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Information on interaction of C and N at the cellular level is lacking for ecologically relevant phytoplankton
species. We examined the effects of NO3 availability on C and N fluxes in the widely distributed marine
coccolithophore Emiliania huxleyi. Cells were cultured at replete (~280 uM) and ambient (~10 uM) NO3, the
latter representing a typical surface water nitrate concentration of the North Atlantic Ocean during spring. While
growth rates and C to N ratios were not altered by the NO3 availability, organic C and N as well as inorganic

K ds: . . . .

CZ{S;V; cratsi on C quotas were reduced under ambient NO3. Growth at ambient NO3 caused a higher proportion of fixed C to be
Emiliania huxleyi allocated to lipids relative to carbohydrates and especially to proteins. Ambient NO3-grown cells showed lower
Nitrate Vpmax Of nitrate reductase (NR) and nitrite reductase (NiR) (ambient/replete: VX, = 0.64/1.09 fmol min™! cell’’;

VNR = 0.3/0.56 fmol min™* cell'"), whereas they had higher V., of glutamine synthetase (GS) and glutamate
synthase (GOGAT) (ambient/replete: V5, = 0.57/0.38 fmol min! cell!; VS =3.91/2.87 fmol min™! cell™?). In
these cells, photosynthetic O, evolution and HCO3 uptake rates were lower as compared to replete NO3-grown
cells (ambient/replete: V&, = 6.5/12.9 fmol min™! cell™!; VHSY: = 2.8/8.1 fmol min™! cell™!). The CO, uptake and
the maximum light use efficiency of photosynthesis (o) were unaffected by the concentration of NO3. The
affinities of NR for NO3, of NiR for NO3, of GS for Glu, and of the inorganic carbon uptake system for HCO3 were
higher under ambient NO3 (ambient/replete: KNR=0.074/0.099 mM; KNR=1.69/3.14 mM; K$ =1.62/
3.81 mM; KH% = 195/524 uM). Our data suggest that a concerted regulation of the intracellular CO, and
NO3 concentrations is required to maintain balanced C and N metabolic fluxes resulting in a constant C to N
ratio.

Nitrate assimilation
Photosynthesis

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

Assimilation of C and N consume the largest part of ATP and
reductants generated in the cell (Huppe and Turpin, 1994). Although
competing for energy, the acquisition and metabolism of C and N must
be tightly coupled. This is due to the fact that the boundaries of the Cto N
ratio are defined by the stoichiometry of key components of the cell
machinery, such as amino acids, proteins, nucleic acids and chlorophylls
(Turpin, 1991 and references therein). The relative size of the different
pools, within the above mentioned boundaries, is determined by the N
availability relative to C in the environment (Giordano et al., 2001;
Palmucci and Giordano, submitted for publication).

Much information on NO3 assimilation is available for model
microalgae such as Chlamydomonas reinhardtii (Fernandez and
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Galvan, 2008 and references therein), but very little is known for
ecologically relevant phytoplankton species. In this study, we focused
on the widely distributed coccolithophore Emiliania huxleyi (Winter
et al., 1994). This organism provides an important contribution to the
marine primary production and it is considered to be one of the major
producers of calcite in the ocean (Baumann et al., 2004). Very limited
data has been published on the NO3 acquisition by E. huxleyi (Page et
al.,, 1999; Riegman et al. 2000). Some data are available for E. huxleyi
nitrate reductase (NR), which shows some unique properties
compared to the NR proteins of other microalgae (Iwamoto and
Shiraiwa, 2003). Native E. huxleyi NR has an overall mass of 514 kD
and is composed of six 85 kD homologous subunits (Iwamoto and
Shiraiwa, 2003). The K;,, for NADH and NOs of purified NR were 40 pM
and 104 pMV, respectively (Iwamoto and Shiraiwa, 2003). No infor-
mation is available for E. huxleyi nitrite reductase (NiR), the enzyme
responsible for the subsequent reduction of NO5 to NHZ. The NH{
generated thanks to the catalysis by NiR is incorporated into amino
acids via the glutamine synthetase/ glutamate synthase (GS/GOGAT)
cycle. Two different GS isoforms of the enzyme, one located in the
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cytosol (GS;), the other located in the chloroplast (GS;), have been
partially characterized in E. huxleyi by Maurin and Le Gal (1997a).
Both isoforms are homohexamers with molecular masses of 402 kD
for GS; and 501 kD for GS,, whereas the molecular masses of the
subunits of GS; and GS, were estimated to be 61 and 70 kD,
respectively (Maurin and Le Gal, 1997a). The same authors reported
that the K, for hydroxylamine (NH,OH) was approximately 3 mM for
both GS isoforms, but GS, had higher affinity for Gln than GS;. Maurin
and Le Gal (1997b) also showed that E. huxleyi total GS activity was
stimulated by decreasing NO3 availability and the affinity of GS for
NH4 was higher in N limited cells. In contrast to GS, no data is
available in the literature for E. huxleyi GOGAT. The synthesis of amino
acids via the GS/GOGAT system typically requires C skeletons from the
TCA cycle (Elfiri and Turpin, 1986; Weger and Turpin, 1989).

