Age, growth and mortality in the giant snail *Adelomelon beckii* (Broderip 1836) on the Argentinian shelf

Florence Arrighetti a,⁎, Thomas Brey b, Andreas Mackensen b, Pablo E. Penchaszadeh a

a CONICET, Museo Argentino de Ciencias Naturales, Av Angel Gallardo 470, (1405) and Facultad de Ciencias Exactas y Naturales, UBA, Buenos Aires, Argentina

b Alfred Wegener Institute for Polar and Marine Research, Bremerhaven, Germany

Article info

Abstract

The marine subtidal volutid snail *Adelomelon beckii* was studied in order to obtain their population dynamics, particularly on growth, age, mortality and production. Stable oxygen isotope ratios confirmed semiannual formation of internal growth marks. A von Bertalanffy growth model fitted 308 size-at-age data pairs. *A. beckii* potential lifespan in Mar del Plata (Argentina) region is 29 years, being rather long lived compared to other large gastropods. Total mortality Z and natural mortality M were calculated to be 0.210 y⁻¹ and 0.081 y⁻¹ respectively. Fishing mortality F amounts to 0.129 y⁻¹ corresponding to an exploitation rate E of 0.614, a value much beyond the optimum rate of 0.427. The current exploitation regime will be unsustainable in the long run unless a proper management approach establishes.

Crown Copyright © 2010 Published by Elsevier B.V. All rights reserved.

1. Introduction

Adelomelon beckii is an endemic volutid in the southwestern Atlantic Ocean, distributed from Espíritu Santo (Brazil) to Tierra del Fuego (Argentina), that inhabits sandy bottoms between 30 and 70 m water depth (*Weaver and du Pont*, 1970). It is one of the largest benthic carnivores in the Mar del Plata area, often exceeding 40 cm in shell length. For several years, *A. beckii* has been fished just as bycatch by fishing trawlers, but recently the snail became a direct target of artisanal fishermen, apparently throughout its area of occurrence. Its large and attractive shell is sold in local and international markets and its muscular foot represents a seafood delicatessen. Despite its large gastropods. Total mortality Z and natural mortality M were calculated to be 0.210 y⁻¹ and 0.081 y⁻¹ respectively. Fishing mortality F amounts to 0.129 y⁻¹ corresponding to an exploitation rate E of 0.614, a value much beyond the optimum rate of 0.427. The current exploitation regime will be unsustainable in the long run unless a proper management approach establishes.

Keywords: Marine Gastropod Age Growth Mortality Production Fisheries Management

2. Materials and methods

2.1. Sampling

Specimens of *A. beckii* were collected during commercial bottom trawling off Mar del Plata City, Argentina (38°20′S, 57°3′W) between 30 and 60 m water depth during April 2005 to March 2007. The boats employed a bottom trawl with 15 m mouth opening and 42 mm mesh size in the cod end. The area is characterized by predominantly southerly currents. Water temperature ranges between 9 and 17 °C seasonally and salinity is rather constant at 35 (*Guerrero and Piola*, 1997). Animals collected from the trawls were taken to the laboratory, where the shell was separated from the soft body. We measured shell size in the cod end. The area is characterized by predominantly southerly currents. Water temperature ranges between 9 and 17 °C seasonally and salinity is rather constant at 35 (*Guerrero and Piola*, 1997). Animals collected from the trawls were taken to the laboratory, where the shell was separated from the soft body. We measured shell size in the cod end. The area is characterized by predominantly southerly currents. Water temperature ranges between 9 and 17 °C seasonally and salinity is rather constant at 35 (*Guerrero and Piola*, 1997). Animals collected from the trawls were taken to the laboratory, where the shell was separated from the soft body. We measured shell size in the cod end. The area is characterized by predominantly southerly currents. Water temperature ranges between 9 and 17 °C seasonally and salinity is rather constant at 35 (*Guerrero and Piola*, 1997). Animals collected from the trawls were taken to the laboratory, where the shell was separated from the soft body. We measured shell size in the cod end. The area is characterized by predominantly southerly currents. Water temperature ranges between 9 and 17 °C seasonally and salinity is rather constant at 35 (*Guerrero and Piola*, 1997). Animals collected from the trawls were taken to the laboratory, where the shell was separated from the soft body. We measured shell size in the cod end. The area is characterized by predominantly southerly currents. Water temperature ranges between 9 and 17 °C seasonally and salinity is rather constant at 35 (*Guerrero and Piola*, 1997). Animals collected from the trawls were taken to the laboratory, where the shell was separated from the soft body. We measured shell size in the cod end. The area is characterized by predominantly southerly currents. Water temperature ranges between 9 and 17 °C seasonally and salinity is rather constant at 35 (*Guerrero and Piola*, 1997). Animals collected from the trawls were taken to the laboratory, where the shell was separated from the soft body. We measured shell size in the cod end. The area is characterized by predominantly southerly currents. Water temperature ranges between 9 and 17 °C seasonally and salinity is rather constant at 35 (*Guerrero and Piola*, 1997). Animals collected from the trawls were taken to the laboratory, where the shell was separated from the soft body. We measured shell size in the cod end. The area is characterized by predominantly southerly currents. Water temperature ranges between 9 and 17 °C seasonally and salinity is rather constant at 35 (*Guerrero and Piola*, 1997). Animals collected from the trawls were taken to the laboratory, where the shell was separated from the soft body. We measured shell size in the cod end. The area is characterized by predominantly southerly currents. Water temperature ranges between 9 and 17 °C seasonally and salinity is rather constant at 35 (*Guerrero and Piola*, 1997). Animals collected from the trawls were taken to the laboratory, where the shell was separated from the soft body. We measured shell size in the cod end. The area is characterized by predominantly southerly currents. Water temperature ranges between 9 and 17 °C seasonally and salinity is rather constant at 35 (*Guerrero and Piola*, 1997). Animals collected from the trawls were taken to the laboratory, where the shell was separated from the soft body. We measured shell size in the cod end. The area is characterized by predominantly southerly currents. Water temperature ranges between 9 and 17 °C seasonally and salinity is rather constant at 35 (*Guerrero and Piola*, 1997). Animals collected from the trawls were taken to the laboratory, where the shell was separated from the soft body. We measured shell size in the cod end. The area is characterized by predominantly southerly currents. Water temperature ranges between 9 and 17 °C seasonally and salinity is rather constant at 35 (*Guerrero and Piola*, 1997). Animals collected from the trawls were taken to the laboratory, where the shell was separated from the soft body. We measured shell size in the cod end. The area is characterized by predominantly southerly currents. Water temperature ranges between 9 and 17 °C seasonally and salinity is rather constant at 35 (*Guerrero and Piola*, 1997). Animals collected from the trawls were taken to the laboratory, where the shell was separated from the soft body. We measured shell
identified in both halves of the shell and the corresponding growth trajectory length S_G from the apex to mark i was measured.

