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Summary  

The proteasome is a highly conserved protein complex. It is present in pro- as well as in 

eukaryotes where it plays an essential role in intra-cellular protein degradation processes. 

Moreover, it is involved in molt-induced claw muscle atrophy of decapod crustaceans. In this 

study it was investigated whether the proteasome is also involved in the frequent and 

consecutive molting processes which lobster larvae pass through during their early 

development.   

The claw muscle tissues of pre-, inter-, and post-molt individuals, staged from Zoea 1 to Zoea 

3, and the first juvenile stage were analyzed. The trypsin-like, chymotrypsin-like, and 

peptidylglutamyl peptidase hydrolase activities of the 20S proteasome were determined. 

Furthermore, the protein patterns of the four inter-molt stages were separated through 2D-Gel-

Electrophoresis. Since proteasomal activity is also related to the expression of ubiquitin, the 

amount of ubiquitin-mRNA was quantified by Real-Time PCR.  

The proteasomal activities of all catalytic sites increased continuously within the first larval 

stage (Zoea1). In the subsequent two larval stages the proteasome activities increased towards 

molt but were reduced in the inter-molt phases. Moreover, the chymotrypsin-like site which is 

the limiting and controlling step in protein degradation seems to gain importance within the 

zoea 2 and 3 larvae. The chymotrypsin-like site showed increasing activities in the zoea 2 and 

zoea 3 stages whereas the two other sites did not change. This implies that especially the 

second and third larval stages have to cope with cellular processes in which a high proteasome 

attendance is required. After passing the larval stages the activity decreased significantly in 

the inter-molt juveniles. Moreover, the ubiquitin mRNA quantities changed not significantly 

throughout the first two larval stages. The zoea 3 was the first developmental stage in which a 

molt-related change of the quantity could be detected.   

I conclude that the proteasome plays an important role in the early development of European 

lobsters mainly by a) a general stimulation of all three proteasomal activity sites, b) an 

increase of the rate controlling chymotrypsin-like activity c) and the shift in the ratio between 

trypsin- like and chymotrypsin like activities. The latter may be paralleled by a change of the 

proteasomal subunit composition. The concerted action of the proteasomal sites and the “fine-

tuning” in between the sides helps to successfully facilitate the rapidly repeating molt 

processes during the larval development of the lobsters. 
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1. Introduction 

Different to animals with an endoskeleton, arthropods and, particularly, crustaceans, which 

possess an exoskeleton, need to molt when they grow. This entails that they have to reduce 

muscle tissue to slide out of their old exoskeleton. In crustaceans mold-induced muscle 

atrophy is most distinct in the large claws (Mykles 1999a). To be able to pass the claw muscle 

through the narrow joints a reduction of 40 % to 75 % of the muscle tissue is necessary 

(Skinner 1966, Shean and Mykles 1995). Although the muscle is weakened the contractile 

function remains. This is due to the fact, that the muscle fibers and myofibrils are less 

degraded, but instead the filament packing is compressed. In detail, ratios of thin to thick 

myofilaments decrease from 9:1 to 6:1 (Mykles and Skinner 1981). This reduction and re-

organization is accompanied by a drastically increase of protein synthesis (e.g. El Haj et al. 

1996). The high protein turnover rate seems to be necessary to perform the complex 

remodeling process.  

 

Two different but complementary proteolytic systems are reported to be mainly responsible 

for muscle degradation: the calcium-dependent proteases and the ATP/ubiquitin-dependent 

26S proteasome (Fig.1.1; Mykles 1990, Mykles an Haire 1991, Mykles 1999a).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1.1 Pathway for the degradation of myofibrillar proteins: Illustrated is the predicted involvement of both 
proteolytic systems during muscle degradation (Source: Mykles 1999a)  
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1.1 The proteasome 

The proteasome is a highly conserved multi-catalytic protease complex which is present in 

prokaryotes as well as in all tissues of eukaryotes (Baumeister et al.1998, De Mot 1999). 

Since the majority of redundant proteins are degraded via the ATP/ubiquitin-dependent 

proteasomal pathway, the enzyme seems to hold a regulatory key position in the control of the 

cell cycle (Hochstrasser 1995). It is involved in cell differentiation, apoptosis, antigen 

processing, or signal transduction (detailed overview given by Voges et al. 1999). In 

eukaryotes two forms of proteasome exist: the 20S proteasome (~700 kDa, also called core 

complex) and the 26S proteasome (~2.5 MDa), whereas only the 20S proteasome is 

catalytically active. The 26S proteasome consists of the 20S proteasome and additional 

regulatory subunits. The 26S proteasome performs in vivo the ATP/ubiquitin-dependent 

proteasomal pathway. 

