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Abstract

The gradual cooling of the climate during the Cenozoic has generally been attributed
to a decrease in CO2 concentration in the atmosphere. The lack of transient climate
models and in particular the lack of high-resolution proxy records of CO2, beyond the
ice-core record prohibit however a full understanding of the inception of the Northern5

Hemisphere glaciation, as well as the mid-Pleistocene transition. Here we elaborate on
an inverse modeling technique to reconstruct a continuous high-resolution CO2 record
over the past 20 Ma, by decomposing the global deep-sea benthic δ18O record into
a mutually consistent temperature and sea-level record, using a set of 1-D models of
the major Northern and Southern Hemisphere ice sheets. We subsequently compared10

the modeled temperature record to ice core and proxy-derived CO2 data to reconstruct
a continuous CO2 record over the past 20 Myrs. Results show a gradual decline from
450 ppmv around 15 Myrs ago to 280 ppmv for pre-industrial conditions, coinciding with
a gradual cooling of the Northern Hemisphere land temperatures by approximately
12 K, whereas there is no long-term sea-level variation caused by ice-volume changes15

between 13 to 3 Myrs ago. We find no evidence for a change in climate sensitivity other
than the expected decrease following from saturation of the absorption bands for CO2.
The reconstructed CO2 record shows that the Northern Hemisphere glaciation starts
once the average CO2 concentration drops below 265 ppmv after a period of strong
decrease in CO2. Finally it might be noted that we observe only a small long-term20

change (23 ppmv) for CO2 during the mid-Pleistocene transition.

1 Introduction

The gradual climate cooling reconstructed for the past 20 Myrs has generally been at-
tributed to a change in CO2 concentration in the atmosphere (Zachos et al., 2008;
Ruddiman, 2003), although the amount of CO2 decrease and the amplitude of subse-25

quent cooling are discussed widely (Jansen et al., 2007). Since data and modeling

438

http://www.clim-past-discuss.net
http://www.clim-past-discuss.net/7/437/2011/cpd-7-437-2011-print.pdf
http://www.clim-past-discuss.net/7/437/2011/cpd-7-437-2011-discussion.html
http://creativecommons.org/licenses/by/3.0/


CPD

7, 437–461, 2011

Continuous and

self-consistent CO2

and climate records

over the past 20 Myrs

R. S. W. van de Wal et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

� �

� �

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

studies covering this time period are poorly integrated, our understanding of the in-
ception of ice ages in the Northern Hemisphere (NH) (Raymo, 1994), as well as the
mechanisms causing the transition from 41 000-year to 100 000-year dominated cli-
mate cycles (Tziperman and Gildor, 2003; Clark et al., 2006; Huybers, 2007; Bintanja
and Van de Wal, 2008), that occurred without apparent changes in the insolation forc-5

ing (Hays et al., 1976; Imbrie and Imbrie, 1980) is still incomplete. Current difficulties
in assessing the role of CO2 on the long time scales are the lack of reliable CO2 data
from the pre ice-core record (Ruddiman, 2010), and the limited data of sea level (Miller
et al., 2005; Müller et al., 2008) and temperature (De Boer et al., 2010). Our cur-
rent knowledge on long-term climate variability builds on the Milankovitch theory of10

solar-insolation variability (Milankovitch, 1941), including scenarios that rely on highly
parameterized non-linear response mechanisms to the insolation forcing. Recent de-
velopments in the interpretation of marine δ18O records and new CO2 proxies allow us
to reassess this understanding and to present a global overview of temperature, sea
level and CO2 changes over time.15

We build on a model set-up that aims to integrate climate variables. In the early
stages it was used by Bintanja et al. (2005a) to calculate ice age temperatures with
sea level as external forcing. Rather than forcing a model with an independent temper-
ature proxy and calculating ice-volume change, we forced by then the ice-sheet model
with sea level, and reconstructed the temperature necessary to match the sea-level ob-20

servations. This model includes an inverse routine, which related a perturbation in NH
atmospheric temperature relative to present day to the difference between modeled
and observed sea level. Modeled ice volume was compared to observed sea level,
and temperature was adjusted such that modeled ice volume matched the observa-
tions. This constraint ensured that sea level and temperature are mutually consistent.25

