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Abstract. Recent observations have shown that fluxes of bal-
last minerals (calcium carbonate, opal, and lithogenic mate-
rial) and organic carbon fluxes are closely correlated in the
bathypelagic zones of the ocean. Hence it has been hypoth-
esized that incorporation of biogenic minerals within ma-
rine aggregates could either protect the organic matter from
decomposition and/or increase the sinking velocity via bal-
lasting of the aggregates. Here we present the first com-
bined data on size, sinking velocity, carbon-specific respi-
ration rate, and composition measured directly in three ag-
gregate types;Emiliania huxleyiaggregates (carbonate bal-
lasted),Skeletonema costatumaggregates (opal ballasted),
and aggregates made from a mix of bothE. huxleyi and
S. costatum(carbonate and opal ballasted). Overall average
carbon-specific respiration rate was∼0.13 d−1 and did not
vary with aggregate type and size. Ballasting from carbon-
ate resulted in 2- to 2.5-fold higher sinking velocities than
those of aggregates ballasted by opal. We compiled litera-
ture data on carbon-specific respiration rate and sinking ve-
locity measured in aggregates of different composition and
sources. Compiled carbon-specific respiration rates (includ-
ing this study) vary between 0.08 d−1 and 0.20 d−1. Sink-
ing velocity increases with increasing aggregate size within
homogeneous sources of aggregates. When compared across
different particle and aggregate sources, however, sinking ve-
locity appeared to be independent of particle or aggregate
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size. The carbon-specific respiration rate per meter settled
varied between 0.0002 m−1 and 0.0030 m−1, and decreased
with increasing aggregate size. It was lower for calcite bal-
lasted aggregates as compared to that of similar sized opal
ballasted aggregates.

1 Introduction

A large fraction of particulate organic matter occurs in the
form of marine snow aggregates (>0.5 cm) composed of
phytoplankton, detritus, inorganic mineral grains, and fecal
pellets in the ocean (Alldredge and Silver, 1988). Formation
and sinking of these aggregates drive the biological carbon
pump via export and sedimentation of organic matter from
the surface mixed layer to the deep ocean and sediments.
The fraction of organic matter that leaves the upper mixed
layer of the ocean is, among other factors, determined by the
sinking velocity and microbial remineralization rate of these
aggregates. Recent observations have shown that the fluxes
of ballast minerals (calcium carbonate, opal, and lithogenic
material) and the organic carbon fluxes are closely correlated
in the bathypelagic zones of the ocean. This has lead to the
hypothesis that organic carbon export is determined by the
presence of ballast minerals within settling aggregates (Arm-
strong et al., 2002; Francois et al., 2002; Klaas and Archer,
2002). Hence, it has been proposed that organic carbon is
better preserved in sinking particles due to increased aggre-
gate density and sinking velocity when ballast minerals are
present and/or via protection of the organic matter due to
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quantitative association to ballast minerals (Armstrong et al.,
2002; Francois et al., 2002; Klaas and Archer, 2002). Klaas
and Archer (2002) observed that∼83% of the global par-
ticulate organic carbon (POC) fluxes were associated with
carbonate, and suggested that carbonate is a more efficient
ballast mineral as compared to opal and terrigenous material.
However, a study by De La Rocha et al. (2008) showed no
evidence supporting calcium carbonate as a better carrier of
organic matter than opal. Still, Klaas and Archer (2002) hy-
pothesized that the higher density of calcium carbonate com-
pared to that of opal and the higher abundance of calcium
carbonate relative to terrigenous material might be the rea-
son for the efficient ballasting by calcium carbonate. How-
ever, the direct effects of ballast minerals on sinking velocity
and degradation rates in sinking aggregates are still unclear.

A recent study has demonstrated that copepod fecal pel-
lets produced on a diet of diatoms or coccolithophorids show
higher sinking velocities as compared to pellets produced on
a nanoflagellate diet (Ploug et al., 2008b). Carbon-specific
respiration rates in pellets, however, were similar and inde-
pendent of mineral content. These results suggest that dif-
ferences in mineral composition does not lead to differential
protection of POC against microbial degradation, but the en-
hanced sinking velocities may result in up to 10-fold higher
carbon preservation in pellets containing biogenic miner-
als as compared to that of pellets without biogenic miner-
als (Ploug et al., 2008b). However, the study by Ploug et
al. (2008b) only investigated the degradation of labile or-
ganic matter and cannot exclude that mineral-associated or-
ganic matter is protected. Minerals seem to enhance the floc-
culation of phytoplankton aggregates (Engel et al., 2009a;
Engel et al., 2009b) and may even act as a catalyst in aggre-
gate formation (Lee et al., 2009). However, it has also been
shown that incorporation of minerals can cause aggregates to
fragment into smaller and denser aggregates (Passow and De
La Rocha, 2006; Engel et al., 2009b). This can potentially
lower the sinking velocity of the aggregated organic material
due to the reduced aggregate sizes, and, thus, lower the to-
tal export of organic matter. Conversely, if the incorporation
of minerals increases the aggregate density, its size-specific
sinking velocity may also increase, which could potentially
increase the carbon export. Therefore, there is still a need for
better quantitative investigations of how the interactions be-
tween minerals and organic aggregates affect the degradation
and sinking velocity of the aggregates and, hence, carbon se-
questration in the ocean.

