suggested as the main component of gas-phase halogens. Countries with long coastlines and little land suitable for forestation are investigating the possibility of industrial scale marine kelp farming as a means of carbon sequestration. This marine analogy of the Kyoto Protocol forest has been thought as a means to contribute to climate change mitigation. Knowledge of how natural emissions of VSLS will respond to both the drivers of climate change (e.g. changes in CO2 and land use) and to the consequences of climate change (e.g. changes in sea surface temperature and wind stress) is very limited. As a result, it is imperative that observational studies are performed to quantify the contributions of these natural VSLS to halogen loading in the troposphere and, subsequently, in the stratosphere. For this, transport and degradation processes of the source gases and product gases need to be studied and quantified. A key question surfacing from the WMO Assessment is to what extent halogenated VSLS contribute to atmospheric Bry and Iy. During a field campaign conducted during the spring of 2009, measurements of BrO and IO were made along the coastline of the South Island of New Zealand using a portable Multi Axis Differential Optical Absorption Spectroscopy (MAX-DOAS) spectrometer with the aim of determining coastal sites where high active halogen release could be observed. The selected sites had high biomass concentration of marine algae that would be exposed by low tides. Local macro algae type, tidal height, sunlight, temperature, and wind speed were recorded and correlated to the resulting data in order to better understand the environmental factors that modulate the emissions of halogen oxides from the marine environment to the troposphere. Results of this multi-disciplinary approach to studying brominated VSLS and their atmospheric implications are presented. As well, the chemical processes taking place and producing these halogen oxides are discussed in a thorough manner. This study contributes to a better understanding of the origin of bromine and iodine in the lowermost atmosphere (i.e. marine boundary layer). Particularly, the role that natural emissions of halogenated VSLS from the ocean may play in the halogen budget of the lower atmosphere is addressed by quantitatively understanding key links in this chain so that its potential future impacts on atmospheric chemistry, surface UV radiation, and the biosphere can be thoroughly assessed.



Item Type
Conference (Poster)
Authors
Divisions
Programs
Publication Status
Published
Event Details
AGU Fall Meeting, 1418 December, San Francisco..
Eprint ID
21827
Cite as
Martinez-Aviles, M. , Kreher, K. , Hay, T. , Thomas, A. , Johnston, P. V. and Schofield, R. (2009): Emissions of Bromine and Iodine from the Marine Environment in New Zealand , AGU Fall Meeting, 1418 December, San Francisco. .


Share
Add to AnyAdd to TwitterAdd to FacebookAdd to LinkedinAdd to PinterestAdd to Email

Research Platforms
N/A

Campaigns
N/A


Actions
Edit Item Edit Item