In addition it allowed a quantification of model errors, and errors arising from the uncer-
tainty in the sea-level observations or reconstructions. Results have been compared
favorably with data by Rohling et al. (2009) and Lambeck and Chapell (2001) for sea
level, and Lear (2000) for temperature. Nevertheless an obvious limitation of this work
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was that global sea-level observations are limited to the last 0.5 Myrs. Therefore later
studies used the same inverse approach, but used the marine benthic δ18O record as
forcing (e.g. Bintanja et al., 2005b). This was achieved by taking advantage of mass
conservation of δ18O on the global scale. First, It was applied to calculate temper-
ature and sea level over the past million years (Bintanja et al., 2005b), and later to5

explore the mechanisms of the Mid-Pleistocene Transition (Bintanja and Van de Wal,
2008), both focusing on the climate in the Northern Hemisphere, as only the Eurasian
and North American ice sheet complexes were modeled explicitly. In order to use the
benthic δ18O record as forcing, a simple deep-water temperature model was used to
separate the marine benthic record changes in deep-water temperature changes and10

ice-volume changes. The last step in the model sequence until now is the explicit in-
clusion of ice sheets in the Southern Hemisphere (SH) to allow the study of the entire
Cenozoic (De Boer et al., 2010).

In this paper we will use their Cenozoic reconstruction in terms of temperature and
sea level to compare existing proxies for CO2 to our reconstructed temperature be-15

yond the ice-core record. The reconstructed temperature is based on a stacked deep-
sea record (Zachos et al., 2008), and models of the five major ice sheets in (North
America, Eurasia, Greenland, East- and West-Antarctica, further abbreviated to NAIS,
EAIS, GrIS, EAIS, WAIS). This temperature, which is self-consistent with the deep-sea
record, is then compared to the ice-core CO2 record (Petit et al., 1999; Siegenthaler20

et al., 2005; Lüthi et al., 2008) over the past 800 000 years. This comparison allows
us to select existing CO2 proxies, which are consistent with reconstructed tempera-
ture, and hence self-consistent with the deep-sea record. These selected CO2 records
are then used to determine a regression coefficient between temperature and CO2,
which is used to reconstruct a global mutually self-consistent and continuous overview25

of temperature, sea level and CO2 over the past 20 Myrs.
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2 Inverse δ18
O modeling approach

The inverse modeling approach enables the deep-sea benthic δ18O record to be de-
composed in a temperature and ice-volume component by simulating changes in NH
temperatures and five ice sheets in Northern and Southern Hemisphere, representative
for glaciations on Earth (Bintanja et al., 2005b; de Boer et al., 2010). Key processes in5

the ice-sheet model are a variable isotopic sensitivity and isotopic lapse rate, the mass
balance height feedback, the mass balance albedo feedback and the adjustment of the
underlying bedrock. The methodology is a continuation of previous work performed
with 3-D ice-sheet models over the Plio-Pleistocene (Bintanja et al., 2005b; Bintanja
and Van de Wal, 2008).10

The key difference with the old model set up and the present work by de Boer et
al. (2010) is the inclusion of ice in the SH, allowing a longer time span to be cov-
ered, since for warmer conditions ice-volume changes are dominated by changes in
the Southern Hemisphere. This is done at the expense of the complexity of the ice-
sheet models used, to keep computing time manageable. In order to run over 35 Myrs15

we now explicitly simulate five 1-D ice sheets, rather than the two 3-D ice-sheet models
used by Bintanja et al. (2005b) and Bintanja and Van de Wal (2008). The five 1-D ice-
sheet models simulate ice flow over a cone shaped continent (De Boer et al., 2010).
They represent glaciation in Eurasia, North America, Greenland and East and West
Antarctica, where each has a different geometry, mass balance forcing and isotopic20

content.
The key parameter to be simulated is still the change in the NH temperature (∆TNH),

which determines the growth of ice, and changes in the deep-water temperature and
the SH temperatures. To obtain atmospheric temperatures a simple parameterization
is used to relate deep-water temperature to atmospheric temperature (Bintanja et al.,25

2005b). In addition we include a simple parameterization of the temperature difference
between the Northern and the Southern Hemisphere, which is used to calculate growth
and decay of ice in the Southern Hemisphere. This parameterization contributes to the
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uncertainty of the model as will be explained later. The conceptual approach used here
was developed for orbital time scales. Thus the antiphase dynamics of temperature in
northern and southern high latitudes as observed for the bipolar seesaw (e.g. Barker
et al., 2009) is not embedded here, neither are Dansgaard/Oeschger events resolved.