In this study, we investigated how the presence of opal,
carbonate, or a mixture of opal and carbonate affects the sink-
ing velocity and degradation of organic carbon in mm-large
phytoplankton aggregates. The aggregates were formed in
roller tanks from cultures of diatoms, coccolithophorids, or
a mixture of both diatoms and coccolithophorids. Aggregate
size, sinking velocity, and respiration rates were measured
in a vertical flow system. An upward-directed flow balanced
the aggregate sinking velocity, keeping the aggregate in sus-

pension while the respiration was measured using an oxygen
microsensor at the aggregate-water interface. Hence, respi-
ration was measured under similar hydrodynamic conditions
as those occurring at the aggregate water interface during
sedimentation (Kiørboe et al., 2001). The composition of
the same aggregate was analyzed after respiration measure-
ments. This approach enabled us to test whether the apparent
increased fluxes of ballasted marine snow aggregates occur
due to increased density and sinking velocities of the aggre-
gates or due to adsorptive protection of the organic matter
to the biogenic minerals whereby the degradation rate is re-
duced. We compiled previous collected data on aggregate
sinking velocities and degradation rates to identify general
trends induced by the presence and/or absence of ballast min-
erals.

2 Materials and methods

2.1 Algae cultures

Cultures of the diatomSkeletonema costatum(North Sea)
and the coccolithophoridEmiliania huxleyi (strain PML
B92/11, North Sea) were grown for 13 days at 15◦C in
0.2 µm filtered seawater (salinity 32) enriched with nutrients
according to f/2 medium (Guillard, 1975). The f/2 medium
used for the diatoms was enriched with silicate at a molar ra-
tio of silicate to nitrate of 1. The cultures were kept under a
light:dark cycle (12:12 h) with light intensities of 150 µmol
photons m−2 s−1.

2.2 Aggregate formation

The algae cultures were incubated in 1.15 L Plexiglas cylin-
ders (roller tanks, 14 cm diameter and 7.47 cm length) to
form aggregates. Three different roller tank incubations were
carried out in order to obtain aggregates formed withSkele-
tonema costatum(S.c.-inc), aggregates formed withEmilia-
nia huxleyi(E.h.-inc), and aggregates formed with a mixture
of S. costatumandE. huxleyiwith 1:1 volume from the two
cultures (mix-inc), respectively. The roller tanks were rotated
on a rolling table at 3 rotations per minute (rpm) at 15◦C in
constant dim light,∼30 µmol photons m−2 s−1.

2.3 Sinking velocity

Sinking velocity of single aggregates was measured in a ver-
tical flow system (Ploug and Jørgensen, 1999; Ploug et al.,
2010). Individual aggregates were gently transferred from
the roller tanks to an open flow-through chamber using a
wide bore pipette. The flow chamber was a 10 cm high Plex-
iglas tube (5 cm diameter) with a net extended in the middle.
The net creates a relative uniform flow field across the upper
chamber when a fluid flow is supplied from below (Ploug
and Jørgensen, 1999). The flow was adjusted with a needle
valve until the aggregate remained suspended at a distance of
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one aggregate diameter above the net, whereby the aggregate
sinking velocity was balanced by the upward-directed seawa-
ter flow velocity. The sinking velocity of an aggregate was
calculated by dividing the flow rate by the cross-sectional
area of the flow chamber. Triplicate measurements of sink-
ing velocity were made for each aggregate.

2.4 Size measurements

The length of all three aggregate axes (x, y, and z direction)
was measured in the flow system using a horizontal dissec-
tion microscope with a calibrated ocular. The aggregate vol-
ume was calculated by assuming an ellipsoid shape. For
comparison with other aggregate shapes we calculated the
equivalent spherical diameter (ESD) of each aggregate.

2.5 Oxygen measurements

Oxygen gradients at the aggregate-water interface were mea-
sured using a Clark-type oxygen microelectrode with a guard
cathode (Revsbech, 1989) mounted in a micromanipulator
and calibrated at air-saturation and at anoxic conditions.
The electrode current was measured on a picoampereme-
ter (Unisense, PA2000) and read on a strip chart recorder
(Kipp and Zonen) at high resolution (2 µM O2 cm−1). The
tip diameter of the microsensor was 2 µm. The relative dis-
tance between the microelectrode tip and the aggregate sur-
face was measured using a dissection microscope with a cal-
ibrated ocular micrometer. The 90% response time of the
electrode was<1 s and the stirring sensitivity<0.3%. Dur-
ing O2-measurements, the aggregates were suspended by an
upward-directed flow that balanced the aggregate’s sinking
velocity in the same vertical net-jet flow system as used for
estimating sinking velocities (Ploug and Jørgensen, 1999).
The fluid motion and solute distribution in the vicinity of the
aggregates under these experimental conditions are equiva-
lent to those in the vicinity of an aggregate sinking through
the water column at a velocity equal to the water flow veloc-
ity (Kiørboe et al., 2001). All measurements were done at
steady state of the oxygen gradients. The water in the flow
system was similar to the water in the roller tanks (0.2 µm
filtered sea water at 15◦C with a salinity of 32).

