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Abstract. The 20th century regional and global sea level variations are3

estimated based on long term tide gauge records. For this the neural network4

technique is utilized that connects the coastal sea level with the regional and5

global mean via a non-linear empirical relationship. Two major difficulties6

are overcome this way: the vertical movement of tide gauges over time and7

the problem of what weighting function to choose for each individual tide8

gauge record. Neural networks are also used to fill data gaps in the tide gauge9

records, which is a prerequisite for our analysis technique. A suite of differ-10

ent gap filling strategies is tested which provides information about stabil-11

ity and variance of the results.12

The global mean sea level for the period January 1900 to December 200613

is estimated to rise at a rate of 1.56±0.25 mm/yr which is reasonably con-14

sistent with earlier estimates, but we do not find significant acceleration. The15

regional mean sea level of the single ocean basins show mixed long term be-16

haviour. While most of the basins show a sea level rise of varying strength17

there is an indication for a mean sea level fall in the Southern Indian Ocean.18

Also for the the tropical Indian and the South Atlantic no significant trend19

can be detected. Nevertheless, the South Atlantic as well as the tropical At-20

lantic are the only basins that show significant acceleration. On shorter timescales,21

but longer than the annual cycle, the basins sea level are dominated by os-22

cillations with periods of about 50 to 75 years and of about 25 years. Con-23

sequently we find high (lagged) correlations between the single basins.24
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1. Introduction

Global sea level rise is one of the major concerns in predicting climate and climate25

change for the decades to come. Projections for sea level rise have been compiled in the26

IPCC third assessment report [Church et al., 2001] and the more recent 4th report, AR4,27

[Bindoff et al., 2007]. But still predictions vary substantially. It is important first to28

understand the magnitude of the past sea level change before we can reduce uncertainties29

in the future development.30

In this paper we will address the development of the global and regional, i.e. ocean31

basin wide, sea level during the past century. For this purpose monthly mean tide gauge32

data from the Permanent Service for Mean Sea Level (PSMSL) data base [Woodworth and33

Player, 2003] will be used. However, the question is how well tide gauge records describe34

regional or global sea level trends. The comparison of altimeter derived sea level change35

and that at tide gauges indicated that local changes from tide gauges appear to be larger.36

In recent studies Holgate and Woodworth [2004], White et al. [2005] as well as Prandi et37

al. [2009] emphasize the differences between the true global mean and the one estimated38

from tide gauges.39

Furthermore processes inside the solid Earth must be considered not only for correcting40

measurements but also for changes in the shape of the ocean. This leads to the problem of41

how to separate measured sea level change from local change of the reference system (i.e.42

land movement). Commonly vertical tide gauge movement is estimated by modelling of43

the solid earth and its viscous response to past glaciation and mass loading distribution44

[e.g. Peltier, 2004]. Peltier’s analysis is available for the whole globe which makes it45
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attractive for use, but many other solutions of the Glacial Isostatic Adjustment (GIA)46

exist (e.g. Lambeck and Johnson [1998], Milne et al. [2001], Mitrovica [2003] or Hagedoorn47

et al. [2007]). Alternatively, measurements from the Global Positioning System (GPS) at48

or close to tide gauge locations can be used. This was done thoroughly by various authors49

like Teferle et al. [2006], Wöppelmann et al. [2007, 2009] or Schöne at al., [2009]. They50

all demonstrate local differences between the GIA and GPS solutions.51

The question of how to relate tide gauge records to the global sea level was studied by52

Church et al., [2004]. Only satellite altimetry can provide an almost global mean. Church53

et al., [2004] used tide gauge records for the last 50 years and related them to the sea level54

variability and trends measured by the TOPEX/Poseidon mission. The analysis for the55

period of satellite observations was extended to the past using an Empirical Orthogonal56

Function (EOF) expansion technique. The EOF method assumes that covariances of the57

past signal were the same as observed at present. A veritable strength of this method is58

that the spatial and temporal distribution of tide gauges may change with time. It allowed59

the reconstruction of the sea level evolution on a spatial resolution of 1 degree globally60

for five decades. At selected tide gauges an impressive skill could be demonstrated. In a61

follow on publication Church and White [2006], CW06 hereafter, included more historic62

sea level records and extended the reconstruction back to 1870. CW06 also discuss the63

error bounds of the analysis and a possible acceleration of sea level rise. In order to64

relate the relative height of tide gauge locations, which is a difficult geodetic task, Church65

et al. [2004] as well as Church and White [2006] performed their analysis in the space66

of temporal sea level change and later integrated sea level change to sea level height.67

However, the problem of quality assessment of sea level reconstruction remains an issue.68
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One way can be comparing the results from alternative approaches because independent69

measurements are not available.70

The relative weighting of the individual tide gauge records is another important task71

which was tackled by Jevrejeva et al., [2006], J06 hereafter. She and her co-workers72

carefully studied for which area an individual tide gauge is representative. A weighting73

scheme was designed that led first to regional and finally to global values. Their scheme74

is flexible in dealing with gaps in data distribution. J06 cover a somewhat longer period75

as CW06, i.e. 1807 to present. For long term trends the two estimates of global sea level76

rise agree reasonably well. Jevrejeva et al., [2008] then provide a thorough discussion of77

their results concerning dominant periods of variability and their regional distribution,78

wherein their regions are limited, coastal bound ocean areas.79

We try to overcome the serious issues of GIA correction and individual weighting by the80

use of neural networks, a technique relatively uncommon in oceanography or meteorology,81

but there are some examples that can be grouped according to their main two application82

topics: data analysis [Stogryn et al., 1994; Gross et al., 1999; Müller et al., 2003] and83

prediction [Wenzel, 1993; Tangang et al., 1998; Lee and Jeng, 2002] among others. Further84

applications of neural networks in environmental science can be found e.g. in the recent85

book of Haupt et al. [2009].86

We will apply the neural network not only to estimate the regional and global sea level87

change but also to fill temporal data gaps, which is a prerequisite for our method. For gap88

filling the EOF method is popular, but the weighting of the individual tide gauges remains89

under discussion. The procedure by J06 could be used as an alternative but is not directly90
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designed for the purpose. However, again the vertical land movement contaminates any91

estimate.92

After a short introduction to neural networks in section 2 we will describe the data used93

in section 3. A first application of the neural network will be given in section 4 dealing94

with filling data gaps in the tide gauge records. Finally in section 5 a network will be95

applied to estimate the regional mean sea level and section 6 will give a short summary.96