In the ice-sheet model, isotopic content and ice volume are calculated with a time5

step of 1 month and are implemented every 100 years in the ocean isotope module.
Every 100 years, the modeled benthic isotope is evaluated and forwarded to calculate
the temperature anomaly for the next time step (Bintanja et al., 2005b).

As forcing we use the stacked benthic δ18O record of Zachos et al. (2008), which is
smoothed and interpolated to obtain a continuous record with a resolution of 100 years.10

This implies that the time scale of the reconstruction is implicitly determined by the
benthic record. The methodology ensures that the phasing between temperature and
sea level is consistent with respect to the benthic δ18O data. Further details and a
more thorough model description are presented by de Boer et al. (2010).

3 Results in terms of sea level and temperature variability15

Our model-based deconvolution shows a long-term decrease in TNH by 12 K since the
Miocene with superimposed orbitally forced changes, Fig. 1. Eustatic sea level, more
strictly sea level from ice-volume changes only, gradually falls, but is roughly constant
from 13 Ma (+15 m) to 3 Ma (+5 m) as the ice sheets in the SH are full grown and
major ice sheets in the NH are not yet developed (Fig. 1c). Moreover, the deviation of20

the sea-level changes from the 400 kyr running mean revealed only low amplitude sea-
level changes of 10 m during this time period, whereas it fluctuated up to +20 m prior
to 13 Ma and up to 66 m after 3 Ma. Maximum sea level high-stand of +55 m occurred
around 15 Ma, probably caused by a reduced East Antarctic ice Sheet (De Boer et al.,
2010).25

Figure 2 shows that there is not a unique solution for sea level given a certain temper-
ature. This results from the different time scales in the coupled system of ice sheets,
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changing deep-water temperatures, surface temperatures, bedrock adjustment, and
forcing and feedbacks of the mass balance height and albedo-temperature feedback.
Obviously, sea level rises on average with temperature as illustrated by the thick lines
in Fig. 2a. On average the sea-level change is 6 m per Kelvin temperature change.
Close to present-day temperatures, i.e. ∆TNH >−2 K to ∆TNH <+10 K, only the Green-5

land and West Antarctic ice sheets change in size, resulting in only minor sea-level
fluctuations (Fig. 2b), which are approximately 5 times lower compared to warm or cold
conditions, expressed per Kelvin temperature change. During warmer (∆TNH >+10 K)
and colder climates (∆TNH <−2 K), sea-level changes were stronger due to variations
in the size of the large North American, Eurasia and East Antarctic ice sheets. For10

colder climates the large NH ice sheets are vulnerable to environmental changes, for
warmer climates Antarctica is sensitive to temperature changes with an average sen-
sitivity (∆ Sealevel/∆TNH), which is approximately similar for warm and cold climates
as indicated by the thick line in Fig. 2a. In addition Fig. 2b shows the volume change
for the individual ice sheets as a function of temperature leading by summation to the15

complex pattern in Fig. 2a. Also on the level of an individual ice sheet, transient ef-
fects impede a simple and unique solution between temperature and sea level, which
implies that inverting climate information from sea-level records has to be considered
with care.

In contrast to the sea-level record, temperature shows a more gradually decline from20

the Miocene maximum around 15 Myrs ago to the start of the major glaciation in the
Northern Hemisphere around 3 Ma. The gradual increase in the benthic δ18O record
leads to a long-term cooling of the climate between 13 and 3 Ma. The amplitude of
temperature and sea-level variability both increase once the major ice sheets develop
in the Northern Hemisphere around 3 Myrs ago.25

Many tests have been performed with the model to assess the uncertainties in the
input and model parameters on sea level and temperature results. The most important
tests allow us to estimate the uncertainty range displayed in Fig. 1. For the δ18O input
we defined an uncertainty of 0.16‰, which is derived from the root mean squared
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difference between the smoothed marine record and the actual data points. The key
model parameters contributing to the uncertainty are (1) the deep-water to surface-air
temperature coefficient (range 0.15 to 0.25), (2) the temperature difference between
the NH temperatures and the temperatures around Antarctica (range: 6–14 K for EAIS,
range: 2–10 K for WAIS), and (3) the isotopic content of the ice sheets (range from5