The 20S core complex (~700 kDa) is made up of 28 subunits which are organized in four 

stacked rings (Fig.1.2). The two outer rings consist of seven different α-subunits and they 

generate a pore on each site which only unfolded proteins or shorter polypeptides can pass. 

The two inner rings consist of seven different ß-subunits and only they built up the hydrolytic 

chamber. However, only three subunits of each ß-ring are proteolytically active; the sites are 

named after their preferred cleaving mechanism. The trypsin-like site (ß2) cleaves 

preferentially after basic residues, the chymotrypsin-like site (ß5) after large hydrophobic 

residues and the peptidyl-glutamyl-peptidase hydrolase (PGPH) like sites (ß1) after acidic 

residues.  

 

 

 

 

 

 

 

 

Fig.1.2 Structure of the eukaryotic proteasome: the 26S proteasome is illustrated on the left (Source: Alberts 

et al. 2005) with the core complex in between the two regulatory complexes. The Core complex is shown 

enlarged on the right (Source: Groll et al. 2003). Here the organization of the 4 rings is shown and the 

localization of the three catalytic sites is marked in yellow. 
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Recent studies suggest that the PGPH like site should more correctly be termed as caspase 

like site since it cleaves aspartyl residues much better than glutamyl residues (Kisselev el al. 

1999). In this study the active site will still be termed as PGPH-like according to the substrate 

(a glutamate containing substrate) which was used to assay this activity.   

The subunit composition of the proteasome is reported to be extremely variable, depending on 

e.g. post-translational modifications, on the tissues, or age (Frisan et al. 1998, Dahlmann et al. 

2000, Husom et al. 2003). Depending on the composition the proteasome displays different 

catalytic cleavage preferences.     

A certain regulation of the 20S proteasome is already achieved through the compart-

mentalization of the complex. The pore size which is formed by the α-subunits restricts the 

access of proteins into the inner catalytic chamber. However, this feature alone would not be 

sufficient for the precise regulation of proteasomal activity in vivo. Therefore, the 20S 

proteasome is mainly attached to several regulatory complexes which inhibit, activate or 

modulate the proteasomal activity (Baumeister et al.1998, review: Glickman et al. 2001).  

Two of the most important regulatory complexes will be mentioned: the ATP-dependent 

PA700-complex, which mediates the degradation of ubiquitinated substrates, and the 

endogenous regulatory complex PA28, which generally activates the proteasome (Fig. 1.3). 

                                                                                

 

 

  

 

 

                                                                                    

 

 

 

 

 

 

Fig.1.3 Assembly of the 20S 
proteasome with regulatory 
complexes: On the left the assembly 
of the 4 rings to the 20S proteasome 
is illustrated. In one case the PA28 
complex binds to the outer α-subunit 
ring and enhances the degradation of 
non-ubiquitinated peptides. In the 
other case the PA700 complex binds 
and initiate the degradation of 
polyubiquitin-protein conjugates. 
(Source: Kevin St P. McNaught et.al. 
2001)  
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1.2. Ubiquitin and protein degradation 

The main feature of the efficient and highly selective degradation processes is the precise 

labeling of proteins that are selected for degradation. The majority of these proteins are 

labeled with ubiquitin and, therefore, degraded via the ATP/ubiquitin-dependent proteasomal 

pathway. Ubiquitin is a small, 76 amino-acids containing polypeptide. In a complex process it 

is reversibly attached to protein selected for degradation (in detail described in: Hochstrasser 

1995, Hershko et al.1998). The ubiquitin-protein conjugates are recognized by the PA700-

complex, bound to it, and unfolded. The ubiquitin is released and recycled again while the 

unfolded polypeptide is directed into the catalytic chamber to be degraded.   

An elevated protein turnover entails increasing concentrations of ubiquitin-protein conjugates. 

This, in turn, implies increasing concentrations of ubiquitin. Several studies investigating the 

gene expression during the molt cycle of crustacean, found a molt-dependent ubiquitin mRNA 

expression in the claw muscle tissue (Shean et al. 1995, Koenders et al. 2002, Spees at al. 

2003). The ubiquitin expression showed great variations. Shortly before the molt of the 

animals the expression of ubiquitin mRNA significantly increased. In contrast, inter-molt 

lobster possessed a remarkably lower content of ubiquitin. These results indicate a close 

connection between the level of protein degradation, the level of ubiquitin mRNA expression, 

and the activity of the 26S proteasome.   

 

 

1.3. Larval development of the European lobster, H.gammarus 

Female lobsters carry a clutch of fertilized eggs attached to the pleopods on the ventral site of 

their abdomen. The embryonic development lasts around one year before the larvae hatch as 

zoea 1 stage. The zoea 1 molts into two subsequent larval stages, zoea 2 and zoea 3 (all three 

stages are illustrated in Fig.1.4).  