2. The Neural Network

A neural network is an artificial neural system, a computational model inspired by97

the notion of neurophysical processes. It consists of several processing elements called98

neurons, which are interconnected with each other exchanging information. There are99

many different kinds of such neural networks which differ in the way the neurons are100

interconnected and in the way the single neurons behave. A detailed overview can be101

found e.g. in the books of Freeman and Skapura [1991] or Bishop [1995, 2006].102

In this paper a backpropagation network (BPN) will be used. This type of network is103

mainly used for tasks like classification and pattern recognition in noisy environments or104

for data compression/decompression purposes. The BPN was first formulated by Werbos105

[1974] and later by Parker [1985]. In this type of network the neurons are ordered into106

layers: an input layer on the top, one or more hidden layers below and an output layer107

at the bottom. In addition to the neurons there is a bias element in the input and the108

hidden layer(s) that has no input but a constant unique output value. The information109

propagates forward through the network from the input to the hidden layer(s) and then110

to the output. To manage this, each neuron (including the bias) of one layer is connected111

to every neuron in the underlying layer. They are not interconnected within the layers112
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and there is no feedback. Each connection can be characterized by a certain connection113

strength or weight. The neurons of the input layer usually do only a scaling transformation114

on the input data, while the neurons in the following layers can be divided into two115

sections: an input section that sums the incoming signals from the overlying layer using116

the individual weights and a transfer/output section where the resulting signal is modified117

by a transfer function F{}. Thus the output yk of the neuron k in dependence to its input118

{xi} can be described as:119

yk = F{bk +
N
∑

i=1

Wk,i xi}

where N gives the number of neurons in the layer above, Wk,i is the connection120

strength/weight matrix and bk the corresponding bias. An appropriate choice of the121

transfer function in the hidden layer is a sigmoid function, which is differentiable, output-122

limiting and quasi-bistable. Thus these neurons work like switches.123

In a first test experiment aimed at filling data gaps in the tide gauge records (see124

section 4) we applied a BPN with the hidden layer divided into three sections with different125

transfer functions F{}. In the first section we used F{x} = 1/(1+exp{−x}), in the second126

F{x} = tanh{x} and in the third a linear transfer F{x} = x. After training the BPN we127

found that only connections going through hidden neuron with either F{x} = tanh{x}128

or F{x} = x contribute to the output signal. Therein the connections crossing the linear129

hidden neurons can be re-written as direct connections from the input to the output layer.130

Therefore we decided to use in this paper a general neural network(s) design as illustrated131

in Fig. 1 with F{x} = tanh{x} for the hidden neurons and a linear transfer, F{x} = x,132

for the output neurons, which results in the full network equation:133

~y = ~bO + WIO · ~x + WHO · tanh{ ~bH + WIH · ~x} (1)
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The amount of neurons in each layer will be chosen depending on the special task. Note134

that (1) describes a hybrid approach: setting WHO to zero leads to linear regression while135

WIO = 0 retrieves the original description of a backpropagation network.136

The matrices of the connection strength between the neurons from the different layers137

(WIO: direct input to output, WIH : input to hidden and WHO: hidden to output) as138

well as the bias terms ~bH and ~bO are unknown initially and will be estimated in a training139

phase, i.e. the BPN learns from given examples (supervised learning in the terminology140

of neural networks). Given a set of M known training vector pairs {~xdat
m , ~ydat

m }, i.e. input141

and associated output vectors (target values), we minimize the quadratic error E at the142

output of the network:143

E =
1

2

M
∑

m=1

K
∑

k=1

(

ynet
k (~xdat

m ) − ydat
k,m

)

2

(2)

where the summations include all K output neurons and all M training pairs. To find144

the minimum of E an iterative gradient descent algorithm will be applied. The necessary145

gradient of E with respect to the unknown weights WIO, WIH and WHO as well as to146

the biases ~bH and ~bO can easily been derived from (1) and (2) using the chain rule. The147

optimizations done in the following sections will all start from small random numbers in148

the range [-0.01,+0.01] as a first guess for the unknowns and we will allow for a maximum149

of 500 iterations.150

In oceanographic and meteorological applications one often has to deal with a large151

number of input as well as output neurons, which results in a huge amount of parameters152

(Npar) to be estimated. Usually there will be only a much smaller set M of training153

examples leading to an ill-conditioned problem [Hsieh and Tang, 1998]. Because of the154

non-linearity of the hidden neurons transfer function many local minima of the costfunc-155
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tion E exist. To moderate the danger of getting trapped in one of these local minima156

Freeman and Skapura [1991] propose to enlarge the training data set by including exam-157

ples with noise added to the input. This procedure was successfully applied by Wenzel158

[1993] and we will follow this line in this paper.159

Furthermore, the situation M ≪ Npar might lead to an overfitting of the neural network,160

i.e. the network looses its capability to generalize and the error will be unnecessarily high161

when applying the network to examples not used for training. To overcome this problem162

Tangang et al. [1998, their appendix] suggest to add a penalty term to (2) that forces163

unimportant weights to approach zero (auto pruning, ridge regression):164

R =
1

2

[

CIO

∑

w2

IO + CIH

∑

w2

IH + CHO

∑

w2

HO

]