2.5.1 Calculations of respiration rates

Respiration rates were calculated from the oxygen gradi-
ents measured at the aggregate-water interface at steady-
state. The analytical solutions for oxygen distribution and
diffusive fluxes at the aggregate-water interface were fitted
to measured values by applying the solver routine of the
spreadsheet program Excel version 97 (Microsoft) as pre-
viously described (Ploug et al., 1997). We used a temper-
ature and salinity corrected oxygen diffusion coefficient of
1.71×10−5 cm2 s−1 in the calculations (Broecker and Peng,
1974). The surface area of ellipsoids (Maas, 1994) was used
to calculate total oxygen consumption. Oxygen consumption

rate was converted to carbon respiration assuming a respira-
tory quotient of 1.2 mol O2 to 1 mol CO2, as also used in a
previous study of O2 respiration and POC degradation in di-
atom aggregates (Ploug and Grossart, 2000).

2.6 Aggregate dry weight and carbon content

The aggregate dry weight (DW) was determined by filter-
ing single aggregates with known volumes onto pre-weighed
0.4-mm polycarbonate filters. Each filter contained one ag-
gregate, which was gently washed with de-ionized water to
remove salt and dried at 60◦C for 48 h before weighing on a
Mettler Toledo (UMX 2) scale with a sensitivity of 0.1 µg.

The ratio of particulate organic carbon (POC) to DW was
determined by filtering∼50 aggregates onto pre-weighed 25
mm GF/F filters. The filters were gently rinsed with de-
ionized water, and dried at 40◦C for over 48 hours before
being re-weighed on a Mettler Toledo UMX2 balance (sen-
sitivity: 0.1 µg). POC content of the aggregates on each filter
was measured on an EA mass spectrometer (ANCA-SL 20-
20, Sercon Ltd. Crewe, UK) with a precision of±0.7 µg C
or 0.3%. For calcium carbonate determinations filters were
fumed for two hours in air saturated hydrochloric acid (HCl)
to remove inorganic carbon, and dried at 40◦C overnight.
Carbon measurements were carried out as for POC determi-
nation. Particulate inorganic carbon was determined by sub-
tracting the POC content on the fumed filters from the POC
content on the non-fumed filters. The ratio of POC to DW for
each of the three aggregate types was calculated by dividing
the amount of POC by the DW of the material on each filter.
The POC content of each aggregate was estimated by mul-
tiplying the DW of the aggregate by the POC:DW ratio for
that aggregate type.

2.7 Density of aggregates

We used the Navier-Stokes drag equation to calculate the ex-
cess density (1ρ) of our aggregates (Stokes, 1851):

1ρ =
CDρ$ w2

4
3gESD

(1)

whereCD is the dimensionless drag force defined in Eq. (3),
ρw is the density of sea water (1.0237 g cm−3, at 15◦C and
salinity of 32),w is the measured sinking velocity in cm s−1,
g is the gravitational acceleration of 981 cm s−2, and ESD is
the equivalent spherical diameter in cm. We calculatedCD
using the drag equation forRe >1 given by White (1974):

CD =

(
24

Re

)
+

(
6

1+Re0.5

)
+0.4 (2)

where Reynolds number (Re) was defined as:

Re = wESD
ρ$

η
(3)

whereη is the dynamic viscosity (1.22×10−2 g cm−1 s−1, at
15◦C and salinity of 32).
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3 Results

3.1 Aggregate formation

Initial cell concentrations in the roller tanks were
2×105 mL−1 for S.c.-inc, 4×105 mL−1 for E.h.-inc. In mix-
inc initial cell concentrations were 1×105 S. costatummL−1

and 2×105 E. huxleyimL−1. Hence, the cell ratio ofE. hux-
leyi to S. costatumin mix-inc was 1:2. Both mix-inc and
S.c.-inc formed aggregates within the first 24 h of incuba-
tion. E.h.-inc did not form aggregates until the fifth day of
incubation in the roller tanks. The formation of aggregates in
E.h.-inc started to occur when individual coccoliths rather
than whole cells began to dominate the particle abundances
in the tanks. The aggregates in mix-inc were dominated by
diatom cells throughout the study despite higherE. huxleyi
abundance in the tanks (Table 1). With increased incuba-
tion period both the total and relative abundance of coccol-
iths increased within the aggregates formed in the mix-inc
incubations (Table 1). Aggregates contained individual coc-
coliths in bothE.h.-inc (Fig. 1a) and mix-inc (Fig. 1b) incu-
bations. Further, we did not observe aggregation of whole
coccolithophorid cells. In mix-inc, the coccoliths seemed
to be scavenged by rapidly formed diatom aggregates. This
may explain the increasing abundance of coccoliths relative
to diatoms within the aggregates over time (Table 1). The
aggregates formed inE.h.-inc were in general smaller and
more spherical than the aggregate inS.c.-inc and mix-inc
(Table 2).