  

 

 

Fig.1.4 Zoea 1, zoea 2 and zoea 3 (from left to right): The stages are not illustrated in proportional size to each 
other 
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The zoea stages are reported to be planktonic and carnivore (Charmantier et al. 1991). The 

next molt is accompanied with a metamorphosis-like transition into juvenile lobsters 

(Fig.1.5). These early juveniles look more like adult lobsters and soon they start to settle for a 

benthic lifestyle. The next stages mainly molt in order to grow and to become adult.  

 

                                    

 

 

The larval development takes on average 20 days. The duration mainly depends on the water 

temperature (Schmalenbach et al.  2010). From hatching to the first juvenile stage the larvae 

undergo several anatomical-morphological and physiological changes (reviewed by 

Charmantier et al. 1991). Most distinct differences appear with the molt into the juvenile 

stage. For instance, there is a change in the general body shape, a variation in the total 

digestive enzyme activities, or a change in behavior (Charmantier et al. 1991). Moreover, the 

claws become symmetric and increase significantly in size (Fig.1.6).  

  

 

 

 

 

 

 

Fig. 1.5 The first juvenile stage 

Fig.1.6 Claw development and 
claw growth from the Zoea 1 
stage to the juvenile lobster 

1
 cm
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1.5. Objectives of this study 

It is not known to date whether the same mechanisms are involved in molt and metamorphosis 

of larval crustaceans as in the adults. The early developmental stages are subjected to 

immense changes and rapidly repeating molt cycles. Their claw anatomy indicates that the 

molt is a similarly critical moment as it is for the adult lobsters. The claws are broader and 

thicker than the narrow joint between the coxa and the basis which means that the lobster 

larvae have to reduce or re-organize muscle tissue for successful molts.   

Therefore, I raise the hypothesis that the 20S proteasome is already involved in the molts 

between the larval stages. Accordingly, I want to investigate whether the proteasomal 

activities change during the development of the European lobster (H.gammarus) and, 

particularly, within the molt cycles of the individuals. The proteasomal activity in the crude 

claw extracts will be verified through the highly specific inhibitor epoxomycin (Meng et al. 

1999, Kisselev et al. 2001) and the endogenous activator complex PA28 (Mykles 1996). 

Furthermore I will investigate whether changes are accompanied by variations in the subunit 

patterns. The expression of ubiquitin seems to be closely correlated to the molt stage and the 

proteasomal activity. I want to finish this study with the investigation whether already during 

the developmental stages the ubiquitin expression displays a molt-dependent cycle. All parts 

of my thesis will lead to a detailed knowledge about the involvement of the proteasome 

during early stages of the European lobster, and moreover will help for the better 

understanding of larval development and those factors which influence molt success.   
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2. Materials and Methods 

2.1. Experimental design  

2.1.1 Maintenance and rearing of larvae 

Lobster larvae of all stages (zoea1 to zoea 3) as well as the first juvenile stage (juv 1) were 

obtained from the lobster rearing facility of the Marine Station Helgoland and shipped to the 

laboratories in Bremerhaven. Immediately after arrival the larvae were separated and 

maintained individually in 100 ml beakers filled with natural seawater (Fig.2.1). The water 

temperature ranged between 17 °C and 19 °C. Once per day the seawater was exchanged and 

the larvae were fed with freshly hatched nauplii of the brine shrimp Artemia salina (Leach 

1819).  

 

 

 

 

One group of larvae (n = 25) was allowed to grow up until they reached the juvenile stage. 

This approach was carried out to determine the duration of the larval stages at the given 

experimental conditions (Table 2.1). Additional data about the duration of each larval stage 

were provided by Schmalenbach & Franke (2010). The mortality of the larvae was less than 

15 %.  

Fig.2.1: Maintenance and rearing of lobster larvae: a) Single beaker containing one larva b) Overview on 
rearing assembly  
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        Tab.2.1: Overview over the time periods the larvae needed to devolve into the next stage (on the left) and  
        sampling after hatch or molt, respectively, of each larval and juvenile stage (Means ± S.D, n = 15).  