Almost the entire C contained in macromolecular compounds such
as proteins and lipids is fixed by Rubisco. Since Rubisco is
characterized by a low affinity for CO,, microalgae cells have to invest
a substantial amount of energy to enhance CO, concentration at the
carboxylation site of Rubisco and avoid inorganic carbon (Ci)
limitation (Badger et al., 1998). Therefore, cells have developed
biophysical and, possibly, biochemical carbon concentrating mechan-
isms (CCMs) that operate to increase the availability of CO, for
Rubisco (Giordano et al., 2005a and references therein). While it has
been shown that the photosynthetic C acquisition of E. huxleyi was
regulated in response to light and CO, (Rost et al., 2003; Rost et al.,
2006; Trimborn et al., 2007), the effect of N availability on the CCM
has not been studied in this species. The CCMs have been suggested to
improve N-use efficiency in microalgae, mainly by increasing the
achieved rate of CO, fixation per unit N in Rubisco (Raven, 1997,
Beardall et al., 1998), thereby controlling the cellular elemental ratios,
specifically the C to N ratio (Beardall and Giordano, 2002).

In this study, we intend to gain a better understanding of the
regulation of intracellular processes that define the C to N ratio in a
common phytoplankton cell. With this aim in mind, we investigated
the regulation of cellular C and N fluxes and the relative composition
of macromolecular pools in response to NO3 availability in E. huxleyi.

2. Materials and methods
2.1. Culture conditions

The coccolith-bearing strain B 92/11 (J. C. Green 1990, Plymouth
Marine Laboratory) of E. huxleyi was grown in semi continuous
cultures in 10 L polycarbonate flasks. Experiments were carried out
under a 16:8 h light:dark (LD) cycle at a constant temperature of
15 °C. The applied mean photon flux density was 240 umol photons
m2s1. The culture flasks were aerated with air containing a CO,
partial pressure (pCO,) of 37.5 Pa and placed on a shaker, to keep the
cells in suspension. The growth medium was prepared from sterile-
filtered (0.2 um pore-size cellulose-acetate filters, Sartorius) natural
seawater. Nutrient additions, with the exception of iron and NO3,
were made according to the f/2 recipe (Guillard and Ryther, 1962).
The iron concentration in the culture medium was 8 nM and was
sufficient to cover the iron need of the relative low cell densities in our
experiment, as determined in preliminary experiments. Cells were
grown in a semi-continuous mode which allowed for relatively
constant growth conditions (LaRoche et al., 2010). Over the course of
the experiment, cell densities were kept between 3 * 10* cells mL
(after dilution) and 3 * 10° cells mL™! (before dilution). The initial NO3
concentrations in the growth media were ca. 280 UM in the replete
and ca. 10 pM in the ambient NO3 treatment (Fig. 1a). Generally, cells
were harvested at a density of 3 * 10° cells mL™. Cells grown at the
ambient NO3 concentration were harvested before the onset of
growth limitation (Fig. 1b). Growth rates and cell volume were
calculated from daily cell counts by means of a cell counter (COULTER

400
22 a
= 3 3 3
= 300
g W\/
= 0.3 0.3 0.3
£ 2001
=1
[}
Q
c
2 100 A
1
™
3 3 3 3
= 04 o " 5 — "
0.3 0.3 0.3
0 2 4 6 8 10 12
Time (d)
2.0
‘Tﬂ 1.5 1
=
2
® 10
£
B
(=]
—
O 0.5
0.0 . , , . . .
0 1 2 3 4 5 6 7
Cell density

(cells mL™1) *10°

Fig. 1. The variability of NO3 concentrations over the course of the experiment (cell
densities are shown with numbers in units of 10° cells mL™!) (1a) and the relationship
between growth rates and cell densities in cells grown at replete (®) and ambient (O)
NO3 (1b). Incremental growth rates were calculated on the basis of daily cell counts.
Values represent an average of triplicates (£ SD).

MULTISIZER 3, Beckmann). Before measurements, cells were accli-
mated to the experimental conditions for at least 14 d.

2.2. Elemental composition and coccolith morphology

Samples for total particulate C (TPC), particulate organic C (POC)
and N (PON) were filtered on precombusted (500 °C, 12 h) filters
(nominal pore size 0.6 um GFF filters, Whatman) and stored in
precombusted (500 °C, 12 h) petri-dishes at -20 °C. Filters for POC
were treated before analysis with 200 pl HCI (0.1 M) to remove all
inorganic C. TPC, POC and PON samples were measured on an
elemental analyzer mass spectrometer (ANCA-SL 2020, Sercon).
Values for particulate inorganic carbon (PIC) were calculated as the
difference between TPC and POC. Regarding the morphology of
coccoliths, samples for scanning electron microscope analysis were
filtered on polycarbonate filters (0.2 um pore size, Whatman),
dehydrated in a drying cabinet at 60 °C for 24 hours, then sputter-
coated with gold-palladium. Imaging was performed with a digital
scanning field-emission electron microscope (XL-30, Philips). Four
categories were used to describe the morphology of E. huxleyi
coccoliths: ‘normal’, ‘malformed’, ‘incomplete’, and ‘incomplete and
malformed’. An average of approx. 350 coccoliths was analyzed per
sample.