(3)

with positive constant factors CIO, CIH and CHO. The summations include all elements w165

of the corresponding matrix WIO, WIH and WHO, respectively. To simplify the optimal166

choice of the factors Cj (the subscript j denotes the corresponding matrix) we rewrite167

them in the form:168

Cj = Cr · K · M/Nj (4)

with Nj giving the corresponding number of matrix elements. Thus finally only the single169

constant Cr has to be choosen. We will come back to this later according to demand.170

3. Data

For our purpose we use monthly sea level data from tide gauges downloaded from the171

Permanent Service for Mean Sea Level (PSMSL) website [http://www.pol.ac.uk/psmsl]172

in June 2008. To avoid possible problems with the different local reference frames all173

computations will be done in the space of temporal derivatives, i.e. monthly differences.174
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Beyond that, this makes the data more suitable for the BPN because it better limits the175

possible range of the numerical values. To reduce the noise in the temporal derivatives176

all time series are smoothed prior to further processing using a Gaussian filter,177

exp{(t − t0)/tsm}
2 with tsm = 2.5 month width.178

From the PSMSL sea level data all tide gauges with revised local reference (RLR179

data) are selected that comply with the following conditions: (i) there are more than180

11 annual mean values given in [1993,2005], (ii) more than 50 annual mean values are181

given in [1900,2006] and (iii) they are not located in the Mediterranean, North or Baltic182

Sea. Multiple records near a 1◦×1◦grid point are averaged to one. This results in a183

set of 56 tide gauges (Fig. 2). Although every tide gauge has more then 50 years184

of data, many values are missing, especially prior to 1950 (Fig. 3). We will deal185

with this point in section 4. The selected tide gauges are GIA corrected using the186

ICE-5G model [Peltier, 2004] version VM4 downloaded also from the PSMSL website187

[http://www.pol.ac.uk/psmsl/peltier/index.html]. Incidentally this correction is not re-188

ally necessary as one can deduce it from the structure of the BPN. Any linear trans-189

formation of the BPN input signal can be mapped as part of the related weights and190

biases.191

The main purpose of this paper is to estimate regional mean sea level anomalies192

(regional MSLA’s) from this set of selected tide gauges directly using a neural net-193

work. To train such a network corresponding regional mean target values are needed.194

For the period from 1993 onward these values can be derived from the satellite al-195

timetric measurements. We will use either the TOPEX/Poseidon data processed by196

GFZ Potsdam [T.Schöne, S.Esselborn pers. communication] and / or the combined197
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TOPEX/Poseidon and Jason-1 sea level fields available at the CSIRO sea level webpage198

[http://www.cmar.csiro.au/sealevel/sl data cmar.html]. Due to differences in processing199

the satellite data these products are distinct from each other not only locally but also for200

the regional means. Table 1 gives the temporal root mean square (RMS) values of these201

differences for the ocean regions considered in this paper (color shaded areas in Fig. 2).202

Compared to the RMS value of the signal they are most pronounced in the tropical belt203

(15◦S–15◦N), as e.g. in the tropical Pacific (Fig. 4a), and are also notable in the global204

mean (Fig. 4b).205

4. Filling Data Gaps

A neural network needs complete information at the input layer to fulfill its duty, but206

from Fig. 3 we see that there are many tide gauge data missing. When applying a207

neural network to estimate the regional MSLA’s from the tide gauges the simplest way208

out seems to fill the gaps by some dummy value. To handle this the BPN has to be209

trained accordingly, i.e. the training data set has to include all possible configurations of210

gaps, which would make the training unnecessarily complicated. A better way is to use211

more sophisticated methods to fill the gaps. Several alternatives (Table 2) are tested /212

used here. This includes the replacement of the missing values by the mean annual cycle213

(MAC) of the corresponding tide gauge as well as the reconstruction using an EOF basis214

estimated from all timesteps that have a complete tide gauge dataset (EOFR).215

Furthermore a forecast network (FCnet) is built, that is trained to compute the values216

at all tide gauge positions for timestep (n+1) from all values at the steps (n) and (n-217

1). Additionally an equivalent backcast network (BCnet) is constructed that computes218

the values for step (n-1) from the steps (n) and (n+1). Thus these networks act as time219
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stepping operators. Both networks have the following dimension: 112 input, 84 hidden and220

56 output neurons, i.e. there are 20524 parameters / weights to estimate. The networks221

are trained using all 297 examples that have three complete subsequent timesteps.222

Following the suggestion of Freeman and Skapura [1991] examples with noise added to223

the input are included in the training to moderate the problem of getting trapped in local224

costfunction minima. Each of the original training examples is repeated three times with225

Gaussian noise added that corresponds to 5, 10 and 15%, respectively, of the standard226

deviation estimated from all utilized tide gauge values.227

To tackle the problem of overfitting, the ridge regression penalty (3) is included in the228

training of the networks. To find an appropriate value of Cr we tested the values 0 to 50229

in steps of 10. Figure 5 shows the dependence of the BCnet output error on the choice of230

Cr. Here the BCnet is applied recurrently starting from February, 2007 going backwards231

in time, i.e. data gaps at the input of the BCnet are filled using the output from the232

previous step(s). To start this time stepping procedure, data gaps at the very beginning233

are filled with values taken from the mean annual cycle. The benefits of (3) are obvious:234

Compared to not applying the ridge regression penalty (Cr = 0.0) the error of the network235

output is reduced by about 25% in unknown environments, i.e. for timesteps not used236

in the training phase (mainly before 1955), while the error gets only slightly worse for237

the training examples (the minimum values in Fig. 5 after 1955). There is only weak238

dependence on the actual value of Cr but we found a slight minimum for Cr = 30. A239

further increase of Cr worsens the error again for untrained examples. Analogous results240

are found for the FCnet. This induces the final choice of Cr = 30.241
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As an example Fig. 6 shows the reconstructed sea level derivatives at the tide gauge242