 Stage 

Duration  

(Days)  

Molt stage  

Hatched/post-molt 

Time of sampling 

Inter-molt 

Time of sampling 

Pre-molt 

Time of sampling 

Zoea 1   4.33 ± 0.8 Max. 12 h after hatch 3.0 ± 0.5 ± 1.0 before molt 
Zoea 2   8.13 ± 2.4 Max. 12 h after molt 3.0 ± 0.5 ± 1.0 before molt 

Zoea 3 12.80 ± 1.1 Max. 12 h after molt 5.5 ± 0.5 ± 1.0 before molt 

Juvenil 20.33 ± 3.2 Max. 12 h after molt 10.0 ± 0.5 - 

 

 
The samples were taken after molting (post-molt), during the inter-molt phase (inter-molt) and 

before the next molt (pre-molt) of each stage. A detailed schedule illustrating the molt 

intervals and the sampling strategy is shown in Fig. 2.2.  

 Zoea 1 larvae were sampled after hatching (Z1(1)) to obtain the post-molt individuals. When 

the developmental stages were unknown, the larvae were first raised until they molted into the 

subsequent stage.  

 

 

 

                                                                              

 

 

 

 

 

 

 

 

 

The post-molt individuals were sampled not more than 12 hours after hatching or molting, but 

preferably as close after ecdysis as possible. The inter-molt individuals were sampled after 

they passed half of the predicted duration of the stage. In order to sample the pre-molt animals 

 

 

Fig.2.2: Stage duration of the lobster larvae and sampling intervals: The yellow arrows indicate the time 
periods when the post-molt individuals were sampled, the blue arrows indicate the sampling of the inter-molt 
individuals and the green arrow indicates the sampling of the pre-molt individuals. 

         Zoea 1                                 Zoea 2                                                         Zoea 3                                                                        Juv 1    

  0                    5                   10                  15                 20                  25                                                            45 
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in due time the larvae of the respective batch were controlled for the first larvae to molt into 

the next stage. When this happened, the remaining larvae were shortly before the molt as well 

and, consequently, they were also sampled for analysis.  

 

 

2.1.2 Sampling and preparation of tissue extracts for enzyme assays and 2D-
electrophoresis (IPG-DALT) 

From each molting stage the claws of 25 larvae were sampled for enzyme assays and 2D-

electrophoresis (Görg et al. 2004). From each larva both claws were completely excised, 

briefly blotted dry on filter paper, and transferred into a reaction tube. The claws were 

weighed and homogenized in 45 µl of homogenizing buffer using a micro-pestle (detailed 

buffer compositions are given in the appendix). Subsequently, the extracts were centrifuged 

for 10 min at 9000 g and 4 °C (Eppendorf centrifuge, 5417R) and aliquoted into two samples 

of 20 µl each. All samples were stored at -80 °C until further analysis. 

 
2.1.3 Samples for the quantitative Real-Time PCR (qRT PCR) 

Ten larvae from each molting stage were pooled to provide one sample for qRT PCR analysis. 

In detail, 10 whole larvae of the same molt stage were transferred into one reaction tube 

containing RNA-later reagent (Ambion, AM7024). The reagent was allowed to penetrate into 

the tissue overnight at room temperature. The next day the tubes were stored at -80 °C until 

further analysis.  

 
 
2.2. Proteasomal activities 

The proteasomal activities were investigated in claw muscle extracts. Ten lobster larvae from 

each molt stage were analyzed. 

The trypsin-like, the chymotrypsin-like, and the peptidylglutamyl peptide hydrolase activity 

(PGPH) of the 20S proteasome were assayed by using the fluorogenic substrates Boc-Leu-

Arg-Arg-AMC (PeptaNova, 3140), Suc-Leu-Leu-Val-Tyr-AMC (Enzo Life Sciences, P-802) 

and Z-Leu-Leu-Glu-AMC (Enzo Life Sciences, 9345). Additionally, the trypsin-like and the 

chymotrypsin-like activities were verified by inhibition of the enzyme with the highly specific 

inhibitor epoxomycin (PeptaNova, 4381-0.02). The PGPH activity was not inhibited but, 
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instead, activated by the endogenous regulatory complex PA28 (11S regulatory subunit, Enzo 

Life Sciences, 9420-0025).  

Prior to routine analysis, Michaelis-Menten kinetics were performed for the three proteasomal 

active sites to determine suitable substrate concentrations in the final enzyme assays. The 

sensitivity of the proteasome against epoxomycin as well as its specifity was examined with 

adult lobster samples. These assays were performed with crude claw homogenate samples 

from adult European lobsters.  

The specifity of the inhibitor epoxomycin was analyzed by comparing the proteasomal 

activities with digestive enzymes from the gastric fluid of adult lobsters. The gastric fluid is 

rich in digestive enzymes like trypsin, chymotrypsin, or other proteases but does not contain 

proteasome. Digestive trypsin and chymotrypsin are capable of degrading the same 

fluorogenic substrates as the proteasome. However, in contrast to the proteasome, the gastric 

enzymes should neither be affected by the inhibitor epoxomycin nor by the activator PA28.   