2.3. Macromolecular pools
The relative amounts of macromolecular pools were determined

via Fourier Transform Infrared (FTIR) spectroscopy analysis. Cells for
FTIR spectroscopy analyses were harvested by centrifugation at
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1,500xg for 15 minutes and washed twice with an isoosmotic
solution of ammonium formate, to minimize the carry-over of IR
absorbing medium components. Cells were resuspended in ammoni-
um to obtain the concentration that was preliminary determined to
afford the best signal to noise ratio. Aliquotes of 50 pL of these
suspensions were deposited on silica windows (Crystran Ltd., Poole,
UK) and desiccated in an oven at 60 °C for at least 3 hours. Silica
windows on which 50 pL of ammonium formate solution were
deposited were treated as the samples and used as blanks (Dome-
nighini and Giordano, 2009).

FTIR spectra were acquired with a Tensor 27 FTIR spectrometer
(Bruker Optics, Ettlingen, Germany) as described in Domenighini and
Giordano (2009). All spectra were baseline corrected prior to any
analysis by the application of the Rubberband correction function of
the OPUS 6.5 software (Bruker Optics, Ettlingen, Germany); they
were then normalized to the amide I band (~1650 cm™'). Bands were
assigned to the macromolecular pools according to Giordano et al.
(2001). The sum of the integrals of the absorption bands at
~1160 cm™!, ~1080 cm™ and ~1030 cm™! was used as a proxy for
carbohydrates. The amide I peak (1650 cm™) was used as an
indicator of protein relative abundance. The ~1740 cm™' feature
was used for lipids. Relative ratios of protein, carbohydrates and
lipids were calculated from the bands’ integrals, using the OPUS 6.5
software (Bruker Optik GmbH, Ettlingen, Germany). The calculation
of the band integrals was performed after deconvolution of the
spectrum from 1800 cm™! to 1000 cm™! using the Peak fit function of
OPUS 6.5; to minimize subjective assessments, the main peaks on
which deconvolution was based were identified by the application to
each spectrum of a second derivative, with 9 smoothing points.

2.4. Enzymes of nitrate assimilation

NR activity in phytoplankton often exhibit diurnal variations when
grown in a LD cycle. To allow a direct comparison of enzyme activities
between cells grown under replete and ambient NO3 concentrations,
the samples were taken at the same time of day for both NO3 treatments.
The cells were harvested during the fourth hour of the photoperiod.
Cells were concentrated by centrifugation at 2,772x g for 6 min at 4 °C
(Megafuge 1.0 R, Heraeus), frozen in liquid N, and stored at - 80 °C. The
cells were gently disrupted at 4 °C, using a hand operated glass
homogenizer (Wheatman). The extracts were then centrifuged at
16,060x g for 15 min at 4 °C (Biofuge fresco, Heraeus), in order to spin
down the calcite. The supernatant was centrifuged again at 61,740 g for
20 min at4 °C (OPTIMA™ LE-80 K Ultracentrifuge, Beckmann) to get rid
most of the cell membrane fractions. The resulting supernatant was
used to study enzyme kinetics and measure total protein amount. The
protein amount in extracts was measured according to the method of
Bradford (1976), using BSA as standard. All solutions were made in
Milli-Q H,0 (Milli-Q academic A10, Millipore) and the chemicals were
purchased by Sigma-Aldrich (St. Louis, MO, USA).

2.4.1. NR activity

NR activity was determined by NO3 reduction to NO3 and
subsequent colorimetric measurement of the NO3 produced according
to the method described by Giordano et al. (2005b). The extraction
buffer for NR (buffer A) contained 50 mM HEPES (pH 7.5), 1 mM
EDTA, 1 mM dithiothreitol, 0.1% Triton X-100 (v/v), 0.3% polyvinyl-
polypyrrolidone (w/v) and 10 mM MgSO,4. The amount of NO3 was
measured according to the method of Snell and Snell (1949) in a
microplate reader (SPECTRAFLUOR, Tecan) at 535 nm. Controls
included the same reaction mixture, but extraction buffer was used
instead of extract. The amount of NO5 in the tubes was quantified
according to a NO3 standard curve from 0 to 40 puM. Nitrate
concentrations from 0.005 to 20 mM were used for the determination
of NR kinetic parameters.

2.4.2. NiR activity

Activities of NiR were determined using an assay described by
Wray and Filner (1970), which is based on the colorimetric
measurement of the NO3 left in the reaction mixture. Buffer A was
used for NiR extraction and the reaction was run in open tubes. The
assay mixture contained in a total volume of 500 pL: 100 pL of 150 mM
phosphate buffer (pH 7.5), 20 pL Milli-Q H,0, 250 pL of 32 mM NaNO,,
5L of a 100 mM methyl viologen solution, 50 L of extract and 75 pL of
fresh Na,S,0,4 (25 mg mL™! Na,S,0,4 in 0.29 M NaHCOs) solution. This
mixture was incubated at 30 °C for 15 min. The reaction was initiated
by adding the sodium dithionite solution. The reaction was stopped by
vigorous shaking until the dithionite was completely oxidized and the
solution turned from dark blue to colourless. Controls included the
same reaction mixture, but extraction buffer was used instead of
extract. The amount of NO> was measured in a microplate reader
(SPECTRAFLUOR, Tecan) at 535 nm according to the method of Snell
and Snell (1949) with a standard curve from 0 to 40 uM NO3. Nitrite
concentrations from 0.25 to 16 mM were used in the assay, in order to
determine the NiR kinetic parameters.