Kwajalein (code 720011, position: 8.73◦N 167.73◦E) for the period 1940–1960. Alter-243

natively to using the FCnet and the BCnet recurrently (Fig. 6a) we also tested the244

combination of the neural network and the MAC/EOFR reconstruction, i.e. we filled the245

data gaps at the network input by taking values either from the MAC (Fig. 6b) or from246

the EOFR (Fig. 6c). All reconstructed time series reproduce the original data resonably247

well and have approximately the same error when compared to all known data points248

(Fig. 7). For both networks the RMS of the output error is lowest at the timesteps249

used for training. At untrained timesteps after ∼1940 it stays at the level of about 40%250

the standard deviation estimated from the existing tide gauge data at the corresponding251

timestep. With the increasing number of data gaps before 1940 the error slightly rises to252

about 60%. When filling the gaps with the MAC (Tab. 2, case 1) the error stays at the253

60% level after 1940 and rises to about 100% before (Fig. 7a). For EOFR (Tab. 2, case 2)254

the error appears much less because the EOF method minimizes the error at given data255

points directly.256

From these results it is hard to distinguish which reconstruction to prefer, and in the257

following we will treat all timeseries as an ensemble of possible realisations. The ensemble258

is enlarged by two further realisations: one takes the best of the single network recon-259

structions (Tab. 2, cases 3 to 8) at each timestep, i.e. the one with minimum error, and260

the other is built as the error weighted mean of the these. Using this ensemble will allow261

us later on to account for the uncertainty in the reconstruction and to do some error262

statistics.263
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5. Regional Mean Sea Level

5.1. Reconstruction

The final purpose of this paper is to estimate the regional MSLA for the eight ocean264

regions that are indicated by color shading in Fig. 2. This will be done by using a neural265

network that is supplied with the monthly difference values from all selected tide gauges266

and gives the corresponding regional MSLA derivatives for all the ocean regions at once.267

This network will be denoted as TGRMnet in the following. Again we utilize a BPN of the268

same general configuration as in section 4. In this case the network has 56 input neurons,269

i.e. one for each tide gauge, and eight output neurons, i.e. one for each ocean region.270

To complete the network layout there are 112 hidden neurons implemented. This finally271

gives 7736 connection weights to be estimated. Note that there is no extra output neuron272

for the global MSLA! Instead, the network training includes an additional constraint that273

minimizes the difference between the area weighted mean of the regional MSLA from the274

network and the corresponding given global value. Prior experiments have shown that275

this procedure results in more robust estimates because it interlinks the output neurons.276

The TGRMnet is trained using three alternatives of regional MSLA data: the corre-277

sponding values are computed either from the GFZ altimetry data (GFZ-training) or from278

the CSIRO dataset (CSIRO-training). In the third case we use both datasets simultane-279

ously (CSIRO+GFZ-training), i.e. there are two different target values for the same BPN280

input. The temporal overlap with the tide gauges ranges from Jan.1993 to Jun.2005. Thus281

there are 148 basic examples available to train the network (this number doubles in case282

of the CSIRO+GFZ-training). As for the training of the FCnet and BCnet (section 4)283

we increased this number by adding training examples with noisy input to moderate the284
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problem of getting trapped in local costfunction minima. Using two different target val-285

ues for the same input as in the CSIRO+GFZ-training is somewhat like adding noise to286

the output too. This interpretation leads to a further difference in the BPN training as287

compared to the common standard: the misfit at the output neurons will be weighted288

according to the uncertainty of the training data, i.e. the final costfunction E for the289

TGRMnet is:290

Em =
1

2

K
∑

k=1

rwk

(

ynet
k (~xdat

m ) − ydat
k,m

)

2

+
1

2
rwglob

[(

K
∑

k=1

Ak ynet
k (~xdat

m )

)

− ydat
glob,m

]2

(5)

E =
M
∑

m=1

Em + R

where
∑

k adds up the ocean regions and Ak are the weights (relative areas of the ocean291

basins) to compute the global value from the regionals. R is given by (3). The RMS292

of the difference between the GFZ and the CSIRO data (Tab. 1) give a reasonable293

approximation for the data uncertainty and the weights of the regional misfits, rwk, are294

the squared inverse of the corresponding RMS values. They are applied for all three295

training datasets.296

To estimate the weight Cr of the ridge regression penalty (Eq. 3 and 4) we scanned297

the range 0 to 500 and performed a fivefold cross-validation on the training dataset(s)298

following Cannon and Hsieh [2008]. However, we did not perform a second validation299

loop as in Cannon and Hsieh [2008]. For the cross-validation the training data are split300

into five continuous segments. The TGRMnet’s are trained on four of these segments while301

the data from the fifth segment are retained for validation. In a sixth cross-validation case302

we retain 20% of the data that are randomly chosen from the complete training dataset.303
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Figure 8 shows the dependence of the cost Em (5), converted to a mean RMS error, on304

the validation case and on Cr. The results are very similar for all validation cases. When305

applying the networks to the data used for training the remaining error increases with306

increasing Cr, but it stays well below the data uncertainty. Applying the networks to307

the data retained for validation the error is about twice the data uncertainty, except for308

validation case six where it is about the same size. The random choice of retained data309

obviously leaves a better coverage of known input/output situations for training than the310

continuous segments. The closer unknown situations are to the ones used for training311

the better a neural network performs there. Anyhow, although Cr values with minimum312

error can be identified in each case (marked by the stars on the x-axis) there is no clear313

dependence. Thus we retrained the networks using the complete data with these Cr314

values that give minimum error. That are: 1., 2.5, 5., 7.5, 300 for the CSIRO-training;315

0., 1., 2.5, 7.5, 250. for the GFZ-training and 0., 1., 5., 200., 500. for the combined316