Periodicity of growth band formation was evaluated by means of stable oxygen isotope analysis (δ^{18}O, ratio of isotopes 18O and 16O). δ^{18}O in biogenic calcium carbonate structures is inversely proportional to temperature during shell deposition. This relation is nearly linear between 5° and 30° C, as demonstrated empirically by Epstein and Lowenstam (1953) and Epstein et al. (1953). Therefore, a mollusc shell from an environment with rather constant salinity and a distinct annual temperature cycle will show an oscillating pattern of δ^{18}O along the major growth axis (see Bigatti et al., 2007; Cledón et al., 2007; Giménez et al., 2004 for gastropod examples).

Two representative specimens, one female of 383 mm (ind. 1) and one male of 370 mm S_L (ind. 2) were used for stable isotope analysis. We collected carbonate samples ($±50 \mu g$ each) from the central shell layer along the S_G by means of a dental drill (bit size 0.5 mm) at a sample-to-sample distance of about 1 mm (430 samples from ind. 1 and 320 samples from ind. 2, respectively). δ^{18}O was determined in the stable isotope laboratory of the Alfred Wegener Institute with a Finnigan MAT251 mass spectrometer coupled to an automatic carbonate preparation device. The results were reported in δ-notation versus VPDB (Vienna Pee Dee belemnite) standard calibrated via NIST 19 (National Institute of Standards and Technology isotopic reference material 19). The precision of measurements was better than $±0.08\%$ for δ^{18}O (based on a repeated analysis of a laboratory-based working standard over a one-year period. δ^{18}O (d18O$_r$) values were converted into water temperature by the paleotemperature equation of Epstein et al. (1953), as modified by Craig (1965) and Anderson and Arthur (1983):

$$T(°C) = 16.000 -4.140(\delta^{18}O -d^{18}O_r) + 0.130(\delta^{18}O -d^{18}O_r)^2$$

Sea water δ^{18}O (d18O$_r$) was estimated at -0.30% from the gridded data (version 1.1) of LeGrande and Schmidt (2006), see also the corresponding NASA website http://data.giss.nasa.gov/o18data/.