2.4.3. GS activity

GS activity was determined from the formation of L-Glu +y-
monohydroxamate as described by O'Neal and Joy (1973), and Oaks et
al (1980). The extraction buffer for GS (buffer B) contained 50 mM HEPES
(pH 7.5), 1 mM EDTA, 2 mM dithiothreitol, 0.1% Triton X-100 (v/v), 0.3%
polyvinylpolypyrrolidone (w/v) and 10 mM MgSO,. The extracts were
desalted by applying them on a Sephadex column (PD-10 DESALTING
COLUMN, GE Healthcare, Uppsala, Sweden). The extracts were eluted
using 50 mM HEPES (pH 7.5). An assay mixture containing 160 mM
HEPES (pH 7.5), 4.8 mM hydroxylamine (pH 7.5), 3.2 mM MgSO,4 and
0.16 mM EDTA was prepared. The reaction was conducted in a 96-well
plate in a final volume of 200 pL. To a 76.4 pl aliquot of the assay mixture,
we added 25.6 pL of 6.25 mM ATP (pH 7.5) and 76.8 pL extract. The
reactants were incubated for 5 min at 30 °C. At last, 21.2 pL of 0.6 M Glu
were added, the microplate was incubated for 20 min at 30 °C. The
reaction was terminated by adding 40 pL of a FeCls solution [2.5% FeCls
(w/v), 5% TCA (w/v), 1.5 N HCl]. The reactants were centrifuged at
16,060 g for 2 min. Controls were run, in which 50 mM HEPES (pH 7.5)
was used instead of extract. A second control was run, in which the
reaction was stopped by adding the FeCls solution immediately after the
Glu addition. The amount of L-Glu y-monohydroxamate was measured
in a microplate reader at 535 nm with a standard curve from 0 to 25 M
v-L-Glu monohydroxamate. Glu concentrations from 0.5 to 63.6 mM and
hydroxylamine (NH,OH) concentrations from 0.02 to 4.8 mM were used
to derive GS kinetic parameters.

2.4.4. GOGAT activity

GOGAT activity was determined by the reduction in the absor-
bance of NADH similar to the methods of Singh and Srivastava (1986)
and Lin and Kao (1996). Buffer A was used for GOGAT extraction. The
assay mixture contained 125 mM HEPES (pH 7.5), 5 mM EDTA,
20 mM KCl and 875 pM NADH. The reaction was conducted in a 96-
well plate in a final volume of 250 pL. To a 50 pl aliquot of the assay
mixture, we added 100 pL extract, 50 pL of 20 mM GIn and 50 pL of
5 mM a-ketoglutarate. Controls included the same reaction mixture,
in which the extract was substituted with extraction buffer. The
reduction in NADH absorbance at 340 nm was measured in a
microplate reader (SPECTRAFLUOR, Tecan) at 30 °C for 2 min,
immediately after the addition of a-ketoglutarate.

2.5. Photosynthesis and Ci acquisition

Ci fluxes during steady-state photosynthesis were investigated by
means of a sector-field multicollector mass spectrometer (ISOPRIME,
GV Instruments, Manchester, UK). Net photosynthesis was measured
by monitoring the O, concentration over consecutive LD intervals
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with increasing Ci concentrations (0 to~5mM). Light and dark
intervals during the assay lasted 6 min. Simultaneous measurements
of the CO, concentration enabled us to determine the CO, uptake and
HCO3 uptake kinetics according to equations by Badger et al. (1994),
using a photosynthetic quotient (PQ) of 1.4 (Williams and Robertson,
1991). To provide conditions similar to the acclimation, all measure-
ments were performed at 15 °C in buffered f/2 medium (50 mM
HEPES, pH 8.0) with NO3 concentrations of 300 and 10 puM,
respectively. Dextran-bound sulfonamide (DBS), a membrane-imper-
meable inhibitor of carbonic anhydrase, was added to the cuvette to a
final concentration of 100 uM. Chl a concentration ranged between 0.5
and 1mgmL'. The incident photon flux density was 300 pmol
photons m™ s™!. For further details on the method and calculation,
we refer to Badger et al. (1994) and Rost et al. (2007). The kinetic
parameters Vp,ax and K;,, were obtained by fitting the data with a
Michaelis-Menten equation.