CSIRO+GFZ-training. This gives fifteen versions of the TGRMnet. This procedure is317

certainly good enough to estimate reasonable Cr values, but whether it is sufficient to318

estimate the uncertaincy of the final TGRMnet’s is under debate, because they can no319

longer be validated against independent data. However, one may assess their errors from320

the validation cases. By using the ensemble of differently trained networks and taking321

the mean of the output afterwards we follow the recommendation of e.g. Tangang et al.322

[1998] to improve the quality.323

All fifteen versions of the TGRMnet in combination with all ten tide gauge reconstruc-324

tions (Tab. 2) are used to estimate the regional mean sea level derivatives (monthly325

differences) for the time 1900-2006. This results in an ensemble containing 150 members.326
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Each member is then converted to regional MSLA by temporal integration, i.e. building327

the cumulative sum. An offset is added to all these regional MSLA curves to obtain a328

zero temporal mean in 1993-2005.329

Figure 9 shows the resulting MSLA for the sub-ensembles of the CSIRO and GFZ330

trained networks, i.e. taking the results from all Cr values and from all tide gauge re-331

constructions (=50 members), compared to the corresponding training data. The global332

ocean and the North Pacific are taken as examples. The training data are well reproduced333

by the TGRMnet although there are deviations noticeable especially for the global ocean334

(Fig. 9a). These are mainly caused by the apparent differences in the overall trends of335

the TGRMnet and the training data. However, the differences are smaller than those336

between the observations (Tab. 1, column diff ). Furthermore, the maximum deviations337

from the corresponding data stay at or even below the the standard deviation of the dif-338

ference between the two training data sets. Similar results are obtained for the regions339

not shown. Good agreement with the training data we find also for the amplitude and340

phase of the annual cycle. After high-pass filtering the MSLA timeseries (using a 1.5 years341

cut-off frequency) the amplitude and phase are estimated by fitting an annual sinusoid.342

To get an idea about its temporal variability this is done in a moving five year window.343

The agreement is demonstrated in Fig. 10 for the global ocean. As good or even better344

results are found for the single ocean basins.345

5.2. Discussion

First we looked at the dependence of the regional MSLA on the dataset chosen for train-346

ing (Fig. 11). The interannual to multi-decadal variablity shows only minor dependence347

on the training data. The influence of the data is mainly noticeable in the mean trends348
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given in Tab. 3 (ensemble means and standard deviations). At the first glance there349

seems to be no systematic behavior for the difference between the regional MSLA trends350

derived from the GFZ and the CSIRO trained networks. More detailed inspection shows351

that it depends on the difference in the trends of the data during the training period. An352

unforeseen result was obtained for the global MSLA, the North Pacific, the North Atlantic353

and the South Atlantic (Fig. 11a, d, g and i respectively): the regional MSLA curves from354

the CSIRO+GFZ training does not inevitably stay between the curves obtained from the355

GFZ and the CSIRO training for the whole time. The reason for this is not clear yet.356

In the following we will discuss only the mean sea level curves estimated from the357

complete 150 member ensemble. On longer timescales (after low-pass filtering using a358

1.5 year cut-off frequency) the global MSLA (Fig. 11a) exhibits only little variations as359

compared to the regional MSLA. Our global MSLA shows more similarities to the one of360

Holgate [2007], estimated from only a small number of tide gauges, than to the results361

obtained by CW06 or J06. The largest deviations of our global MSLA from CW06 or J06362

appear prior to 1950. For this period the amount of available information from tide gauges363

is drastically reduced as compared to the second half of the century. Thus these differences364

in the global MSLA are obviously due to the different treatment of this situation.365

In any case, our estimate of the global mean sea level trend (1.56±0.25 mm/yr,366

Tab. 3) fits well to the 20th century sea level rise estimates of Hagedoorn et al.367

[2007] (1.46±0.2 mm/yr, using GIA corrected tide gauges) or Wöppelmann et al. [2009]368

(1.61±0.19 mm/yr, using GPS corrected tide gauges). These values are in between369

an earlier estimate of Wöppelmann et al. [2007] (1.31±0.3 mm/yr), Holgate [2007]370

(1.74±0.16 mm/yr) and the ones obtained by CW06 and J06, 1.7±0.3 mm/yr and371
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1.8 mm/yr, respectively, wherein our estimate using only the GFZ trained networks372

(1.39±0.30 mm/yr) corresponds better to the estimate of Wöppelmann et al. [2007] while373

the trend resulting from the CSIRO training (1.68±0.16 mm/yr) fits better to CW06.374

Within this range of values the estimate of J06 might be seen as an upper limit. For the375

period 1993–2002 Holgate and Woodworth [2004] found that during the 1990s the global376

coastal mean sea level derived from tide gauges increased faster than the global average377

sea level from altimetry. This finding was confirmed by White et al. [2005] for the 1990s378

and around 1970 based on the sea level reconstructions of Church et al. [2004]. However,379

White et al. [2005] did not find any significant difference between the globally averaged380

and the coastal sea level trend when looking at their full reconstruction period, 1950–2000.381

Compared to the global mean the regional sea levels within the single ocean basins382

behave quite differently: In the Indian Ocean the tropical MSLA (Fig. 11b) is domi-383

nated by a multi-decadal oscillation with a rather positive mean trend (0.65±0.81 mm/yr,384

Tab. 3) and negative acceleration (–0.0094±0.0105 mm/yr2, Tab. 4) while it is the385

other way round for the Southern Indian Ocean (Fig. 11c) that shows a sea level fall (–386

0.59±0.72 mm/yr) and positive acceleration (0.0064±0.0112 mm/yr2). In contrast to this387

difference in the very long timescale the shorter scales in these basins are well correlated.388

After eliminating the annual cycle and subtracting the corresponding quadratic regression389

lines from the sea level curves (Fig. 12a) the correlation is 0.6, with the Southern Indian390

Ocean leading by 14 months (Note: all correlations given hereafter are significant at the391