−43, −32, −28 to −55, −42, −36‰ respectively for EAIS, WAIS, GrIS), see De Boer
et al. (2010) for details. For the three model parameters, maximum and minimum
values are used to test the effect on modeled temperature and sea level. The resulting
standard deviation varies over time, but is on average 1.9 K for temperature and 6.2 m
for sea level over the past 20 Myrs.10

In order to interpret the results one has to bear in mind that the reconstructed tem-
peratures are strictly only valid in the continental areas where ice sheets develop in the
NH (∆TNH), being mid to sub polar (NH) latitudes (Bintanja et al., 2005a), implying that
they are therefore not necessarily representative for the entire globe (∆Tg).

4 Reconstruction of CO215

Intriguing is the question how these changes in temperature and sea level are related
to changes in CO2. In order to get a consistent CO2 record, we investigated the rela-
tion between temperature and proxy CO2 records based on B/Ca ratio (Tripati et al.,
2009), stomata (Kürschner et al., 2008), δ11B (Pearson and Palmer, 2000; Hönisch
et al., 2009), alkenones (Pagani et al., 2005, 2009), a combination of alkenones and20

δ11B (Seki et al., 2010), and ice cores (Petit et al., 1999; Siegenthaler et al., 2005;
Lüthi et al., 2008), all shown in Fig. 3. All data points are representative for different
discrete time intervals, with obviously a bias towards the more modern data points and
each having its advantages and drawbacks. For example, the boron isotope derived
estimates of the CO2 concentration are based on the fact that higher atmospheric con-25

centrations lead to more dissolved CO2 in the surface ocean, which cause a reduction
in the pH of the ocean. As the pH can be derived from measurements of the δ11B of
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calcium carbonate (Pearson and Palmer, 2000), CO2 can be calculated provided that
another parameter of the marine carbonate system (e.g. alkalinity) is known (Zeebe
and Wolf-Gladrow, 2001). The method is expensive, time consuming, and only well-
preserved foraminiferal specimen are suitable for the analysis, resulting in up to now
only low-resolution records. Ice cores provide the most robust and high-resolution CO25

archive as they directly preserve the atmospheric concentrations, but only for the past
800 000 years (Lüthi et al., 2008). Here, we accept all data as they are published
without any further correction. The general picture is that the scatter in the different ap-
proaches is large, but there is a tendency for higher CO2 values in the early Cenozoic
(Ruddiman, 2003; Zachos et al., 2008), with ambiguous results for the last 20 Myrs.10

Moreover none of the proxies has a continuous record for the entire Cenozoic (Fig. 3).
For this reason there is a need to compile all available records in a consistent manner.
The decomposition of the marine benthic δ18O record offers a framework to do so.

We use the modeled temperature as a tool to select mutually consistent CO2 records
by assuming that there is a relation between CO2 and temperature, which is compa-15

rable to the relation found in ice cores. Figure 4 shows the various CO2 estimates
against our reconstructed NH temperatures. A possible explanation for the fact that
δ11Bh (δ11B from Hönisch et al., 2009) is consistent with CO2 from the ice cores and
δ11Bp (δ11B from Pearson and Palmer, 2000) shows a different slope, is the different
methodology followed, where Hönisch et al. (2009) only used a single species, Pearson20

and Palmer (2000) used multispecies. The comparison in Fig. 4 reveals that the CO2
estimates derived from the ice cores, B/Ca, δ11Bh and the combination of alkenones
and δ11Bs (δ11B from Seki et al., 2010) are mutually consistent, because they have a
similar slope, whereas the δ11Bp, alkenones and stomata-derived CO2 estimates do
not show a consistency with the ice-core record.25

We therefore only selected the consistent records to derive an empirical relation-
ship between temperature and CO2. This relation between temperature and CO2 is
used to calculate CO2 from temperature in order to generate a continuous CO2 proxy
record, which is consistent with the benthic δ18O record and continuous in time. The
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application of the correlation between CO2 and temperature implies that the regression
needs to cover the temperature range as shown in Fig. 1 without having too much bias
to the data rich cold climate state. For this reason, we binned the CO2 observations
in intervals of 1 K NH temperature change, for which results are shown in Fig. 5. The
temperature records are running averages over 2000 years, in order to prevent outliers5

due to a mismatch in dating of the CO2 proxy and the benthic record. Furthermore,
several tests have been performed to weigh the different accepted CO2 proxies, by un-
certainty in modeled temperature and measured CO2. In addition, we tested the effect
of the binning size and averaging period, which contribute to the uncertainty in the re-
constructed CO2. Eventually we estimated based on all these tests an uncertainty of10

10% in the slope between ln(CO2/CO2,ref) and ∆TNH around a central value of 39 K. A
log-linear regression between ∆TNH and CO2 is used because of the saturation of the
absorption bands for CO2 (Myhre et al., 1998), see also next section.