Furthermore, net photosynthesis was measured under various
light intensities (0 to 800 umol photons m2s™'). While the same
buffer (HEPES 50 mM, pH 8.0) and respective NO3 concentrations
(300 versus 10 uM) were used as in the Ci flux assay measurements,
the Ci concentration were kept at~2 mM. This way rates of
photosynthesis, both expressed in terms of O, evolution and carbon
fixation, could be measured as a function of PFD. The light-saturated
photosynthetic rate as a function of irradiance (E) was calculated from
the equation

V=V, (1 - exp(— V:;x (E—Ek)>> ,

where V is the rate of photosynthesis, V,.x is the maximal rate
of photosynthesis and Ey is the light compensation point. The unit
of the maximum light use efficiency of photosynthesis () is pumol
2 -1y -1
).

0, (mg Chla)™' h™' (umol photon m2 s
2.6. Statistical analysis

All data were statistically analyzed using the t-test (one-tailed)
with a confidence level of 95% (see Table S1 in the Supplementary
Material).

3. Results
3.1. Growth, elemental composition and coccolith morphology

The growth rates were quite similar (1.1 to 1.2 d™") for the two NO3
treatments. The cell volume, however, was one-forth lower in cells at
ambient NO3 (Table 1; Table S1). At ambient NO3, cells accumulated
less organic C and N and the cellular POC content was ca. one-third
lower (Table 1; Table S1). Similarly, cells grown at ambient NO3
contained one-third less PON than their high NO3 counterparts
(Table. 1; Table S1). Despite changes in POC and PON content, the C to
N ratio remained constant and was about 8.3 to 8.5 in both NO3
treatments (Table 1; Table S1). The cellular PIC content was
approximately one-fourth lower at ambient NO3 (Table 1; Table S1).
The PIC to POC ratio was 0.6 to 0.7 (as can be calculated from the POC
and PIC values in Table 1) and remained constant irrespective of the
NO3 levels in the experiment. Cells produced mostly incomplete
coccoliths when grown at ambient NO3 (Figs. 2 and 3). In contrast,

Table 1

Fig. 2. Scanning electron microscopy images of coccoliths of E. huxleyi. All scalebars
2 um. All specimens in distal view. (a) normal coccolith. (b) incomplete coccolith.
(c) malformed coccolith. (d) incomplete and malformed coccolith.

almost all coccoliths produced by cells at replete NO3 were normal
(Figs. 2 and 3).

3.2. Macromolecular pools

The allocation of C into the macromolecular compounds was
affected by the NO3 condition in the culture medium. Cells in the
ambient NO3 treatment were characterized by ca. one-third lower
protein content (Table 1; Table S1). The abundance of proteins
relative to lipids, as determined by FTIR spectroscopy, was lower at
ambient NO3; the opposite was true for the proteins to carbohydrates
and lipids to carbohydrates (Table 2; Table S1). The comparison of the
FTIR data with the absolute protein determinations allows to conclude
that at ambient NOs3, the lower protein content is accompanied by an
even more obvious reduction of the carbohydrate pool, whereas the
lipid pool appears to be affected by the growth treatment. Although,
the relative nature of FTIR measurements performed for this work
makes it impossible to determine the extent of these variations.

3.3. Enzymes of nitrate assimilation

N availability was found to affect the kinetics of both NR and NiR
(Figs. S1 and 2). NR V. was 1.7-fold lower in cells at ambient NO3
compared to cells grown at replete NO3, when it was expressed on a
cell basis (Table 3; Table S1). When expressed on a protein basis, cell
volume, C or N, NR V.« was basically unaffected by the NO3
concentration in the medium. The affinity of NR for NO3 was

Specific growth rate (), cell volume (CV), particulate organic carbon (POC), particulate inorganic carbon (PIC), particulate organic nitrogen (PON), protein content and C to N ratio in
cells grown at replete and ambient NO3. The values represent the means of triplicate incubations (+ SD).

NO3 (uM) p(d) CV (um?) POC (pg cell™") PIC (pg cell™") PON (pg cell™") Protein (pg cell™!) C to N ratio (mol mol™)
Replete 1.240.1 394 + 46 139424 8.74+09 19+0.2 1.7+0.1 8.54+0.5
Ambient 1.1+0.2 272437 93408 6.64+-0.9 1.3+0.1 1.24+0.1 83409
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Fig. 3. Percentage of normal, malformed, incomplete, and incomplete and malformed
(inc/malf) coccoliths in cells grown at replete (M) and ambient ([J) NO3. Values
represent an average of duplicates (4 SD).

significantly higher in cells at ambient NO3 (Table 3; Table S1).
Regardless of the basis on which it was expressed, NiR V,,.x was lower
at ambient NO3 (Table 3; Table S1). The affinity of NiR for NO3 was
substantially higher at ambient NO3 (Table 3; Table S1).

The different NO3 concentrations also affected GS kinetics (Fig. S3).
At ambient NO3, GS Vnax was higher and this relationship was
independent of the type of normalization (Table 3; Table S1).
Regarding total GS affinities, the affinity for Glu was two-fold higher
in cells grown at ambient NO3 than in their counterparts (Table 3;
Table S1). The affinity of total GS for NH,OH was similar in cells of
both NO3 treatments (Table 3; Table S1). Similar to GS V., GOGAT
Vimax was higher in cells grown at the ambient NO3 regime,
irrespective of the parameter on which the enzyme activity was
expressed (Table 3; Table S1).

