Dependency of tsunami simulations on advection scheme, grid resolution, bottom friction and topography

C. Wekerle, S. Harig, W. Pranowo, A. Androsov, A. Fuchs, N. Rakowsky, J. Schröter, S. Danilov and J. Behrens
Outline

• The tsunami model *TSUNAWI*
 – Numerical concepts and inundation scheme

• The Okushiri tsunami 1993
 – Influence of advection scheme, grid resolution, bottom friction on simulation results

• A worst case scenario for Padang
 – Influence of topography data on inundation

• Conclusion
Shallow water equations

Continuity equation:
\[\partial_t \eta + \nabla \cdot (\mathbf{v} H) = 0 \]

Momentum equation:
\[\partial_t \mathbf{v} + (\mathbf{v} \cdot \nabla) \mathbf{v} + f \times \mathbf{v} + g \nabla \eta + \frac{g n^2 |\mathbf{v}|}{H^{4/3}} - \nabla \cdot (A_h \nabla \mathbf{v}) = 0 \]

where
\[\mathbf{v} = (u(t, x, y), v(t, x, y)) : \text{horizontal velocity} \]
\[H = h(x, y) + \eta(t, x, y) : \text{total water depth} \]

Boundary Conditions:
\[\mathbf{v} \cdot \mathbf{n} = \sqrt{\frac{g}{H}} \eta, \quad (x, y) \in \partial \Omega_1 \]
\[\mathbf{v} \cdot \mathbf{n} = 0, \quad (x, y) \in \partial \Omega_2 \]

Initial Conditions:
\[\mathbf{v} \big|_{t=0} = 0 \]
\[\eta \big|_{t=0} = \eta_0 \]
Discretization

Finite element spatial discretization:
non-conforming mixed P_1-P_1^{nc} (Hanert et al., 2005)

Explicit time stepping scheme:
Leap frog with Robert-Asselin filter

Inundation: Extrapolation scheme
„Dry node concept“ by Lynett et al., 2002
The Okushiri Tsunami 1993 (Mw 7.8)

- **Field benchmark for the validation of tsunami models** (Synolakis, NOAA, 2007)
 - Initial condition, tide gauge data and bathymetry provided by NOAA
 - Very high runup up to 30m at Monai (west coast of Okushiri island)

Initial uplift distribution

- **max. uplift**: 4.87m
- **max. depression**: -1.12m

Takahashi et al, 1995
Mesh Generation

Mesh refinement is based on the CFL criterion and bathymetry:

$$\Delta x \leq \min \left(k_1 \sqrt{gh}, k_2 \frac{h}{\sqrt{h}} \right)$$

→ fine resolution at the shoreline and at regions of steep bathymetry, coarse mesh in the deep ocean

For the Okushiri testcase, four meshes with different resolution are used:

Mesh 1 (fine_mesh):
- # nodes: 309 410
- min. res. 50m
- max. res. 3km

Mesh 2 (medium_mesh):
- # nodes: 103 361
- min. res. 100m
- max. res. 6km

Mesh 3 (coarse_mesh):
- # nodes: 45 028
- min. res. 150m
- max. res. 9km

Mesh 4:
- # nodes: 214 124
- local refinement in the Monai area:
- min. res. 10m
- max. res. 6km
Fractions of terms in the momentum equation dependent on depth

Locations of different depth on 12 min isochrone
Momentum eq. with and without advection

Divison of nodes into 3 categories:

- depth < 200 m
- $200 < \text{depth} < 10$ m
- $10 < \text{depth} < 0$ m

Histograms of mwh: $\eta_{\text{max \ linear}} - \eta_{\text{max \ non-linear}}$

Histograms of max. velocity: \(|v_{\text{max}}|_{\text{linear}} - |v_{\text{max}}|_{\text{non-linear}} \)
Influence of mesh resolution on mwh

\[
\eta_{\text{max}_{\text{fine mesh}}} - \eta_{\text{max}_{\text{medium mesh}}}
\]

\[
\eta_{\text{max}_{\text{medium mesh}}} - \eta_{\text{max}_{\text{coarse mesh}}}
\]

- \(h < 200 \text{ m} \)
- \(200 \text{ m} < h < 10 \text{ m} \)
- \(10 \text{ m} < h < 0 \text{ m} \)
Influence of mesh resolution on max. velocity

- $|V_{\text{max}}|_{\text{fine_mesh}} - |V_{\text{max}}|_{\text{medium_mesh}}$
- $|V_{\text{max}}|_{\text{medium_mesh}} - |V_{\text{max}}|_{\text{coarse_mesh}}$

Legend:
- h < 200m
- 200m < h < 10m
- 10m < h < 0m

Graphs show the percentage distribution of difference in max. velocity [m/s] for different altitude ranges.
Inundation of the Monai area – with and without friction

friction parameter: \(n=0.02 \)

Max. wave height — isolines of topography (0m, 5m, 10m, 15m, 20m)

Runup distribution in the Monai area (in cm)
Inundation of the Monai area – depending on mesh resolution

50 m res. at the coast

Max. wave height
— isolines of topography
(0m, 5m, 10m, 15m, 20m)

Runup distribution in the Monai area (in cm)

10 m res. at the coast

Max. wave height
— isolines of topography
(0m, 5m, 10m, 15m, 20m)
Worst case tsunami scenario for Padang, Sumatra

\[M_w 8.98\]

Max. Uplift = 3.73 m
Max. Depression = -1.60 m

Variable resolution of the mesh:
~57 m in Padang region
~7 km in deep sea
Worst case tsunami scenario for Padang

Topography and inundation results

SRTM (90 m res.)

HRSC (50 m res.)
Conclusion

- Advection is important in shallow water
- Grid resolution has effect on mwh and velocity in coastal regions
- To simulate runup successfully, a fine mesh resolution is needed
- Good topography data is crucial for reliable inundation results