99% level).392

For the Pacific Ocean (Fig. 11d-f) the variations in the single sub-basins are even more393

similar. All basins show a distinct linear sea level rise with the highest rate in the northern394
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basin (3.25±1.22 mm/yr) and the lowest in the southern (1.23±0.66 mm/yr). None of395

the Pacific basins show significant acceleration. After subtracting the quadratic regression396

lines (Fig. 12b) we find a dominant oscillation with a 70 year period (period estimated via397

auto-correlation) for the North as well as for the tropical Pacific. The correlation among398

each other is 0.8 with the tropical Pacific leading by about 44 years, i.e. these basins399

are approximately in anti-phase. Lower (absolute) correlations are found for these basins400

with the South Pacific: 0.6 for the North (South Pacific leads by ∼43 year) and –0.7 for401

the tropical Pacific (South Pacific leads by ∼48 years). These reduced correlations are402

caused by the relatively strong oscillation on shorter timescales (∼25yr) visible in the403

South Pacific.404

In the Atlantic Ocean (Fig. 11g-i) the sea level changes are dominated by a rise405

in the northern basin (3.70±1.11 mm/yr) and in the tropics (2.51±0.73 mm/yr) while406

there is no trend at all in the southern basin during the full reconstruction period407

(0.00±0.77 mm/yr). Significant acceleration of sea level rise is only found for the tropical408

Atlantic (0.0115±0.0084 mm/yr2) and for the South Atlantic (0.0233±0.0127 mm/yr2).409

After subtracting the quadratic regression all Atlantic basins (Fig. 12c) are dominated410

by multi-decadal variations, that exhibit main periods of approximately 23 and 65 years.411

Thereby the 23 year period is most pronounced in the North Atlantic while the 65 year412

period is mainly noticeable in the South. Consequently we find strong cross-correlations413

among the single ocean basins in the Atlantic too: –0.69 between the tropical Atlantic414

and the South Atlantic (tropical Atlantic leads by ∼23 years), 0.66 between the tropi-415

cal Atlantic and the North Atlantic (North Atlantic leads by ∼44 years) as well as 0.65416

between the North Atlantic and the South Atlantic (North Atlantic leads by ∼38 years).417
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Beside these interbasin cross-correlations we also find good lag correlations at long418

timescales between the regional MSLA’s and external indices, especially the Pacific419

Decadal Oscillation (PDO), that is the leading principal component of the monthly sea420

surface temperature (SST) anomalies in the North Pacific Ocean poleward of 20◦N [Man-421

tua et al., 1997], and the Southern Annular Mode Index (SAM), which is defined as the422

difference in the normalized monthly zonal mean sea level pressure between 40◦S and 70◦S423

[Nan and Li, 2003]. The correlations with the PDO are e.g. -0.6 for the North Pacific,424

that leads the PDO by ∼9 years, and -0.5 for the tropical Pacific, that lags by 26 years.425

Similar phase lags but with reduced correlations are obtained using the Interdecadal Pa-426

cific Oscillation Index (IPO; Parker et al. [2007]). Best correlations with the SAM (∼0.5)427

are found for the southern hemisphere ocean basins and for the global ocean. We also see428

similarities with the multidecadal SST modes derived by Mestas-Nuñez and Enfield [1999]429

especially for the North Atlantic (their Fig. 1) but also for the tropical Pacific (their Fig.430

4) and the North Pacific (their Fig. 5). All this indicates the importance of the changes431

in ocean temperature as well as in ocean circulation (wind forcing) on the regional sea432

level. However, these are not the only influences. On regional scale the halosteric effects433

cannot be neglected (e.g. Wenzel and Schröter [2007]).434

Finally, we look at the annual cycle of the regional MSLA. The good agreement between435

the TGRMnet results and the corresponding training data (Fig. 10) encourages us to look436

at the whole period from 1900 onward that is displayed in Fig. 13. The amplitudes of437

the annual cycle (Fig. 13a, b and c) show substantial temporal variations in the single438

ocean basins in dependence of its mean value. In contrast to this the phases (Fig. 13d,439

e and f) appear to be quite constant except for the tropical regions. Here the phase may440
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vary by up to 4 month (e.g tropical Pacific). The highest annual amplitudes are found for441

the northern hemisphere basins (3.30±0.24 cm for the North Atlantic and 2.67±0.20 cm442

for the North Pacific) with the maximum sea level appearing in late September, early443

October. Amongst the southern ocean basins the annual amplitudes appear to be more444

similar (1.33±0.18 cm, 1.18±0.10 cm and 1.21±0.12 cm for the South Atlantic, Pacific and445

Indian Ocean, respectively) with the maximum sea level at the end of the austral summer.446

Furthermore we find phase differences among the southern basins: the South Pacific is447

lagging the Southern Indian Ocean and the South Atlantic by about 0.7 month and448

1.1 month, respectively. The lowest annual amplitudes are found for the tropical basins449

(0.56±0.11 cm, 0.18±0.08 cm and 0.45±0.11 cm for the tropical Atlantic, Pacific and450

Indian Ocean, respectively) and they are even lower for the global ocean (0.24±0.03 cm).451

6. Summary and Conclusions

In this paper we demonstrated the feasibility and usefulness of neural networks within452

two different applications: filling data gaps in the tide gauge timeseries and in estimating453

the evolution of regional mean sea levels from these tide gauge data. First some general454

remarks about the networks: they are easy to use and appear to be an appropriate tool455

for the tasks in this paper, even though they have their disadvantages. In unknown456

environment, i.e. outside the training period, the behaviour of a neural network strongly457

depends on the way it has been trained, to what extent it has learned to generalize. This458

has been demonstrated in connection with both applications, the gap filling (section 4) as459

well as the reconstruction of the regional sea levels (section 5.1). To improve the quality of460

the network output it is recommended to use an ensemble of differently trained networks461

