Global CO₂-consumption by chemical weathering: What is the contribution of highly active weathering regions?

Jens Hartmann (1), Nils Jansen (1), Hans H. Dürr (2), Stephan Kempe (3), and Peter Köhler (4)

(1) Institute for Biogeochemistry and Marine Chemistry, Klimacampus, Universität Hamburg, Bundesstrasse 55, 20146 Hamburg, Germany (contact:geo@hattes.de), (2) Department of Physical Geography, Faculty of Geosciences, Utrecht University, The Netherlands, (3) Institute for Applied Geosciences, Schnittspahnstrasse 9, Darmstadt University of Technology, Germany, (4) Alfred Wegener Institute for Polar and Marine Research (AWI), Postfach 12 01 61, D-27515 Bremerhaven, Germany

Abstract

CO2-consumption by chemical weathering of silicates and resulting silicate/carbonate weathering ratios influences the terrestrial lateral inorganic carbon flux to the ocean and longterm climate changes (Fig. 1). However, little is known of the spatial extension of highly active weathering regions and their proportion of global CO₂-consumption. Global CO₂-consumption is calculated here at high resolution to adequately represent those regions, which may be of significant importance for global climate change.

The presented study applies functions for CO₂-consumption spatially explicit. These were estimated using hydrochemical data from 382 catchment and their attributes (e.g. lithology, runoff). The CO₂-consumption model (Fig. 2), is applied here to a global vector based lithological map with 15 lithological classes. The calibration data were obtained from areas representing a wide range of weathering environments. Resulting global CO₂-consumption by chemical weathering is similar to earlier estimates (237 Mt C a⁻¹) (Table 1), but the proportion of silicate weathering is 63% and thus larger than previous estimates (49 to 60%) (Table 1). The application of the enhanced lithological classification scheme reveals the importance of distinguishing the various types of sedimentary rocks and their diagenetic history. Results highlight the role of hotspots (>10 times global average weathering rates) and hyperactive areas (5 to 10 times global average rates) (Fig. 3). Only 9% of the global exorheic area is responsible for about 50% of CO₂-consumption by chemical weathering (or if hotspots and hyperactive areas are considered: 3.4% of exorheic surface area corresponds to 28% of global CO₂-consumption) (Fig. 4).

Carbonate

 $CaCO_3 + CO_2 \oplus + H_2O \Rightarrow Ca^{2+} + 2HCO_3 \Rightarrow CaCO_3 \oplus + CO_2 \oplus H_2O$ (No net-sink of consumed atmospheric CO,

Olivine

 $Mg_{2}SiO_{4} + 4CO_{2} \oplus + 4H_{2}O \Rightarrow 2Mg^{2+} + 4HCO_{3}^{-} + H_{4}SiO_{4} \Rightarrow 2MgCO_{3} \oplus + SiO_{2} \oplus + 2CO_{2} \oplus + 4H_{2}O$ (Net-sink < 50% of consumed atmospheric CO, due to diverse other processes like alteration of oceanic crust, etc.)

Albite

2NaAlSi₃O₈ + 2CO₂ ↓ + 11H₂O ⇔ Al₂Si₂O₅(OH)₄ + 2Na⁺ + 2HCO₃⁻ + 4H₄SiO₄ ⇔ 2Na⁺ +2HCO₃⁻ + SiO₂ ↓ + 8 H₂O (Net-sink of cor sumed atmospheric CO₂ < 100% due to other processes like reverse weathering or evaporite preci

Fig. 1: Simplified, typical chemical weathering mineral reactions (educts \rightarrow ions in dissolution \rightarrow possible precipitation reactions in the ocean

Fig. 2: CO₂-consumption in dependence of runoff for selected lithological classes. Abbreviations are explained in Table 1. The contribution of carbonates to CO₂-consumption from silicate dominated classes SS, SM, MT and PA is 13%, 53%, 46% and 16%, respectively. The function for SC is based on the work of Amiotte-Suchet et al. (1993)