3.4. Photosynthesis and Ci acquisition

The maximum rate of net photosynthesis expressed on a per
cell basis was about two-fold lower in cells at ambient NO3 (Table 4;
Table S1; Fig. S4). When net photosynthesis was expressed on a mg
Chl a basis, no difference was observed between cells of the high and
low NOs3 treatment. This is a consequence of the fact that the amount
of Chl a was about two-fold lower in cells at ambient NO3 (data not
shown). However, at ambient NO3, the affinities of photosynthesis for
CO, and DIC were higher (Table 4; Table S1; Fig. S4). The light curve of
net photosynthesis revealed that maximum light use efficiency of
photosynthesis (o) was similar between the two NO3 treatments
(Table 4; Table S1).

Maximum gross CO, uptake (uptake of CO, into the cell) and net
CO, uptake (gross CO, uptake minus CO, efflux) rates (Vmax) per
cell were similar in high and low NO3-grown cells (Table 4; Table S1;
Fig. S5A and SB). The affinities of net and gross CO, uptake for CO,
were not affected by the different NO3 conditions (Table 4; Table S1).
The effects of N availability were stronger on the uptake of HCO3 (Fig.
S6). The rate of HCO3 uptake was ca. four-fold lower in cells at
ambient NO3 (Table 4; Table S1). Whereas the rate of HCO3 uptake

Table 2

FTIR absorbance ratios of proteins to lipids, proteins to carbohydrates and lipids to
carbohydrates in cells grown in the presence of either replete or ambient NO3
concentrations. Values represent an average of triplicates (4 SD), except for the ratios
of proteins to lipids, for which n =4. Please note that values of the ratios based on FTIR
spectroscopy measurements represent absorbance ratios and not amount ratios.

NO3 (uM)

Proteins to Proteins to carbohydr. Lipids to carbohydr.

lipids ratio ratio (107%) ratio (107)
Replete 155+1.22 2.38+0.54 1.3+0.1
Ambient 11.6+£2.26 2.72+0.65 3.0+£038

Table 3

Kinetics Vinax and Ky, of NR, NiR and GS, as well as GOGAT V.« in cells grown at replete
and ambient NO3. All values represent the means of triplicates (£ SD). In the kinetics of
GS for NH,0H (n=4).

NO3 (uM) Replete Ambient
NR Vinax fmol NO3 min™" cell™! 1.09 £0.25 0.64 4+ 0.06
Km (NO3) mM 0.099 £0.013 0.074 4+ 0.007
NiR Ve fmol NO5 min™" cell™! 0.56 +0.05 0.340.01
K (NO3) mM 3.14+0.6 1.69 +0.43
GS Ve fmol hydroxamate 0.3854+0.11 0.57 4+-0.04
min! cell!
K (Glu) mM 3.812+1.63 1.62140.372
K (NH,O0H) mM 0.095+0.035 0.09240.023
GOGAT Vinax fmol NADH min' celll!  2.87+0.18 3.91+0.76

decreased, the affinity of HCO3 uptake increased in cells grown at
ambient NO3 (Table 4; Table S1). The rate of respiration expressed on
a per cell basis was similar in high and low NO3-grown cells (Table 4;
Table S1). When respiration was expressed on organic C or cell
volume basis, its rate was higher in cells at ambient NOs.

4. Discussion

Although C and N quotas and cell volume were lower at ambient
than at replete NO3, growth rates and C to N ratios were similar for the
two growth regimes used for this study (Table 1). The constant C to N
ratio and the results obtained by FTIR spectroscopy suggest that the
abundance of protein relative to the non-nitrogenous pools examined
(i.e. carbohydrates and lipids) was not affected by the ambient NO3
treatment, and the lower protein content was simply the consequence
of the lower C and N quotas. However, a shift occurred in the C
partitioning between lipids and carbohydrates: the fraction of C
allocated to lipids was appreciably higher than that located to
carbohydrates (which became less abundant), when NO3 availability
was lower (Table 2). A similar allocation pattern was also observed for
cells of the marine diatom Chaetoceros muellerii by Giordano et al.
(2001). The greater proportional allocation of C to lipids than to
carbohydrates at ambient NO3 occured together with a higher
respiration rate (on an organic C and volume basis) measured in
ambient NO3-grown cells. Lipid biosynthesis would in fact require more
energy and TCA cycle intermediates then carbohydrate production
(Norici and Giordano, 2002; Montechiaro and Giordano, 2009). The shift
of cell composition towards a higher lipid content relative to
carbohydrate, in low NO3 —grown cells, may be related to the fact that
these smaller cells benefit from the higher volume-, C- and mass-based
energy content of lipid (Schmidt-Nielsen, 1997; Raven, 2005). The
observed macromolecular composition may also have contributed to

Table 4

Kinetics Vmax and Kj,, of net photosynthesis, maximum light use efficiency of
photosynthesis (o), kinetics of gross CO, uptake, net CO, uptake and HCO3 uptake,
as well as respiration in cells grown at replete and ambient NO3. For net photosynthesis,
gross and net CO, uptake, HCO3 uptake and respiration in cells grown at replete NO3
(n=5). All other values represent the means of triplicates (4 SD).