As a result of the 10% uncertainty in C, the CO2 as presented in Fig. 1 has an
uncertainty of 20 ppmv for cold climates and up to 45 ppmv for warm climates.15

Over the past 800 kyr the reconstructed CO2 record is in good agreement with the
ice-core record, (Fig. 6c), which is, however, input to the reconstruction and therefore
not an independent result. On the other hand it is noteworthy to mention because
the ice-core CO2 data are significantly lower during the earliest two glacial maxima
recorded in the ice between 0.6 and 0.8 Ma. Over the mid-Pleistocene transition (de-20

fined here from 1.5 to 0.5 Myrs), our results indicate a gradual decline of about 23 ppmv
since the average level near 1.5 Ma, and at the same time an increase in the amplitude.
Carbon-cycle simulation results over the last 2 Myr across the Mid-Pleistocene Transi-
tion (Köhler and Bintanja, 2008) support the change in amplitude, but suggest stable
glacial CO2 values and reduced interglacial CO2. It is also unclear why the combined25

δ11B and Alkenone record is higher than our reconstruction for the last 1.5 Myrs.
More remarkable is the reasonable agreement of our reconstructed CO2 with the

stomata data between 15 and 20 Myrs BP (Fig. 6a). The stomata data capture a similar
level of CO2, but they were not included in the fit, as the temperature CO2 slope is much
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lower as indicated in Fig. 4. Note that around 10 Myr ago the B/Ca data indicate much
lower CO2 concentrations, in fact more in line with the GEOCARB (carbon-cycle model;
Berner, 1994) estimates (Fig. 6a). Ultimately this implies an inconsistency between
deep-sea benthic δ18O reconstructions and B/Ca.

5 Long-term knowledge on climate sensitivity5

Since we now have a continuous record of both temperature and CO2, we can address
the climate sensitivity in more detail. There are various ways to define climate sensi-
tivity. Here we define climate sensitivity (S) as the functional dependency of changes
in global surface temperature (∆Tg) on CO2, thus ∆Tg = f (CO2). It is calculated from
the radiative forcing (∆R) caused by changes in CO2, other greenhouse gases, and10

various fast and slow feedbacks (f ). A general formulation for the global temperature
is:

∆Tg = S
∆R

1 − f
(1)

In this general setting, changes in CO2 might be the cause for climate change, thus
represent the forcing term ∆R or a feedback, while the initial perturbation in the radia-15

tive balance might be caused by other processes. We will in the following develop a
functional relationship between the global temperature and CO2, in which we assume,
that CO2 is causing the radiative imbalance, thus ∆R = f (CO2), which is then amplified
by other processes. This by no means implies, that we believe that changes in CO2
were always the driver for climate change over the last 20 Myr, but it is used to derive20

a functional relationship between ∆Tg and CO2. The opposite procedure (forcing by
other processes, and feedbacks by CO2) is certainly a valid possibility. However, for
reasons of simplicity we here follow only one of the two possible calculations.
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From radiative transfer theory we know that due to the saturation of the absorption
bands a logarithmic relationship has to be applied for the radiative forcing of CO2:

∆R = β ln
�

CO2

CO2,ref

�
(2)

where ∆R is the radiative forcing in W m−2, and β is estimated to be 5.35 W m−2

(Myhre et al., 1998). This implies a radiative forcing of −2.4 W m−2 for the observed5

changes in CO2 from LGM to present-day, and +3.7 W m−2 for a doubling of CO2, with
CO2,ref =278 ppmv. Non-CO2 greenhouse gases like CH4 and N2O enhance this direct
radiative forcing of CO2. For the last 800 kyr this enhancement was about 30% (Köhler
et al., 2010), which is approximated by a factor γ =1.3.