 

2.2.1 Enzyme assays with the NanoDrop device 

Since measuring fluorescent signals with the NanoDrop device requires only 2 µl of reaction 

mixture, the total volume per assay was reduced adequately. All reaction mixtures had a total 

volume of 25 µl; containing assay buffer, sample, solvent, substrate and, in case, other 

reagents. Except the PA28 which already was delivered in solution, all substrates were 

dissolved in dimethyl sulfoxide (DMSO) and prepared as 10- or 20-fold stock solutions 

freshly before the measurements. 

The reactions were started in ice cooled reaction tubes containing assay buffer and the 

samples with the addition of the substrate. The tubes were immediately transferred into a 

thermomixer and incubated for 1 h at 37 °C. The released fluorescence was measured exactly 

after this hour. For each substrate a blank was run to control whether the substrate was 

degraded within the incubation. These approaches contained only buffer and the substrate but 

no enzyme. The released fluorescence was detected at 365 nm (excitation) and 437 nm 

(emission) with a NanoDrop device (PeQLab, NanoDrop 3300 v.2.7.0). 
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2.2.2 Michaelis-Menten kinetics 

The substrate concentrations for measuring the trypsin-like and the PGPH-activity ranged 

from 0.05 mmol·L-1 to 2 mmol·L-1, and for the chymotrypsin-like activity from 0.05 mmol·L-

1 to 1.5 mmol·L-1.   

The enzyme activities were determined for different substrate concentration in triplicate and 

paralleled by a control (blank) without enzyme. The blank values were subtracted from the 

sample values. The results were quantified by applying a calibration curve with 7-Amino-4-

methylcoumarin (AMC, see.2.2.5.1). The Michaelis-Menten constants (Km) were calculated 

with the program GraphPad Prism 5 (GraphPad Software, Version 5.02). 

 

2.2.3 Inhibition and activation of the 20S proteasome 

 

“Sensitivity” 

The applied concentrations of epoxomycin ranged for the chymotrypsin-like activity from 2.5 

µmol·L-1 to 50 µmol·L-1 and for the trypsin-like activity from 10 µmol·L-1 to 100 µmol·L-1. 

Blanks were run to determine the auto-fluorescence of the substrate and of the inhibitor, 

respectively. Additionally, one approach served as control for the level of uninhibited activity. 

A detailed list of the components of reaction mixture is given in Table 2.2. 

 

“Specificity”  

The gastric fluids of 3 adult European lobsters were obtained directly from the stomach with a 

syringe connected to a plastic tube. The samples were centrifuged for 15 min at 13000 g and 4 

°C to remove food residues. The supernatants were diluted 1:20 with distilled water before 

they were applied to reaction tubes. A detailed list of the components is also given in Table 

2.2. 

 

First, the trypsin and the chymotrypsin activities of the gastric fluids were determined to 

obtain the unaffected level of activity. Concurrently, assays were run with epoxomycin. For 

the trypsin-like activity a stock solution of 1 mmol·L-1 epoxomycin was prepared, and for the 

chymotrypsin-like activity a stock solution of 100 µmol·L-1. Additionally it was investigated 
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Table 2.2: Detailed compositions of the reaction mixtures: measuring the Michaelis-Menten kinetics, the 
inhibition assays for detecting the sensitivity of epoxomycin and the specifity of epoxomycin and PA28.   

whether the gastric enzymes are able to degrade the PGPH-substrate and whether the activity 

can be enhanced by PA28. The PA28 concentration amounted to 4 µg·ml-1. 

 

 

 

 

2.2.4 Measuring larval activities 

The concentrations of the substrates, the epoxomycin, and the PA28 for measuring larval 

proteasome activities are listed in Table 2.3. 
 
 
 

 Substrate concentration in the assay 

Trypsin-like activity Boc-Leu-Arg-Arg-AMC    0.75 mmol ·L-1 
Chymotrypsin-like Suc-Leu-Leu-Val-Tyr-AMC   0.50 mmol·L-1 

PGPH-like activity Z-Leu-Leu-Glu-AMC   1.00 mmol·L-1 

Inhibitor Epoxomycin             2.50 µmol L-1/100 mmol L-1 

Activator PA28 0.05 µg/µl 

 

A detailed schedule of reaction mixture components in the different assays are given in Table 

2.4.  