NO3 (uM) Replete Ambient
Net Vinax fmol O, min™' cell! 129+0.7 65+0.8
photosynthesis ~ K;,; (CO;) uM 41406 25406
Ki5 (DIC) M 443479 263457
o umol O, (mg Chla)'h' 154+0.04 1.7+04
(umol photon m2s7!) !
Gross CO, uptake Vinax fmol CO, min™" cell! 6242 5442
Kip (COy) 1M 35404 26408
Net CO, uptake ~ Vinax fmol CO, min™" cell™! 2.054+04 28+05
Ky (CO5) M 4542 43406
HCO3 uptake Vimax fmol HCO3 min™' cell™! 81+31 28+08
Kip (HCO3) M 5244180 19538
Respiration fmol O, min™! cell! 23+04 1.94+0.1
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the decreased calcite content (Table 1) and higher proportion of
incomplete coccoliths (Figs. 2 and 3) observed for low NO3-grown cells.
It has been hypothesized that, under N-deficiency, incomplete coccolith
formation may be caused by a shortage of polysaccharides involved
in coccolithogenesis and/or to "an inadequate level of some essential
N-compound" (e.g. protein) that may affect crystal growth (Paasche,
1998). It is conspicuous that no differences in the percentages
of malformed coccoliths were observed (Fig. 3). It is concluded that
N-deficiency does not disturb the coccolith-shaping machinery as
such. Two components of this machinery have been identified,
namely the Coccolith Associated Polysaccharide, CAP (Henriksen et
al., 2004; Marsh et al., 2002) and the cytoskeleton (Langer et al.,
submitted for publication). Hence, the shortage of polysaccharides,
hypothesized by Paasche (1998), does not include CAP, nor does the
shortage of protein include the cytoskeleton.

Based on the enzyme kinetics measured for NR and the kinetics of
net photosynthesis derived from the MIMS measurements, we
estimated the intracellular concentrations of NO3 and CO, which
allow for balanced growth, i.e. maintenance of a constant C to N ratio.
Please note that C and N fluxes based on MIMS measurements and NR
activity represent instantaneous rates obtained three to four hours after
the beginning of the photoperiod, while the C and N quotas represent
integrated values over a complete LD cycle. For E. huxleyi, no significant
differences were found between the integrated C to N ratios during
exponential growth under continuous light and the ones under LD cycle
(Price et al., 1998). During growth under continuous light, fixation of C
and N appear to be closely coupled, hence the primary products of
photosynthesis are directly used in biosynthesis rather than for carbon
storage (Burkhardt et al., 1999). Under these circumstances, the net
fixation rate of C (Cqux) can thus be expressed in terms of the
N assimilation rate (Ngyux), using the C to N ratio:

Cpux _ POC a
Npx  PON

The upper boundary for Cqy in balance with N assimilation is
provided by the maximum NR activity VAR, and would be obtained at
infinite NO3 concentration in the cytosol. Using our result for VX, , the
upper limit for Cgyy that derives from Eq. (1) is very similar to the
maximum net photosynthesis (in terms of C), which we obtained from
the MIMS measurements (V5% =V, /PQ, with PQ being the photo-
synthetic quotient). For balanced growth to be maintained (Eq.(1)), the
upper limit for Cqux must assume a value of 9.3 fmol min™! cell™! for the
replete NO3 condition (POC/PON=8.5), and 5.3 fmol min™ cell! for
cells acclimated to ambient NO3 (POC/PON = 8.3). Given the
photosynthetic quotient from a NO3-utilizing cell (PQ = 1.36; Williams
and Robertson, 1991), the MIMS measurements predict a V5% of
9.5+ 0.5 fmol min™! cell’! and 4.8 4+ 0.6 fmol min! cell!, for the
replete and ambient NO3 conditions, respectively. Hence, the ratios
of V§% and VRR, are approximately given by the C to N ratios for
the two growth NO3 concentrations used for this study (high NOs:
1.0 POC/PON, low NO3: 0.9 POC/PON). Using Eq. (1) and V$%/VRR, ~
POC/PON it follows that

Cﬂux Nﬂux
~ 2
VR, VAR, @

In the following, we assume for the Cqux the enzyme activity of
Rubisco and for the Ngux the enzyme activity of NR. Using Michaelis-
Menten kinetics for the C and N fluxes, Eq. (2) yields the condition for
balanced growth in terms of the intracellular concentrations of NO3 and
CO,

Krap + [COy]  Kyg + [NO3]

which can be written as

Krub >_1 ( Kyr )_1
s 1 R oA + 1 4
(1c&: [NO; | @
Finally, a further simplification of (4) yields

[CO,] NG5

~——2 5
Rew . Ko ©)

with Kgyp and Ky being the Michaelis-Menten constants for Rubisco
and NR, respectively.