The sensitivity S of the climate system to external forcing is typically described by the10

Charney sensitivity Sc (Charney et al., 1979), which includes the fast feedbacks of the
system (water vapor, lapse rate, albedo, snow and sea ice, clouds). It is the quantity
usually calculated by coupled ocean-atmosphere models. Here, we use a Charney
sensitivity Sc derived from paleo data of 0.72 K Wm−2 (Köhler et al., 2010). It is based
on a LGM cooling of ∆Tg,LGM =−5.8 K (Schneider von Deimling et al., 2006), and a15

total radiative forcing ∆RLGM =−9.5 W m−2 (Köhler et al., 2010). This value for Sc takes
into account that the LGM climate sensitivity is about 15% smaller than sensitivities
calculated for future scenarios with 2×CO2, possibly caused by cloud microphysics
(Hargreaves et al., 2007).

The total forcing of the system (∆R�) includes the forcing ∆R caused by all green-20

house gases, which is amplified by a feedback factor f consisting of the slow feedbacks
not included in Sc. It represents the feedbacks from albedo changes caused by land
ice, vegetation and dust.

∆R� =
γ ∆R
1 − f

(3)

A value for f =0.71 is derived from proxy-based evidence (Köhler et al., 2010).25
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In the previous section it was shown that we obtain a temperature change for the
land masses in the NH, of 15 K for an ice age, about 2.5 times larger (α=2.5) than the
global temperature change of slightly less than 6 K for LGM. Hence the final expression
for the change of ∆TNH can be written as:

∆TNH = C ln
CO2

CO2,ref
(4)5

with

C =
α β λ Sc

1 − f
(5)

Calculation of C (α=2.5, β=5.35, γ =1.3, Sc =0.72, f =0.72, CO2,ref =278) re-
sults in an indicative value of 43 K. Where it might be noted that application of
CO2,ref =278 ppmv implies that ∆TNH is expressed relative to pre-industrial levels.10

The agreement between C=43 K with the slope of the regression (39±10%) derived
from our modeled ∆TNH and proxy CO2 (Fig. 5) confirms that even with the limited data
available we can argue that we have a reasonable understanding between temperature
and CO2 over the last 15 Myrs.

One of the major uncertainties here is probably the assumption that the ratio be-15

tween the temperature change for the Northern Hemisphere and the global mean tem-
perature is constant over time. Theories and observations on much warmer climate
states suggest a decrease in the meridional temperature gradient implying a decrease
in α. Hence, our result can be considered as the net effect of the decrease in α and
the enhanced long-term feedbacks. The applied method does not allow separation of20

these effects, and therefore compensating variations in different mechanisms cannot
be excluded. If α is much smaller for warmer climate conditions, it would imply that
considerably higher CO2 concentrations in the past are necessary to explain the ben-
thic δ18O record. Stomata, which are excluded from our fitting procedure, the GeoCarb
data (Berner, 1994), and the B/Ca data do not indicate this.25
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Another source of uncertainty is the value for Sc. The value adopted here is derived
from LGM conditions. Hargreaves et al., 2007 argue that this value is 15% larger than
the value for 2×CO2. Our values for the Miocene maximum are close to those high
CO2 concentrations. A similar change in the sensitivity implies that C would decrease
to a value of 37 K, which is still within the range based on our modeled temperatures5

and the proxy CO2 records. Here we keep C constant over time.
Too little information is available to attribute individual changes in the parameters

over 20 Myrs. But given the fact that the fitted value of C based on the presented data
in this paper, and the estimated value of C based on our knowledge of the system
(Köhler et al., 2010) are close to each other, implies that the combined effect of the10

key processes affecting benthic δ18O records, temperature and CO2 are incorporated
sufficiently accurately for at least the period that there is ice on Earth. It also implies
that the sensitivity of the climate in the past has been considerably different from the
present-day climate. From the derived coefficients between temperature and CO2 it
follows that for a 20 K cooling in ∆TNH (or 8 K in Tg), the sensitivity was about 35%15

higher. This implies that care should be taken in the application of paleoclimate data
for estimates of present-day changes.