 

 TRY, CHY and 

PGPH activity 

Blank 

assays 

Inhibition assays 

(TRY and CHY) 

Activated assays 

(PGPH)  

Blank 

assays 

Assay 17.50 µl 22.50 µl 17.50 µl 17.50 µl 21.25 µl 
Sample  5.00 µl - 5.00 µl 5.00 µl - 
DMSO 1.25 µl - - - - 
Epoxomycin - - 1.25 µl - -/(1.25 µl) 
PA28 - - - 1.25 µl 1.25 µl/(-) 
Substrate 1.25 µl2 2.50 µl1 1.25 µl2 1.25 µl2   2.50 µl1 

1 of a 10-fold stock solution; 2 of a 20-fold stock solution 

 

 Michaelis-

Menten kinetics 
“Sensitivity” 

“Specifity” 

Control 

“Specifity” 

Treated  

Blanks  

Assay buffer 20.00 µl  16.50 µl 20.00 µl 18.75/(18.00) µl 22.50 µl/ 

Sample    2.50 µl 5.00 µl 2.5 µl 2.50 µl - 

Epoxomycin - 1.00 µl -  1.25 µl/(-) - 

PA28 - - - -/(2.00 µl) - 

Substrate   2.50 µl1 2.50 µl1 2.50 µl1   2.50 µl1   2.50 µl1 

Table 2.4: Detailed outline of the compounds of the reaction mixtures: measuring the untreated and the treated 
trypsin-like the chymotrypsin-like and the PGPH activities.     

Tab.2.3: Overview over the substrates and their concentrations used in the different enzyme assays      

1 stock solutions of 1mmol·L-1 



Material and Methods  

13 

 

2.2.5. Analysis of data 

The relative fluorescence (RF) obtained from the enzymatic measurements was quantified and 

expressed in relation to the protein content of the sample as Units·gPrt
-1 (1U= µmmol̇min-1). 

The protein content of the sample was determined after Bradford (1976). A standard curve 

with the product 7-amino-4-methylcoumarin (AMC) was established to calculate product 

concentrations from RF units.  

 

2.2.5.1 Calibration curve of 7-Amino-4-methylcoumarin (AMC) 

A calibration curve was established with 7-Amino-4-methylcoumarin (AMC, Fluka, 08440). 

The fluorescence of six concentrations, ranging from 0.025 µmol·L-1 to 10 µmol·L-1 were 

assayed. The AMC substrate was dissolved in DMSO and prepared as 10-fold stock solution 

for each concentration. Then, 2.5 µl of the particular concentration were added to 22.5 µl of 

assay buffer and the fluorescence was measured with the NanoDrop device. Each 

concentration was measured in 5 parallels of which a calibration curve was calculated.  

 

2.2.5.2 Protein quantification after Bradford  

The protein quantification after Bradford (1976) was done with a commercial protein dye 

reagent (Biorad, 500-0006). The reagent was diluted 1:5 with distilled water before use. 

Bovine serum albumin (Biorad, 76290A) was used as protein standard.   

Increasing amounts of the standard, containing 0 µg to 5 µg of protein, were applied in 

duplicate onto a 96-well plate and filled up with distilled water to 25µl. Samples (5 µl) were 

also applied in duplicate and filled up to 25 µl. The reactions were started with addition of 

125 µl of the dye reagent. After 5 min of incubation the optical density was measured at 600 

nm with a microplate reader (Thermo Scientific, Multiscan).   

 

2.2.5.3 Calculations   

The mean RFU values measured after 1 hour with the NanoDrop device were quantified by 

using a calibration curve with the product AMC. 
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The calibration curve with AMC followed a fist-order linear regression: 

 

        y = 3702.4x ˙ 185.31                     y = mean RFU˙h-1  

                                                              x = resulting product in pmol˙µl
-1

˙h-1 

 

 

The resulting product was calculated as pmol product generated within 25 µl assay volume 

per minute. 

� (������	˙25 µ	��˙�����)  =
�(���� ��� − 185.31)

3702.4 "
60 ∗ 25 

 

Finally, these values were related to the amount of protein in each assay and recalculated for 

the product (in µmol) which was generated per g protein and per minute. The results of every 

molt stage were averaged and the standard error of the mean was calculated with the program 

GraphPad Prism 5 (GraphPad Software, Version 5.02). 

 

The results obtained from the inhibited and activated assays were compared with the results of 

the untreated assays and expressed as per cent of the remaining activity or the enhanced 

activity, respectively. The average values of the untreated assays were always set as 100 %.  

 

 

2.2.6.4 Graphs and Statistics    

The enzyme activities were expressed as average specific activities (U·gPrt
-1) and data sets 

were analyzed by a One-way ANOVA followed by a Tukey HSD test. The statistical analyses 

were carried out with the program Statistica 7.1 (Systat Software, Inc.). Significant 

differences between the stages were indicated by different letters when p-values ≤ 0.05.If not 

stated otherwise the graphs were created with the program SigmaPlot 10.0 (Systat Software, 

Inc.).  
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2.3. Quantitative Real-time PCR 

2.3.1 Sample preparation 

The total RNA required for the quantitative RT-PCR was isolated from a pool of 10 claws 

from each sampling stage (Z1 (1) to Juv. 1(2)) with the RNeasy Mini Kit (Qiagen, 74104). All 

reagents were provided in the kit.  