Generally, for an enzyme possessing the activity Vg, the ratio of
the concentration of the substrate S and the Michaelis-Menten
constant Km determines the degree of saturation of the enzyme
activity (Vo/Vimax=1/(Kw/[S]+ 1)). Based on Eq. (5) it follows that a
constant C to N ratio can be maintained for intracellular [CO,| and
[NO3] which yield a comparable saturation of the enzyme activity for
the enzymes involved in C and N assimilation. Hence, the mainte-
nance of a constant C to N ratio requires a concerted regulation of the
intracellular [CO,] and [NO3] to equilibrate the fluxes through the C
and N assimilation pathway. It should be noted that Eq. (5) is valid for
all degrees of enzyme saturation (0<Vo/Vimax<1) in the cells
acclimated to the two growth regimes. This flexibility indicates that
the maintenance of a constant C to N ratio under different growth
conditions does not imply constant kinetic properties of the enzymes
involved in the C and N assimilation pathway. In fact, the availability
of NO3 affects the kinetics of NR, NiR and net photosynthesis in E.
huxleyi cells. At ambient NO3, the V.x of NR, NiR and net
photosynthesis was down-regulated compared to cells grown at
replete NO3 (Tables 3 and 4), probably as a result of less protein
amounts. In cells grown at ambient NO3, the effect of lower enzyme
activity (Vimax) on the C and N flux was weakened by the increase in
the affinity of NR, NiR and net photosynthesis for the substrates
(Tables 3 and 4). Since the E. huxleyi genome appears to have only one
gene encoding for NR (Bruhn et al., 2010) and one encoding for NiR
(Wurch), the change in the affinity for the substrates (lower K, of NR
for NO3 and of NiR for NO3 at ambient NO3) cannot be attributed to the
expression of different isoforms and must be attributed to post-
translational regulation. The decrease in the K , of photosynthesis at
ambient NO3 may be related to post-translational regulation or
expression of high-affinity HCO3 transporters (Amoroso et al., 2003).
The kinetics of GS in E. huxleyi cells are also modified in response to
NO3 availability. The higher total GS V. in cells at ambient NO3
(Table 3) may be a response of NHf re-assimilation after increased
proteolysis in cells under N limiting conditions (Hipkin et al., 1982).
The activity of GOGAT showed more or less the same response to NO3
availability as total GS activity; this is not surprising, since these two
enzymes operate sequentially.

In addition to the regulation of K., the degree of enzyme
saturation is determined by the substrate concentration established
at the site of the enzyme. For instance, when the NR activity reaches
80% of its maximum value, NO3 accumulates in the cytosol, yielding
concentrations of 396 uM and 296 pM for the cells acclimated to high
and low NOs, respectively. For balanced growth to be maintained
(Eq. (5)), the CO, concentration at the site of Rubisco must then
exceed Kry, by a factor of 4, for the replete and ambient NO3
conditions. The values of Kgyp, for the two growth conditions are not
known. Assuming a Kgyp of 30 UM (Badger et al., 1998), it follows a
[CO,] at Rubisco of 120 uM. We assumed steady state conditions for
N assimilation. In other words, the substrates inside the cell
accumulate until the rates of reactions are the same for all the
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enzymes involved in the N assimilation pathway (from NO3 to NHZ
assimilation by GS):

VaxINO3 ] _

_ VERINOy] Vinax[NH; |
Kyg + [NO3] ~ Ky + [NO3] — Kgs + [NHj]

(6)

Nﬂux =

Then, the NiR kinetics data predicts an accumulation of high NO3
concentrations at the site of NiR activity. The requirement for a high
NO> concentration for E. huxleyi NiR suggests that this enzyme is
confined in the proximity of the chloroplast envelope, possibly near
the entry point of NO3 into the chloroplast. However, high internal
NO> pools of 4 to 5mM have been reported for the diatom
Chaetocheros sp. (Lomas and Glibert, 2000).

The GS could not be used for estimated intracellular NHF
concentrations in our study. Glutamine synthetase activity was
found to be approximately 40% higher when measured with a
radioactive assay with ammonia as substrate in comparison to the
colorimetric assay with NH,OH as substrate (Listrom et al., 1997).
Furthermore, GS activity in microalgae deriving from measurements
with the biosynthetic reaction assay was found to be two to three fold
higher compared with the enzyme activity from the transferase
reaction assay (Bressler and Ahmed, 1984). Therefore the use of
NH,0H instead of NH; and/or the application of the GS transferase
instead of the biosynthetic assay may be the reasons that do not allow
using GS V.« for the estimation of intracellular NHZ concentrations
in our study.

In conclusion, NO3 availability seem to have a crucial impact on the
regulation of C and N fluxes in the marine coccolithophore E. huxleyi,
without necessarily changing the C to N ratios and/or growth rates of
cells. With the exception of GS and GOGAT, cells generally respond to
ambient NO3 availability with a down regulation of activities of
proteins involved in the acquisition and assimilation of inorganic C
and N. At the same time, the substrate affinities of these proteins
increase in response to ambient NO3. Our study suggests that the
intracellular CO, and NO3 concentrations have to be carefully
regulated, in order to equilibrate the fluxes through the C and N
assimilation pathways, and ensure an adequate growth for the
respective NO3 conditions.
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