6 Discussion and conclusion

Accepting the CO2 concentration as presented in Fig. 1 with all its caveats, completes
the picture of the key climate variables over the last 20 Myrs. The figure shows a grad-20

ual decline from about 450 ppmv near 15 Myrs ago to a preindustrial level of 278 ppmv
or a decrease of only 170 ppmv. This is about 1.7 times the increase in CO2 concen-
tration over the last century as well as 1.7 times the range in the ice-core record over
the past 800 Kyrs. If we would have used only the ice-core record we would have ob-
tained Middle Miocene values, which are 300 ppmv above present-day level and the25

sensitivity would not agree with the analyses presented in the previous paragraph as
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the sensitivity (C) would decrease to a value as low as 28.5 K. Hence the application
of the inverse model and the stacked binning procedure is crucial for the results.

The question remains of course what causes these subtle changes in the carbon cy-
cle on the long time scale. In order to answer this question much higher resolution and
accuracy of CO2 records are necessary. The large sensitivity implies that, in contrast5

to earlier conclusions (Hönisch et al., 2009), subtle changes in CO2 (possibly internal),
may have caused the MPT, when dominant 41-kyr glacial cycles evolved into a domi-
nant 100-kyr rhythm (Van de Wal and Bintanja, 2009). Our results indicate an average
change of only 23 ppmv between 1.5 Ma and 0.5 Ma, and also an increasing amplitude.
This result seems to be more in line with a recent estimate by Lisiecki (2010) based10

on marine δ13C measurements and the δ11B data by Hönisch et al. (2009) than with
the B/Ca derived CO2 data by Tripati (2009), which indicates a larger change in CO2.
However, the trend in CO2 over time is too small given the accuracy of the applied
methods to draw firm conclusions on this point.

With respect to the inception of the Northern Hemisphere ice around 2.7 Myrs ago15

our results indicate that the trend in CO2 before the inception is strong (see Fig. 1d),
and that the inception takes place once the long-term average concentration drops
below 265±20 ppmv (Fig. 6b). So for this climate transition a change in CO2 seems to
be more important than for the mid-Pleistocene transition.

More importantly, the self-consistency of our approach should enable researchers20

from various disciplines to identify more easily, how the various CO2 proxies can be
understood in the broader framework of long-term climate change.

Various geological processes important during the last 20 Myr such as mountain up-
lift (e.g. Foster et al., 2010) and changes in the gateways are not considered here. How-
ever, for global climate changes CO2 induced changes dominate as shown by Henrot25

et al. (2010), who argued based on a model of intermediate complexity that geological
processes like mountain building and changes in ocean gateways are of secondary
importance for global temperature and can not explain the proxy reconstructions of the
change in temperature within their modeling framework.
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As final remark we stress that the changing sensitivity implies that care should be
taken to use paleo data as analogue for present-day conditions. This is not to disqualify
paleo climate research in general, but rather a warning. Paleo data provide the range of
natural fluctuations, but the rate of change of key variables is shown to be depending
on the state of the system (Köhler et al., 2010), the time scale of interest and the5

processes at stake, which are not necessarily similar in the past as for present-day
climate change.
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Lorius, C., Pépin, L., Ritz, C., Saltzmann, E., and Stievenard, M.: Climate and atmospheric
history of the past 420 000 years from the Vostok ice core, Antarctica, Nature, 399, 429–436,
1999.

454

http://www.clim-past-discuss.net
http://www.clim-past-discuss.net/7/437/2011/cpd-7-437-2011-print.pdf
http://www.clim-past-discuss.net/7/437/2011/cpd-7-437-2011-discussion.html
http://creativecommons.org/licenses/by/3.0/


CPD

7, 437–461, 2011

Continuous and

self-consistent CO2

and climate records

over the past 20 Myrs

R. S. W. van de Wal et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

� �

� �

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

Raymo, M. E.: The initiation of Northern Hemisphere glaciation, Annu. Rev. Earth Planet. Sci.
22, 353–383, 1994.

Rohling, E. J., Grant, K., Bolshaw, M., Roberts, A. P., Siddall, M., Hemleben, Ch., and Kucera,
M.: Antarctic temperature and global sea level closely coupled over the past five glacial
cycles, Nat. Geosci., 2(7), 500–504, 2009.5

Ruddiman, W. F.: A paleoclimatic Enigma?, Science, 328(5980), 838–839,
doi:10.1126/science.1188292, 2010.