The claws were removed from the larvae and transferred into new reaction tubes already 

containing 350 µl of RLT buffer. The tissues were homogenized with a micro-pestle and the 

extracts were centrifuged for 3 min at 13000 g and 4 °C. Thereafter, the supernatants were 

transferred into new reaction tubes and 350 µl of ethanol (70 %) were added. The solutions 

were mixed thoroughly and 700 µl of the mixture were applied onto RNeasy mini columns 

which, again, were placed in 2 ml collection tubes.  

The tubes were centrifuged for 15 s at 10 000 g and the eluents were discarded. Then, 700 µl 

of RW1 buffer were applied onto the columns and again centrifuged under the same 

conditions. The collection tubes, containing the eluents, were discarded. The columns were 

transferred into new collection tubes and 500 µl RPE buffer were applied onto the column. 

This was followed by another centrifugation step for 15 s and the eluents were discarded 

again. Another 500 µl RPE buffer were applied onto the columns. The following 

centrifugation step lasted 2 min at 10000 g to dry the RNeasy silica-membranes. The columns 

were transferred into new collection tubes and the bound RNA was eluted with 30 µl RNase-

free water during another centrifugation step for 1 min at 10000 g. To increase the RNA yield, 

a second elution step was done. Therefore, the 30 µl of the eluents were again applied onto 

the columns and centrifuged under the same conditions. The RNA concentrations were 

determined with a NanoDrop 1000 (PeQLab, NanoDrop 1000, Version 3.2).  

Prior to cDNA synthesis, the total RNA samples were subjected to a DNase digest with the 

Turbo DNA-free Kit (Ambion, AM1907). This approach contained 10 µg of total RNA, 5 µl 

of 10- fold buffer, and 1 µl of DNase, filled up to 50 µl with RNase free water. The mixtures 

were incubated for 30 min at 37 °C before 5 µl of DNase inactivation solution were added. 

Now, the tubes were vortexed and incubated at room temperature for another 5 min. 

Contaminating DNA was precipitated in the followed centrifugation step at 13000 g for 2 

min. The supernatants were transferred into new reaction tubes and the amount of RNA was 

measured with a NanoDrop device. The samples were stored at -80 °C.   



Material and Methods  

16 

 

2.3.2 cDNA-Synthesis 

The total RNA which is subjected to the reverse transcription should amount to 0.4 µg in each 

sample. The calculated sample volumes which were needed for the cDNA synthesis, but at 

maximum 9.9 µl, were then transferred into PCR reaction tubes, incubated for 10 min at 70 

°C and stored on ice. Meanwhile, the master mix for the reverse transcription was prepared 

(detailed composition in Tab.2.5). All components were included in a High-Capacity cDNA 

RT Kit (Applied Biosystems, 4368814). 

 

 

Table 2.5: Composition of the master mix used for the cDNA synthesis 

 

  

 

 

 

 

 

Ten µl of the master mix were added to each sample. If the sample volume was less than 9.9 

µl, it was filled up to 20 µl with RNase free water. The reverse transcription of the isolated 

RNA into first-strand cDNA was carried out in a thermocycler (Eppendorf, Mastercycler pro, 

Vapo protect). In the first step the samples were incubated for 19 min at 25 °C and then the 

temperature was raised to 37 °C. At this temperature the samples were incubated for another 

120 min. In the last step they were heated up to 85 °C for 5 s. The cDNA was stored at -80 °C 

until further use. 

 

2.3.3 Primers  

Besides the target gene, the ubiquitin cDNA, it is also necessary to amplify housekeeping 

genes. The expression of these genes remains constant irrespective of the treatment. 

Therefore, they can be used to normalize the amplification rate of the target gene. Alpha actin, 

beta-actin and the sodium-potassium ATPase α-subunit of H.gammarus were chosen as 

suitable housekeeping genes.  

Components of the master mix Per reaction (20 µl) 
10X RT-Buffer 2.0 µl 
dNTP-Mix (25X, 100mM) 0.8 µl  
RT Random Primers (10-fold) 2.0 µl 
MultiScribe Reverse Transcriptase 1.0 µl 
RNAse free water 4.2 µl 
Total                                                                             10.0 µl 
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The DNA sequence of the ubiquitin from the European lobster (H.gammarus) was not 

available. In order to obtain the nucleotide sequence of the polyubiquitin cDNA, a sequencing 

PCR was carried out (described in a previous report). The obtained sequence is illustrated in 

Fig. 2.3. 