Visual shell marks coinciding with δ^{18}O peaks were interpreted as winter growth marks, and the distance between two subsequent winter growth marks as the annual shell increment (see later discussion for additional summer growth marks). Thus, we interpreted each winter growth mark i and its corresponding shell growth trajectory length S_G as one size-at-age data pair. S_G was translated into shell length S_L by means of the linear relationship between the two parameters. The iterative non-linear Newton algorithm was used to fit a growth model to the size-at-age data. The specialised von Bertalanffy growth model was found to fit the data best:

$$S_L_i = S_L_\infty \left(1 - e^{-K(\tau - \tau_0)}\right)$$

where S_L_∞ is asymptotic shell length, K is the body growth coefficient, τ is age and τ_0 is theoretical age at which length equals zero. Overall growth performance was estimated by the index $P = \log(K^*S_L_\infty)$ and displayed in the form of an auximetric grid of log(K) versus log (S_L_∞), as described by Moreau et al. (1986) and Pauly et al. (1994).

2.3. Production

Individual somatic production was calculated by the mass-specific growth rate method according to Brey (2001) from the size–frequency distribution, the size–body function and the growth model parameters:

$$P_j = B M_j * G_j$$

where $B M_j$ is the mean individual body mass at size j and G_j is the annual mass specific growth rate at size j as calculated by:

$$G_j = b^*K^* (S_L_{0j} / S_L_\infty - 1)$$

Smaller size classes are likely to be undersampled due to the selectivity of the commercial bottom trawl, thus population production (P) and production-to-biomass ratio (P/B) based on size distribution were not calculated.

2.4. Mortality, yield per recruit and exploitation rate

We presumed that mortality in A. beckii can be described by the single negative exponential mortality model and used the corresponding size-converted catch curve (Pauly, 1984a, b) to estimate total mortality rate Z (y$^{-1}$).

$$N_j / \Delta \tau_j = N_0 * e^{-Z \tau_j$$

where N_j is number in size classes j, $\Delta \tau_j$ is time required to grow through this size class j, and τ_j is age at midsize of size class j. Natural mortality rate M_j was estimated by means of an empirical model that relates P/B ratio to maximum age t_{max} (y), maximum body mass $B M_{max}$ (kJ) and mean water temperature T (Kelvin) in unexploited benthic populations (Brey 1999, 2001). If growth can be described by the von Bertalanffy model and mortality by the single negative exponential model, mortality rate M and P/B ratio are equivalent (Allen, 1971), hence:

$$\log(M_j) = 1.672 + 0.993 * \log(1 / t_{max}) - 0.035 * \log(B M_{max}) - 300.447 / T; N = 901; r^2 = 0.880$$

Maximum age and body mass were inferred from the largest animal through the growth model and the size–mass relationship (applying the conversion factor 3.818 kJ/gWM, average for Gastropoda, Brey, 2001).
Fishing mortality F and exploitation rate E were computed by

$$F = Z - M, \quad E = \frac{F}{Z}$$

A selection curve giving the probability of capture P_C per size class j was computed by a procedure outlined by Pauly (1984a,b). Yield per recruitment was computed by the Beverton and Holt (1964) model, from which a predicted value for optimum exploitation rate was also obtained.

3. Results

The 202 individuals collected ranged from 160 to 390 mm shell length (Fig. 2). Shell-free wet body mass ranged from 170 to 2720 g and was related to SL by:

$$\log(\text{SFWM}) = -4.523 + 3.025 \log(\text{SL}); \quad (g; \quad r^2 = 0.835; \quad N = 202)$$

SL was linearly related to SG, the distance from the apex along the growth trajectory to the aperture of the shell, by:

$$SL = 16.197 + 0.499^*SG \quad (mm; \quad r^2 = 0.989; \quad N = 45)$$

Overall sex ratio is 2.07 (see Arrighetti and Penchaszadeh, 2010a).

3.1. Age and growth

The $\delta^{18}O$ profiles showed a distinct oscillating pattern in both shells (Fig. 3). The average range of -0.5% to $+1.7\%$ $\delta^{18}O$ corresponds to a temperature range of about 8.2 °C to 16.8 °C.

Almost all $\delta^{18}O$ maxima (corresponding to temperature minima) coincide with a shell growth mark, i.e. one growth mark is formed each winter. A second shell growth mark is formed each year around the time of maximum temperature, except during the first eight years and four years of life in ind. 1 and ind. 2, respectively (stippled lines in Fig. 3). The shell growth marks formed in winter, however, are much more conspicuous than those formed during summer (Fig. 1b).

The von Bertalanffy growth model

$$SL_t = 405.43^*\left(1 - e^{-0.998^*(t-0.733)}\right); \quad N = 308, \quad r^2 = 0.967$$

fitted best the 308 size-at-age data pairs obtained from the 10 specimens analysed (Fig. 4). Overall growth performance of $A. \text{beckii}$ (index $P = 6.81$) is highest among commercially exploited gastropod species, but in the range of values found in other large gastropod species studied (Fig. 5). Individual somatic production P_j increased with size j up to a maximum of 98.7 g SFWM year$^{-1}$ at 270 mm SL and decreased again towards larger sizes (Fig. 1).