Ruddiman, W. F.: Earth’s climate, W. H. Freeman and Company, New York, 2001.
Ruddiman, W. F.: Orbital insolation, ice volume and greenhouse gases, Quaternary Sci. Rev.,

22, 1597–1629, 2003.10

Schneider von Deimling, T., Ganopolski, A., Held, H., and Rahmstorf, S.: How cold was the Last
Glacial Maximum?, Geophys. Res. Lett., 33, L14709, doi:10.1029/2006GL026484, 2006.

Seki, O., Foster, G. L., Schmidt, D. N., Mackensen, A., Kawamura, K., and Pancost, R. D.:
Alkenone and boron-based Pliocene pCO2 records, Earth Planet. Sc. Lett., 292, 201–211,
2010.15
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Fig. 1. Records of key climate variables over the last 20 Myrs. Forcing of the model is the
stacked benthic δ18O record (a), dark blue, Zachos et al., 2008. Output is a consistent record
for the Northern Hemisphere temperature change (b), green – and sea level (c), light blue.
The reconstructed CO2 record (d), orange – is obtained by inverting the relation between NH
temperatures and CO2 data (d). Here it is shown as 400-kyr running mean. Data used for the
reconstruction are indicated with different colours – see caption Fig. 3 for the details (d). The
δ18O curve is smoothed in order to clarify the gradual decrease over time. All data are available
every 0.1 kyr. The thick lines represent 400-kyr running mean. Gray error bars indicate the
standard deviation of model input and output. For CO2 the error bar is calculated as 400-kyr
running mean, for the other records it is the standard deviation on the 0.1 kyr value as used in
the model.
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(a) (b)

Fig. 2. (a) Sea-level change is shown as a function of the reconstructed temperature for a
set of 3-D NH ice sheets (blue) and for a set of five 1-D ice-sheet models (red) (Bintanja and
Van de Wal, 2008; De Boer et al., 2010). The more sophisticated 3-D results are validated by
observation of sea level (Lambeck and Chapell, 2001; Rohling et al., 2009). The 1-D results
are in line for the colder climate condition with the 3-D results. The warm temperatures in
combination with the sea-level change resemble the melt of SH ice. The thick lines in the lower
panel show the mean trends, emphasizing the low gradient for the present-day climate centred
around zero. (b) The response of the individual ice sheets. Note the strong transient and
non-linear response for each ice sheet.
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Fig. 3. CO2 records as a function of time, indicating the inhomogeneous distribution in amount
and range for the different proxies. Data are ordered randomly from top to bottom being B/Ca
(Tripati et al., 2009), stomata data (Kürschner et al., 2008), alkenones combined with δ11Bs

(Seki et al., 2010), δ11Bp (Pearson and Palmer, 2000), δ11Bh (Hönisch et al., 2009), alkenones
(Pagani et al., 2005, 2010) and ice (Petit et al., 1999; Siegenthaler et al., 2005; Lüthi et al.,
2008). Minor ticks for the CO2 concentrations are every 100 ppm for all records. The symbols
and colors for the different proxies are similar in all figures.
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Fig. 4. Scatter plot of the different CO2 proxies as a function of the reconstructed temperature,
which is derived from, the benthic δ18O record as shown in Fig. 1. Only records with filled
symbols δ11Bh (Hönisch et al., 2009), B/Ca (Tripati et al., 2009), alkenones+δ11Bs (Seki et al.,
2010) and the ice-core record (Petit et al., 1999; Siegenthaler et al., 2005; Lüthi et al., 2008) are
used to calculate the climate sensitivity, C=39 K. For reasons of transparency CO2 is plotted
in ppmv. If CO2 would be plotted as ln(CO2/CO2,ref) a similar picture emerges. The latter is
physically more consistent as it takes the saturation of the absorption bands into account.
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Fig. 5. The selected (n=1287) proxy CO2 data (red dots) binned in intervals of 1 K NH tem-
perature change. The error bars represent one standard deviation variability of the data in the
selected temperature interval. The additional lines show the range in C values from different
weighing tests, blue C +10%, red C −10%.
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Fig. 6. Comparison of reconstructed CO2 record with C=39 K, with proxy records (symbols
as in Fig. 3). Panel (a) for the full 20 Myr period, (b) for the period around the NH hemisphere
inception and (c) for the mid-Pleistocene transition. Note that the vertical scale is different for
the different panels. The horizontal bar in panel (b) indicates the onset of major glaciation in
the Northern Hemisphere.
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