3.2 Aggregate dry weight

The DW increased with increasing aggregate size for all
three aggregate types (Fig. 2). Size-specific aggregate DW
varied more in aggregates containingS. costatum(large,
chain-forming diatom) as compared to those formed by small
E. huxleyicoccoliths (Fig. 2). Hence, the correlation coeffi-
cients between DW and aggregate size were higher forE.h.-
inc as compared to those forS.c.-inc and mix-inc, indicat-
ing more uniform aggregate structures when formed solely
from E. huxleyi(Fig. 2b). Power regressions were chosen
due to the fractal nature of the aggregates. The more uniform
structure of theE.h.-inc aggregates may be due to the small
size of the constituting particles (coccoliths) within the ag-
gregates, resulting in compact and relative small aggregates
compared to aggregates formed fromS.c.-inc and mix-inc
(Fig. 1). In mix-inc (Fig. 2c), a variety of aggregate struc-
tures were formed, depending on the ratio of coccolith to
diatom cells (Table 1), which resulted in no apparent rela-
tionship between DW and aggregate size as reflected by the
ESD.

Fig. 1. Scanning electron microscopic (SEM) images. (A) aggre-
gates formed fromE. huxleyiand (B) aggregates formed from a
mix of Skeletonema costatumandEmiliania huxleyi. Only single
E. huxleyicoccoliths are observed in aggregates.S. costatumdomi-
nated in the aggregates formed in the mixed incubation (B).

3.3 Aggregate sinking velocity

Sinking velocity increased with increasing aggregate size in
all three types of aggregates (Fig. 3a). Aggregates formed
from E.h.-inc showed about 2-fold and 2.5-fold higher size-
specific sinking velocities than aggregates formed by mix-inc
andS.c.-inc, respectively (Fig. 3a). The largest variability
in size-specific sinking velocities was observed for the ag-
gregates formed from the mix-inc (Fig. 3a). The presence of
coccoliths within these aggregates enhanced their sinking ve-
locities as compared to those of similarly-sized pure diatom
aggregates.
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Table 1. Temporal evolution of aggregate composition given in
number ofS. costatumandE. huxleyicoccoliths per unit volume
of aggregate in the mix-inc incubation.

Incubation S. costatum E. huxleyi E.h: S.c Aggregate
time (cells mm−3) (liths mm−3) Ratio volume
(days) (mm3)

2 66,297 1146 1:60 6.98
5 91,398 3763 1:25 5.58
6 139,263 5598 1:25 3.26

3.4 Aggregate excess density

The excess densities derived from aggregate sinking velocity
and sizes are shown in Fig. 3b. Due to the fractal nature of the
aggregates, their excess densities decrease with increasing
size, i.e., their porosity increases with increasing aggregate
size. The excess densities were on average 2- to 3-fold higher
for aggregates formed byE.h.-inc as compared to those of
the other aggregate types. Aggregates formed in mix-inc had
1.4-fold higher excess densities as compared to those formed
in S.c.-inc (Fig. 3b).

3.5 Particulate organic carbon content and respiration
rate

Particulate organic carbon (POC) content in the aggregates
increased with increasing aggregate size (Fig. 4a). POC com-
prised∼24% of the dry weight in the aggregates formed
in S.c.-inc, and∼22% of the dry weight in the other two
aggregate types. No significant differences were found for
the POC content between the different aggregate types (p

= 0.133, One Way ANOVA). The inorganic carbon to POC
ratio was 0.08± 0.005, 0.14± 0.09, and 0.24± 0.01 for the
aggregates formed inS.c.-inc, mix-inc, andE.h.-inc, respec-
tively. The respiration rate per aggregate increased with in-
creasing aggregate size, and was relatively similar in small
aggregates (<3 mm) of different types (Fig. 4b). Respiration
rate increased proportional to POC content of the aggregates,
indicating first-order kinetics of POC degradation (Fig. 4c).
However, some scatter is observed which might be due to
the use of a constant POC:DW ratio for each aggregate type
used to estimate the POC content in each aggregate across
the size spectra. The carbon-specific respiration rate was cal-
culated by dividing the carbon respiration rate with the total
POC content of each aggregate. The average carbon-specific
respiration rate was∼0.13 d−1 (Table 2), and showed no sig-
nificant differences between the three types of aggregates
(p > 0.67, Students t-test). However, a large variability was
observed for the carbon-specific respiration rates in all types
of aggregates (Fig. 4d). The apparent size-dependency of the
carbon-specific respiration rate for the aggregates formed in
E.h.-inc was likely due to the scarcity of measurements for