Total mortality rate Z of $A. \text{beckii}$ amounted to 0.210 y$^{-1}$ (95% confidence range ±0.053, Fig. 6). Natural mortality rate M was estimated at 0.081 (95% confidence range 0.080–0.103), with $t_{\text{max}} = 34$ y (at 390 mm SL), $BM_{\text{max}} = 10385$ kJ (2720 g SFWM) and
$T = 286 \text{ K}$. Accordingly, fishing mortality F amounts to 0.129 y^{-1} and exploitation rate E to 0.614. Fig. 7a shows the selection curve for the currently applied sampling technique. Specimens under 160 mm are not caught at all, probability of capture attains 50% at 221 mm SL and 100% ≥ 270 mm SL. The optimum exploitation rate is estimated at 0.427 (Fig. 7b).

4. Discussion

4.1. Stable oxygen ratios

The average annual temperature range inferred from the $\delta^{18} \text{O}$ range in the shell of $A. \text{beckii}$, 8.2 °C to 16.8 °C, coincides with the reported instrumental range of 9 to 17 °C seasonally (Guerrero and Piola, 1997), i.e. shell $\delta^{18} \text{O}$ reflects the seasonal temperature pattern quite well. Thus, the distinct shell mark at each $\delta^{18} \text{O}$ maximum indicates a slow down or even halt of shell growth during winter, as observed in other large gastropod species (Bigatti et al., 2007; Cledón et al., 2005; Giménez et al., 2004). The second, weaker growth mark in the shell of $A. \text{beckii}$ is formed during summer, albeit only beyond a certain age (Fig. 3). Such a “second” annual band has not yet been reported from other gastropods, but from some bivalves, where it coincides with the annual reproduction event (e.g. Salzwedel, 1980). We presume the same cause for the summer growth band in $A. \text{beckii}$, because it does not show in the early, most likely pre-maturity years, and it coincides with the time of reproductive activity (Arrighetti and Penchasadeh, 2010a).

4.2. Age and growth

According to the isotopic data and the internal growth marks observed we can infer that $A. \text{beckii}$ reaches 28 years at 380 mm SL. Potential lifespan in Mar del Plata region is >29 years, as the largest individuals recorded so far had 390 mm SL. This is rather long lived compared to other large gastropods, in particular other species of the same family, e.g. $Zidona \text{dufresnei}$ (17 years, Giménez et al., 2004), $Adelomelon \text{brasiliiana}$ (20 years, Cledón et al., 2005) and $Odontocymbiola \text{magellanica}$ (20 years, Bigatti et al., 2007). Despite this high maximum age, growth is comparatively rapid, as indicated by the high overall growth performance (Fig. 5).
Apparently, A. beckii belongs to those gastropod species where growth in size has no inflexion point beyond one year of age, i.e. it can be described properly by the specialized von Bertalanffy function (see Picken, 1980; Santarelli and Gros, 1985; Appeldoorn, 1988; Prince et al., 1988; Tarr, 1995 for other examples). This is in contrast to other velutids that show a sigmoid size growth pattern, best described by the Gompertz model (e.g. Giménez et al., 2004; Bigatti et al., 2007) or the single logistic model (e.g. Cledón et al., 2005). Thus all standard fisheries analysis that is based on the von Bertalanffy model, such as virtual population analysis, can be applied to A. beckii.

4.3. Production, mortality and exploitation

Our size-frequency distribution is based on data collected from commercial catches with 42 × 42 mm mesh size, therefore our sample efficiency is ~ 100% in smaller individuals. This is clearly indicated by the size-converted catch curve, where individuals smaller than 11 years of age are under-represented. Therefore, estimates of production and productivity based on this distribution would underestimate true population values distinctly. The estimated fishing mortality of 0.129 y⁻¹ appears to be fairly high for such a long lived species, and consequently the current exploitation rate of 0.614 is much beyond the optimum rate of 0.427 (Fig. 6). These findings indicate that the current exploitation regime exerts a much to high fishing pressure and will be unsustainable in the long run.

The ecological significance of A. beckii in the Mar del Plata subtidal water ecosystem is defined by its trophic position. This species preys on Zidona dufresnii (Arrighetti, 2009) and probably on other gastropods and bivalves (Weaver and du Pont, 1970), positioning it among the top benthic predators in the food web. The current exploitation level may cause irrevocable changes in this food web.

We fear that without a proper management approach – including minimum size, no-catch periods and no-catch areas – this economically valuable and ecologically important species will be reduced to insignificant levels in the Mar del Plata area within a short period of time.

Acknowledgment

This study was supported by the German Academic Exchange Service (DAAD) and the Malacological Society of London Research Grant. We are grateful to Kerstin Beyer for technical support. Part of this work was financed by the projects CONICET PIP 2788 and UBACYT X171.

References