(e.g. Tangang et al. [1998]) and to take the mean afterwards. Further but usually minor462
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drawbacks are: neural networks are not very flexible, i.e. once they are trained the user463

is fixed to the chosen input / output configuration, and it is hard to impossible to learn464

from the network about e.g. the underlying mathematics or physics. For instance, one465

example for the latter is related to the GIA correction of the tide gauges. Although we466

applied this correction, it was not really necessary when estimating the regional MSLA467

from tide gauges. All computations are done in the space of temporal derivatives, i.e.468

monthly differences, and any additive correction to the input (tide gauge) signals needed,469

whether it stems from the global isostatic adjustment or from any other secular vertical470

land movement, would appear as a contribution to the bias of the hidden neurons. On471

the one hand this is an advantage of using the neural network, but on the other hand it is472

impossible to extract details about the correction made for a single tide gauge. Anyhow,473

another great advantage of the neural network is, that there is no need to determine the474

weighting of the individual tide gauges. The network learns during the training which475

weights are appropriate. It also learns which tide gauge is most appropriate for which476

ocean basin.477

Information from 56 selected tide gauges are used to estimate the regional MSLA for478

the years 1900 to 2006. Although every tide gauge has more then 50 years of data, many479

values are missing, especially prior to 1950 (Fig. 3). This rapidly decreasing amount480

of direct information from the tide gauges back in time would cause problems for any481

method applied to estimate the mean sea level and result in increasing errors. In order482

to reduce these errors we first filled the data gaps in a reasonable way by neural networks483

that simulate the temporal evolution of all selected tide gauges at once by integrating484

either forward or backward in time.485
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The reconstructed regional MSLA of the single ocean basins significantly differ in the486

long term behaviour that can be approximated by quadratic regression (see Tab. 3 and 4).487

While most of the basins show a sea level rise of different strength there is a mean sea level488

fall in the Southern Indian Ocean and no significant trend can be detected in the tropical489

Indian and the South Atlantic. Nevertheless, the South Atlantic as well as the tropical490

Atlantic are the only basins with significant acceleration. For the global mean sea level491

we estimate a trend of +1.56±0.25 mm/yr. This value fits well to the earlier estimates492

of CW06 (1.7±0.3 mm/yr), J06 (1.8 mm/yr), Hagedoorn et al. [2007] (1.46±0.2 mm/yr)493

or Wöppelmann et al. [2009] (1.61±0.19 mm/yr). In contrast to CW06 or J06 we did494

not find any significant acceleration in sea level rise. This is obviously due to the missing495

depression in sea level prior to 1950 that is the main difference of our result to CW06 and496

J06 (Fig. 11a).497

On medium timescales, i.e. after eliminating the annual cycle and subtracting the498

quadratic regression, the estimated regional mean sea levels are dominated by oscillations499

with periods of about 50 to 75 years and ∼25 years (the latter especially in the South500

Pacific). Consequently there are high phase lagged correlations among the basins. Good501

correlations also exist with external indices like the PDO and SAM. Furthermore, the502

timing of the annual maximum in the northern and southern ocean basins at the end503

of their hemispherical summer indicates the importance of the thermosteric contribution504

to the (seasonal) sea level variation. This lets us conclude that the estimated variations505

show some realism. They are not only due to steric effects and/or the regional freshwater506

balance. There must also be periodic mass exchange between the single basins not only507

at seasonal periods [Stammer et al., 1996; Ponte, 1999] but also on longer time scales as508
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proposed e.g. by Stepanov and Hughes [2006] or Wenzel and Schröter [2007]. Anyhow,509

to figure this out in more detail is beyond the scope of this paper and information about510

the steric contribution during the whole reconstruction period would be needed at least.511
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Table 1. Temporal RMS of the monthly differences for the regional mean sea level [cm/month]

derived from the GFZ and the CSIRO altimeter products. mean = (GFZ+CSIRO)/2, diff =

(CSIRO-GFZ) and ratio = diff / mean. See Fig. 2 for regions.

dataset / signal RMS [cm/month]
region GFZ CSIRO mean diff ratio

trop. Indian 0.310 0.248 0.280 0.175 0.63
South 0.493 0.504 0.499 0.162 0.32
North 1.033 1.037 1.035 0.170 0.16
trop. Pacific 0.162 0.159 0.161 0.073 0.45

South 0.474 0.455 0.464 0.094 0.20
North 1.250 1.240 1.245 0.171 0.14
trop. Atlantic 0.272 0.243 0.258 0.092 0.36

South 0.529 0.535 0.532 0.101 0.19
global ocean 0.108 0.118 0.113 0.054 0.48

Table 2. Methods used to fill data gaps in tide gauge records (see text for details)

acronym method
1: mac mean annual cycle (MAC)
2: eof EOF reconstruction (EOFR)
3: fc/recurr FCnet, recurrent
4: fc/mac fill FCnet with input gaps filled by MAC
5: fc/eof fill FCnet with input gaps filled by EOFR
6: bc/recurr BCnet, recurrent
7: bc/mac fill BCnet with input gaps filled by MAC
8: bc/eof fill BCnet with input gaps filled by EOFR
9: fc/bc best best of 3 to 8 (minimal fore-/backcast error at known values)

10: fc/bc mean error weighted mean of 3 to 8
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Table 3. The effect of the choice of training data set on the regional mean sea level trend for the

period 1900–2006. Given are the ensemble mean and standard deviation of the trends resulting

from all Cr training values and applying the net to all tide gauge reconstructions (50 ensemble

members). For the column mean the complete ensemble of trends (150 members) is taken into

account. See Fig. 2 for regions.