Fig. 2. Aggregate dry weight as a function of aggregate sizefor the
three different incubation experimentst:(A) Skeletonema costatum
(black circles),(B) Emiliania huxleyi(grey circles), and(C) Mixed
culture ofS. costatumandE. huxleyi(open circles). Regressions
curves between measured dry weights and sizes are showed as solid
lines in each plot. Regression curves and the correlation coefficients
(R2) are given in each plot.

large aggregates (two measurements of aggregates>3mm)
(Fig. 4d). Hence, all three types of aggregates appeared to
have size-independent carbon-specific respiration rates.
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Table 2. Source and incubation treatment, sample size, averages, and standard deviations of aggregate size (Agg size), carbon-specific
respiration rate (C-spec. resp.), sinking velocity, and ratio ofL for the three types of aggregates investigated.

Source No. in
sample

Agg size
(mm)

C-spec.
resp. (d−1)

Settling velocity
(m d−1)

L

(×10−4 m−1)

S. costatum
(S.c.-inc)

26 2.51± 0.83 0.13± 0.09 113± 42 13.1± 5.0

E. huxleyi
(E.h.-inc)

12 1.67± 0.68 0.13± 0.13 246± 41 5.5± 0.9

Mix of S. costatum
and E. huxleyi
(mix-inc)

24 2.02± 0.48 0.12± 0.07 125± 26 10.4± 2.7

Fig. 3. Aggregate sinking velocity and excess density. Sinking velocity(A) and excess density(B) as a function of equivalent spherical diam-
eter (ESD). Black circles are aggregates formed fromSkeletonema costatum(S.c.-inc), grey circles are aggregates formed fromEmiliania
huxleyi(E.h.-inc), and open circles are aggregates formed from a mix ofS. costatumandE. huxleyi(mix-inc). (A) Relationship between
sinking velocities (SV) and ESD is modeled using a power law curve fitted to the data: SV = 56.56 ESD0.72, (R2

= 0.65) for the aggregates
formed from diatoms (solid line). SV = 75.79 ESD0.64, (R2

= 0.38) for the aggregates formed from a mix of diatoms andE. huxleyi(dotted
line). SV = 176.3 ESD0.47, (R2

= 0.80) for the aggregates formed fromE. huxleyi(dashed line). (B) Relationship between excess densities
(1ρ) and ESD is modeled using a power law curve fitted to the data:1ρ = 0.005 ESD−1.21, (R2

= 0.94) for the aggregates formed from
diatoms (solid line).1ρ = 0.002 ESD−1.05, (R2

= 0.52) for the aggregates formed from a mix of diatoms andE. huxleyi(dotted line).1ρ

= 0.002 ESD−1.39, (R2
= 0.97) for the aggregates formed fromE. huxleyi(dashed line).

3.6 Remineralization length scale of aggregates

The remineralization length scale,L (m−1), is calculated
by dividing the carbon-specific respiration rate by the set-
tling velocity of the aggregates, and it expresses the frac-
tional remineralization in aggregates per m settled.L de-
creased with increasing aggregate size for all aggregate types
(Fig. 4e). The higher sinking velocity of aggregates formed
from E.h.-inc compared to the two other aggregate types re-
sulted in lowerL in E.h.-inc aggregates, both when consid-
ering size-specific values (Fig. 4e) and when averaged across
the aggregate size spectrum (Table 2). The remineraliza-

tion length scale of large aggregates formed by mix-inc was
closer to that ofE.h.-inc than toS.c.-inc (Fig. 4e). This was
due to the slightly higher ballasting effect of coccoliths in
mix-inc compared toS.c.-inc (Fig. 3b) leading to higher size-
specific sinking velocities of the large mix-inc aggregates.

4 Discussion

Collision of particles and aggregate formation is driven
by wind-induced shear and differential settling of parti-
cles in the ocean (Jackson, 1990; Kiørboe et al., 1990).
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Fig. 4. Size and carbon-specific parameters of aggregates. All measurements were done on three different aggregate types formed from
(1) incubation withSkeletonema costatum(black circles), (2) incubation withEmiliania huxleyi(grey circles), and (3) incubation of a mix
of both S. costatumandE. huxleyi(open circles).(A) Aggregate particulate organic carbon (POC) content (µgC agg−1) as a function of
equivalent spherical diameter (ESD in mm).(B) Microbial respiration rate (nmolO2 agg−1 h−1) as a function of ESD.(C) Respiration
rate (µgC agg−1 d−1) as a function of POC content. The regression curve is based on a power law relationship with: Respiration rate =
0.11 POC0.99, (R2

= 0.43). (D) Carbon specific respiration rate (d−1) as a function of ESD. The dashed line indicates the average carbon-
specific respiration rate of 0.13 d−1. (E) Remineralization length scaleL (m−1) as a function of ESD. The regression curves are based on a
power law relationship withL = 0.0021 ESD0.53 (R2

= 0.3) for E.h.-inc (solid line).L = 0.0019 ESD0.87 (R2
= 0.60) for mix-inc (dotted

line) andL = 0.0007 ESD0.36 (R2
= 0.78) forS.c.-inc (dashed line).