Comparison of e	stimated global C	O ₂ -consun	nption presented i	n previous	studies (Gaillard	et et al., 19	999; Munhoven, 2	002; Amic	otte-Suchet et al., 2	2003) with	n results from this	study
	Gaillardet et al. (1999) Reverse model; large rivers; fixed end- member compositions		Amiotte-Suchet et al. (2003) ^b GEM-CO2 model; runoff data of Korzoun et al. (1977); lithological map Amiotte-Suchet and Probst (1995)		Munhoven (2002) GEM-CO2 model, GRDC runoff data (Fekete et al., 2002), lithological map Amiotte-Suchet and Probst (1995)		This study Original set up		This study Basalt weathering law of Dessert et al. (2003) applied		This study ^c No carbonate contribution from plutonic and metamorphic rocks assumed	
	$10^{6} t C a^{-1}$	%	10 ⁶ t C a ⁻¹	%	10 ⁶ t C a ⁻¹	%	$10^{6} t C a^{-1}$	%	10 ⁶ t C a ⁻¹	%	$10^{6} t C a^{-1}$	%
Silicates Carbonates Flux total	140 148 288	48.6 51.4	154 104 258	59.9 40.1	133.2 87.6 220.8	60.3 39.7	149 88 237	63.0 37.0	167 88 255	65.6 34.4	155 81 237	65 34

^a Carbonate proportions on total CO₂-consumption from lithological classes SS, SM, MT and PA are applied as explained in the text. ^b The difference in the work of Amiotte-Suchet et al. (2003) and Munhoven (2002) is the applied runoff data. The global runoff of Korzoun et al. (1977) is about 19% higher than the global runoff claculated by Fekete et al. (2002). However, the global CO₂-consumption after Amiotte-Suchet et al. is (a) 17.3% and (b) 8.8% higher than calculated (a) by the store after the store at the store at the store at the global constraints of the store at the en (2002) and (b) in this study with the original set up.

umption from acidic plutonics and metamorphic rocks is entirely from silicate weathering (globally the carbonate CO₂ ^c The last column assumes that the calculated CO₂-cor ption from lithological classes MT and PA are not highly important based on the results of the applied model; compare with column four

Fig. 3: Global distribution of CO₂-consumption by chemical weathering. The global average for exorheic areas is ~2 t C km⁻² a⁻¹.

Fig. 4: Relative proportion of exorheic CO₂-consumption and bicarbonate (DIC) transport into the aquatic system due to chemical weathering compared to the relative exorheic land area. Hotspots (10 times world average) and hyperactive areas (> 5 times world average) are responsible for 8.6 and 19.6% of CO2consumption, while representing only 0.51 and 2.9% of the exhorheic land area, respectively

exorheic land area.

Conclusions

- weathering rates and the climatic system.

References

Hartmann, J., Jansen, N., Kempe, S, Dürr, H.H., Köhler, P. (2009) Global CO₂-consumption by chemical weathering: What is the contribution of highly active weathering regions? Global and Planetary Change, 69, 185-194. References cited in Table 1 are provided in Hartmann et al. (2009).

Fig. 5: Proportions of runoff volumes (in 500 mm steps) on total CO₂-consumption, CO₂consumption of carbonate sedimentary rocks, of silicates per runoff class, total runoff and total

> For the first time, differences in sediment composition beyond the three classes of carbonates, shales and sandstones are recognized using a new high-resolution model for global CO₂-consumption by chemical weathering.

> Trace carbonates in crystalline lithological classes contribute only little to the CO₂consumption budget according to the model presented here (Table 1).

> Because CO₂-consumption is linked to the combination of runoff (and thus climate) and lithology (Fig. 2), future global dynamic carbon models need to recognize changes in the spatial correlation between runoff and lithology for analysis of feedback between

> A significant impact on the global CO₂-consumption rate can be expected if identified highly active areas are affected by changes in the overall spatial patterns of the hydrological cycle due to climate change. Since the last Glacial Maximum those changes very likely affected the Global Carbon Cycle. It is expected that results will contribute to improve global carbon and circulation models.

> Earth System Models emphasizing a spatial resolution of typically 2 to 3.75° may not resolve the contribution of identified small regions responsible for most of global CO₂consumption and their variability due to changes in climate. However, many of the highly active CO₂-consumption areas are spatially correlated. Thus, global weathering modules integrated in to global circulation models should be calibrated for scaling effects for representative CO₂-consumption estimations.

> Future global weathering models should be calibrated region by region, incorporating local to regional data on geochemical composition of rocks for distinguished lithological classes, as well as weathering and diagenetic history, specifically for sediment classes.