Regional mean sea level trend , period: 1900–2006 [mm/yr]
training dataset

region GFZ CSIRO CSIRO+GFZ mean
trop. Indian 1.30±0.55 0.21±0.79 0.45±0.63 0.65±0.81

South -0.69±0.51 -0.85±0.77 -0.23±0.71 -0.59±0.72
North 2.68±1.12 3.62±1.14 3.44±1.20 3.25±1.22
trop. Pacific 1.47±0.44 2.64±0.35 1.55±0.31 1.89±0.65

South 1.43±0.57 0.85±0.60 1.41±0.65 1.23±0.66
North 3.25±1.01 3.86±0.89 4.01±1.27 3.70±1.11
trop. Atlantic 2.25±0.55 3.11±0.64 2.17±0.58 2.51±0.73

South -0.35±0.80 0.26±0.61 0.10±0.77 0.00±0.77
global ocean 1.39±0.30 1.68±0.16 1.61±0.18 1.56±0.25

Table 4. The effect of the choice of training data set on the regional mean sea level accel-

eration for the period 1900–2006. Given are the ensemble mean and standard deviation of the

accelerations resulting from all Cr training values and applying the net to all tide gauge recon-

structions (50 ensemble members). For the column mean the complete ensemble of accelerations

(150 members) is taken into account. See Fig. 2 for regions.

Regional mean sea level acceleration , period: 1900–2006 [mm/yr2]
training dataset

region GFZ CSIRO CSIRO+GFZ mean
trop. Indian -0.0135±0.0088 -0.0015±0.0101 -0.0131±0.0078 -0.0094±0.0105

South -0.0025±0.0092 0.0147±0.0088 0.0071±0.0084 0.0064±0.0112
North -0.0007±0.0211 -0.0186±0.0192 -0.0150±0.0183 -0.0114±0.0209
trop. Pacific -0.0047±0.0079 -0.0050±0.0075 -0.0069±0.0072 -0.0056±0.0076

South 0.0004±0.0123 0.0036±0.0085 0.0023±0.0113 0.0021±0.0108
North 0.0197±0.0221 0.0001±0.0185 0.0085±0.0203 0.0094±0.0218
trop. Atlantic 0.0148±0.0097 0.0105±0.0071 0.0091±0.0072 0.0115±0.0084

South 0.0203±0.0136 0.0247±0.0127 0.0249±0.0114 0.0233±0.0127
global ocean 0.0023±0.0049 0.0018±0.0033 0.0005±0.0044 0.0016±0.0043
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Figure captions:634

Figure 1. Layout of a backpropagation network (BPN) enriched by direct connections between635

the input and the output layer (indicated by the blue lines from the right).636

Figure 2. The positions of the 56 selected tide gauges are marked by the red circles. The amount637

of monthly data available at these positions is indicated by the length of the corresponding vertical638

bars. The color shaded areas indicate the regions of interest in this paper.639

Figure 3. Number of tide gauges with monthly data available.640

Figure 4. Comparing the regional mean sea level anomaly (monthly differences) from the CSIRO641

(red) and the GFZ (green) dataset for (a) the tropical Pacific (15◦S–15◦N) and (b) the global642

ocean.643

Figure 5. RMS error of the resulting recurrent backcast as compared with existing tide gauge644

values in dependence of the chosen ridge regression weight Cr (4). At each timestep the RMS645

values are normalized with the standard deviation of the corresponding known values, i.e. Y =646

[

∑

(ynet
k − ydat

k )2/
∑

(ydat
k − ydat)2

]

1/2

. For better readability all curve are filtered to exclude the647

annual cycle.648

Figure 6. Example for the resulting gap filling at the tide gauge Kwajalein (8.73◦N 167.73◦E,649

code 720011) using cases 1 to 8 from Table 2. The original data are shown in black.650

Figure 7. RMS error of the resulting forecast (a) and backcast (b) as compared with existing651

tide gauge values. The error resulting from comparing the tide gauge data to the mean annual652

cycle are included in (a). The RMS values are normalized and filtered as in Fig. 5653

Figure 8. Data part Em of the TGRMnet costfunction (5) converted to a mean RMS value in654

dependence of the chosen Cr value and the six validation cases train 1 to train 6. The periods655

with data not used for training in cases train 1 to 5 are marked on the uppermost axis. For train656
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6 the retained data are chosen randomly from the whole period. Straight lines represent the cost657

from the training data and the dashed lines from the retained data. For comparison the data658

RMS and the data error (from Tab. 1) are included.659

Figure 9. Reconstructed MSLA for the global ocean (a) and the North Pacific (b) resulting660

from the TGRMnet trained with CSIRO and with GFZ data compared to the training data (thin661

lines with marks). The mean from all Cr values and all tide gauge gap filling cases (Table 2) are662

shown. The CSIRO curve are offset by an arbitrary value.663

Figure 10. Amplitude (a) and phase (b) of the annual cycle for the global MSLA from the664

CSIRO and the GFZ trained TGRMnet compared to the corresponding altimetric data (thin665

lines with marks).666

Figure 11. Regional MSLA for the different ocean regions (color shaded areas in Fig. 2) in667

dependence of the training data chosen for the network training. For each training dataset668

the mean of the corresponding regional MSLA sub-ensemble (5 Cr values times 10 tide gauge669

reconstructions) is shown. The black line and grey shading give the mean and standard deviation,670

respectively, of the complete ensemble (150 members). For the global ocean (a) the results from671

Church and White [2006] and from Jevrejeva et al. [2006] are included for comparison. NOTE:672

All curves are filtered before plotting to eliminate the annual cycle!673

Figure 12. Ensemble mean regional sea level anomaly for the different ocean regions after674

removing the annual cycle and the quadratic regression. The global ocean and the Indian are675

shown in (a), the Pacific in (b) and the Atlantic in (c).676

Figure 13. Amplitude (a, b, c) and phase (d, e, f) of the annual cycle for the regional MSLA:677

global ocean and Indian Ocean are given in (a) and (d), the Pacific is in (b) and (e) and the678

Atlantic in (c) and (f). Amplitude and phase are estimated by fitting an annual period sinusoid679
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to the high-passed filtered ensemble mean MSLA curves (150 members) within a moving 5 year680

window, wherein the corresponding values are given at its center. Phases are given as date of681

maximum value.682
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