Table 3. Carbon specific respiration rates (C-resp.) of aggregates (agg) and copepod fecal pellets (pellets) of different type, composition,
and origin from five different studies. F-max indicates aggregates formed from water collected at the depth of fluorescence maximum off
Cape Blanc.

Aggregate type C-resp.
(d−1)

Reference

F-max water Cape Blanc, NW Africa (agg) 0.13± 0.07 Iversen et al., 2010
S. costatum(agg) 0.13± 0.09 Present study
E. huxleyi(agg) 0.13± 0.13 Present study
Mix of S. costatum and E. huxleyi(agg) 0.12± 0.07 Present study
Rhodomonassp. (pellets) 0.16 Ploug et al., 2008b
T. weissflogii(pellets) 0.20 Ploug et al., 2008b
T. weissflogii(pellets) 0.12 Ploug et al., 2008b
E. huxleyi(pellets) 0.21 Ploug et al., 2008b
E. huxleyi(pellets) 0.08 Ploug et al., 2008b
∗Diatoms + natural community (agg) 0.08± 0.03 Ploug and Grossart, 2000
In situ collected marine snow (California) 0.10 to 0.12 Ploug et al., 1999

∗ Diatom cultures incubated with filtered (80 µm mesh size) Baltic Sea water.
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Fig. 5. Sinking velocity as a function of aggregate size for a wide
range of fecal pellets, marine snow, and phytoplankton-derived ag-
gregates. TheE. hux, T .w., andR. sp pellets are copepod fecal pel-
let produced byTemora longicornisfeeding onEmiliania huxleyi,
Thalassiosira wiessflogii, andRhodomonassp., respectively (Ploug
et al., 2008b).

The stickiness of particles determines if coagulation occurs
(Hill, 1992; Riebesell and Wolf-Gladrow, 1992; Kiørboe and
Hansen, 1993). The dominant process leading to collision
in roller tanks is differential settling (Shanks and Edmond-
son, 1989). Diatoms often form chains consisting of many
cells, e.g.S. costatumas used in the present study, and tend
to be very sticky (Kiørboe et al., 1990) due to their produc-
tion of transparent exopolymer particles (TEP) (Alldredge et
al., 1993; Kiørboe and Hansen, 1993). Hence, their large
size and stickiness explain the fast aggregate formation ob-
served in the two incubations containing diatoms,S.c.-inc
and mix-inc. In contrast, aggregate formation took much
longer inE.h.-inc. The first aggregate formations inE.h.-
inc co-occurred with the release of single coccoliths. The
occurrence of single coccoliths may be due to cell lysis of
E. huxleyiafter being kept in the dark for five days. Cell ly-
sis ofE. huxleyioften occurs in situ due to viral attack, lead-
ing to bloom termination (Bratbak et al., 1993; Brussaard et
al., 1996; Wilson et al., 2002). In addition, cell lysis can
also increase the concentration of dissolved organic carbon
(DOC) (Fuhrman, 1999). Suboptimal growth conditions also
leads to exudation of DOC (mainly polysaccharides) in phy-
toplankton (e.g. Mari and Burd, 1998). DOC can be adsorbed
on coccolith surfaces (Engel et al., 2009a) and promote co-

agulation by increasing coccoltih stickiness. Increasing con-
centrations of released DOC, in the present study, probably
induced coccolith coagulation after five days of incubation
when the first aggregates were observed inE.h.-inc. Ad-
sorption of DOC on the coccolith surfaces might also explain
why the aggregates formed from coccoliths had POC to dry
weight ratios similar to aggregates containing whole diatom
cells.

Blooms of E. huxleyi can cover large areas and reach
high cell concentration in the ocean (Robertson et al., 1994).
However, presence of aggregates constituted exclusively of
coccolith or coccolithophore has never been observed in the
field (De La Rocha and Passow, 2007). Coccolithophores
and coccoliths mainly seem transported to depths in situ via
scavenging by gelatinous aggregates (Honjo, 1982) and ma-
rine snow aggregates (Iversen et al., 2010) or packed within
zooplankton fecal pellets (Knappertsbusch and Brummer,
1995; Ploug et al., 2008a). Engel et al. (2004) observed ag-
gregation ofE. huxleyiinto marine snow during a mesocosm
bloom study. Calcified coccolithophore aggregates showed
low scavenging efficiencies (Engel et al., 2009b) with 1-2 or-
ders of magnitude lower efficiencies in calcified compared
to non-calcified coccolithophores. Thus, high cell concen-
trations (∼4×105 cell mL−1) are needed for the formation of
large coccolithophore aggregates. Such conditions occurred
in the present study. Natural blooms ofE. huxleyican also
reach similar cell densities (Robertson et al., 1994). How-
ever, aggregation may not occur until the end-bloom where
nutrient depletion leads to large release of DOC. The present
and previous studies (Engel et al., 2004; Engel et al., 2009a;
Engel et al., 2009b) show that aggregates can still form from
coccoliths and/or coccolithophores at high cell concentra-
tions.

Aggregates with coccoliths were more compact and had
higher excess densities than those containing diatoms. TEPs
occupy a significant fraction of aggregate volume but con-
tribute little to DW in diatom aggregates (Ploug and Pas-
sow, 2007). TEP densities can be lower than that of seawater
and decrease aggregate sinking velocities (Engel and Schar-
tau, 1999; Azetsu-Scott and Passow, 2004). The porosity of
E. huxleyiaggregates has been shown to be∼96% and that
of S. costatumaggregates to be∼99% (Ploug et al. 2008a).
Hence,E. huxleyiaggregates were more compact than aggre-
gates withS. costatum(Ploug et al., 2008a). The higher ex-
cess densities of aggregates containing coccoliths may also
partly be explained by the 1.3-fold higher density of bio-
genic calcite (2.7 g cm−3) compared to that of biogenic opal
(2.09 g cm−3). These factors can explain the higher size-
specific settling velocities of aggregates formed fromE.h.-
inc compared to those of the other two treatments (Fig. 3).
Engel et al. (2009b) also suggested lower drag forces on
aggregates formed from calcified compared to non-calcified
coccolithophorids due to the spherical and compact nature of
calcified coccolithophorid aggregates. We also observed ag-
gregates formed fromE.h.-inc to be more spherical than the
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other two aggregate types, indicating that lower drag forces
may contribute to the higher sinking velocities ofE.h.-inc
aggregates.

Previous studies of diatom aggregates mixed with miner-
als, e.g., clays and carbonate, have demonstrated that, on av-
erage, these aggregates are smaller than those formed in pure
diatom cultures (Hamm, 2002; Passow and De La Rocha,
2006). In those studies, however, sinking velocity was not di-
rectly measured, but applying Stoke’s law it was argued that
the smaller size of mixed aggregates may lead to lower sink-
ing velocities despite their higher content of ballasting min-
erals as compared to those composed of diatoms, only. In our
study, the average size of aggregates formed by mix-inc was
also on average smaller than that of aggregates formed by the
pure diatom culture but with higher size-specific sinking ve-
locities and excess densities. Hence, our results confirm, that
sinking velocities of aggregates depend on aggregate compo-
sition and density rather than on size only, as also previously
found (Ploug et al., 2008a).

Sinking velocities of similar-sized marine snow vary
greatly across the aggregate size spectrum. We compiled
sinking velocities that we have measured in aggregates, fe-
cal pellets, and marine snow in the laboratory (Fig. 5). Small
zooplankton fecal pellets produced on a diet of diatoms or
coccolithophorids showed sinking velocities comparable to
those of much larger marine snow and phytoplankton-derived
aggregates as also observed in the field (Armstrong et al.,
2009). Hence, small particles and aggregates do not neces-
sarily sink slower than larger ones do when compared across
different sources. The size effect on sinking velocities of
mm-large particles is apparent only when comparing parti-
cles for similar composition and type.

The measurements of sinking velocities in laboratories
are maximum sinking velocities. Aggregates have poten-
tially much longer residence times in the upper ocean than
those predicted by sinking velocity measurements alone (All-
dredge and Gotschalk, 1988) due to turbulence, water density
differences (MacIntyre et al., 1995), and zooplankton activity
(Dilling and Alldredge, 2000). Sinking velocities appear to
increase with increasing depth in the ocean (Berelson, 2002;
Fischer and Karakas, 2009). However, a recent study found
no strong evidence for increasing sinking velocity with depth
when using fluxes of mass and chemical tracers to determine
the most likely average sinking velocity of particles at dif-
ferent depths (Xue and Armstrong, 2009). During aging, the
excess density and sinking velocity of diatom aggregates in-
crease (Ploug et al., 2008a). This may be caused by the ob-
served decrease in organic carbon to dry mass ratio in aging
aggregates likely due to microbial degradation of TEP (Ploug
and Passow, 2007). Hence, the sinking velocities of aggre-
gates in the field might depend on source, density, and age
rather than aggregate size (Ploug et al., 2008a). Thus, ag-
gregates with high content of minerals and low amounts of
relatively buoyant organic matter are likely to have higher
size-specific sinking velocities. Such aggregates are likely

to be found in the deep ocean where they had longer time
for scavenging of ballast minerals and for microbial degra-
dation compared to surface aggregates. Biominerals and
lithogenic material are, therefore, important factors influenc-
ing aggregate sinking velocity and, potentially, vertical car-
bon fluxes in the ocean (Ploug et al., 2008a, b). This has im-
portant consequences for the paleoclimate and future climate
scenarios. Increased desertification and droughts in the fu-
ture could lead to higher dust availability in atmosphere and
ocean (e.g. Prospero and Nees, 1976) and, hence, increased
ballasting of aggregates. The higher dust load of the glacial
atmosphere might also influence the marine carbon cycle via
ballasting (e.g. Ittekkot, 1993).

Microbial degradation of marine snow in the ocean is
largely controlled by ecto-enzymatic hydrolysis and respi-
ration (Smith et al., 1992; Ploug et al., 1999; Ploug and
Grossart, 2000). Size-specific respiration rate in the aggre-
gates of the present study was on average proportional to par-
ticulate organic carbon content in aggregates as also found
in previous studies (Ploug et al., 1999; Ploug and Grossart,
2000). As a consequence, no size dependency was observed
for the carbon-specific respiration rates of the different ag-
gregate types. Carbon-specific respiration rates for the ag-
gregates shown in Fig. 5 are compiled in Table 3. The aver-
age carbon-specific respiration rates measured in the present
study are within the range of previous measurements for zoo-
plankton fecal pellets (Ploug et al., 2008b), marine snow
(Ploug et al., 1999), and aggregates formed from diatom de-
tritus incubated with natural microbial communities from the
Baltic Sea (Ploug and Grossart, 2000) as well as aggregates
formed from organic matter sampled off Cape Blanc, NW
Africa (Iversen et al., 2010) (Table 3). Thus, it appears that
carbon-specific respiration rates are relatively similar across
different types of marine particles irrespective of composi-
tion, size, and type. The apparent diffusivities of solutes
and oxygen supply for respiration were high for all parti-
cle types supporting an efficient turnover of organic carbon
(Ploug et al., 2008a). However, these rates presumably only
apply to the upper ocean, since they were measured within
relatively fresh particles with high organic carbon content.
The comparable carbon-specific remineralization rates over
such a wide range of particle types and sizes indicate that
carbon remineralization in the upper ocean is to a large ex-
tent controlled by residence times of aggregates in the water
column. The residence time of aggregates depends on physi-
cal (e.g., turbulence, sinking velocity, fractionation by swim-
ming zooplankton) as well as on biological processes (e.g.,
ecto-enzymatic hydrolysis, microbial respiration, feeding by
zooplankton) in the upper ocean, whereas microbial respi-
ration and sinking velocity dominates at increasing depth
where zooplankton are scare and turbulence is low (Iversen
et al., 2010). Our results show that ballasting of aggregates
in the upper ocean appears to have a large influence on sink-
ing velocities, while the similar average carbon-specific res-
piration rates between the treatments indicate no protective
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Fig. 6. Remineralization length scale (L) as a function of aggregate
size for aggregates investigated in the present study (S.c.-inc, E.h.-
inc and mix-inc), calculated for aggregates from a diatom dom-
inated area (Alldredge and Gotschalk, 1988) and for aggregates
formed from in situ material collected in a carbonate dominated area
(Iversen et al., 2010) using the sinking velocities found in Alldredge
and Gotschalk (1988) and the carbon-specific respiration rate found
by Ploug et al. (1999). Regression lines are the same as in Fig. 4e.

mechanisms against remineralization of labile organic matter
as also found in copepod fecal pellets (Ploug et al., 2008b).
Further the remineralization length scale of our aggregates
was similar to those of opal- and carbonate-ballasted cope-
pod fecal pellets (Ploug et al., 2008b). Finally, carbonate-
ballasted aggregates are potentially more efficient for car-
bon export from the upper ocean as compared to aggregates
only ballasted by opal as also suggested by recent studies
(Francois et al., 2002; Klaas and Archer, 2002; Lee et al.,
2009). Estimates of the remineralization length scale (L) for
aggregates from an opal dominated area off California us-
ing a carbon-specific respiration rate of 0.10 d−1 (Ploug et
al., 1999) and the size-specific sinking velocities measured in
situ by Alldredge and Gotschalk (1988) shows that our labo-
ratory results are similar to those predicted in the field. Fur-
thermore, aggregates ballasted by carbonate and lithogenic
material, formed by a heterogeneous pool of organic and in-
organic material collected in the field (Iversen et al., 2010),
show sinking velocities similar to aggregates fromE.h.-inc
in the present study (Fig. 6). This further supports the no-
tion that ballasting by carbonate and lithogenic material may
indeed enhance vertical carbon export as compared to opal
ballasting (Francois et al., 2002; Klaas and Archer, 2002).
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