 
 
Homarus_americanus AGATACCATTGAGAATGTGAAGGCCAAGATCCAAGACAAGGAAGGTATTCCCCCAGACCA 60 
Homarus_gammarus   ------------------------------CCAAGACAAGGAAGGTATTCCCCCAGACCA 30 
                                                 ****************************** 
 
Homarus_americanus GCAGAGATTGATCTTTGCTGGTAAGCAATTGGAGGATGGTCGTACACTTTCTGACTACAA 120 
Homarus_gammarus   GCAGAGATTGATCTTTGCTGGTAAGCAGTTGGAGGATGGTCGAACTCTTTCTGACTACAA 90 
                   *************************** ************** ** ************** 
 
Homarus_americanus CATCCAGAAAGAATCTACACTACATTTGGTTCTCAGGCTTCGTGGTGGTCAGTAAAGTAT 180 
Homarus_gammarus   CATCCAGAAAGAATCTACACTACATTTGGTTCTCAGGCTTCGTGGTGGCCAGTAAAGTAT 150 
                   ************************************************ *********** 
 
Homarus_americanus TCCGGATGAAATGTTCAAATTTCCTTTAATTTCTTAAAACTACGCTTATGGCATAGCTGT 240 
Homarus_gammarus   TCCGGATGAAATGTTCAAATTTCCTTTAATTTCTTAAAACTACGCTTATGGCATAGCTGT 210 
                   ************************************************************ 
 
Homarus_americanus TTGCACATTAGCCGATTCCTTTAATATGTAGATGGAAAAGATTTAATTTCTTTTGCACAT 300 
Homarus_gammarus   TTGCACATTAGCCGAA-------------------------------------------- 226 
                   ***************                                              
 
Homarus_americanus GGATATTATTTTTTACTTTTTATAATGTGCTAGCCGAACCAAATAAACACTATTAAGATT 360 
Homarus_gammarus   ------------------------------------------------------------ 

                                                                                    

 

The primers for the quantitative Real-Time PCR were created on the basis of this sequence. 

The sequences of the housekeeping genes were obtained from data bases of the National 

Center for Biotechnology Information (NCBI). All primers were designed with the software 

primer express (Applied Biosystems). For each gene one pair of primers were selected. All 

primers were purchased from ThermoScientific. The detailed primer sequences are listed in 

Tab.2.6. 

 
Tab.2.6: Primer sequences used for the qRT-PCR 

Ubiquitin 
Sense 
Antisense 

5’ – ATC CAG AAA GAA TCT ACA CTA CAT TTG G – 3’ 
5’ – TTT GAA CAT TTC ATC CGG AAT ACT T – 3’ 

Sodium-potassium 
ATPase α-subunit 

Sense 
Antisense 

5’ – GTG AAC GGC GAT GCT TCA G – 3’ 
5’ – TCG CCA GCC CTT TAC ATC TC – 3’ 

Beta-Actin 
Sense 
Antisense 

5’ – CGT AAG GAT CTG TAT GCC AAC ACA – 3’ 
5’ – CTG CAT CCT GTC GGC AAT T– 3’ 

Alpha-Actin 
Sense 
Antisense 

5’ – CCT GCT TCG AAA CCC GCT AA – 3’ 
5’ – AGG AGG CAA CAA GCC ATG TAC T – 3’ 

 

 

Fig. 2.3: Sequencing PCR: CLUSTAL 2.0.12 alignment of the Ubiquitin sequences from the European lobster 
and the American lobster 
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All primers were dissolved in TE-buffer to a stock solution of 100 µmol·L-1. The stock 

solutions were divided into 20 µl aliquots and stored at -20 °C. Before the primers were used 

they were diluted with TE-buffer to a final concentration of 5 µmol·L-1.    

 

2.3.4 Primer and sample evaluation   

For the evaluation of the sample and the primers, a cDNA template of the freshly hatched 

zoea 1 was used. The template was diluted with RNase free water to provide 5 concentrations 

ranging over 2 log steps of the total RNA (Table 2.7).   

 

 

 

Each template concentration was analyzed in triplicates and for each pair of primers. 

Additionally to the samples, control approaches were done for each gene. The first control 

was the “no template control” (NTC) in which the sample was replaced by water. The second 

control was the “no cDNA control” (-RT) in which the cDNA samples were replaced by the 

total RNA samples, already applied to the cDNA synthesis. Coincidently to the dilution 

series, four master mixes were prepared. They were composed of the SYBR® Green PCR 

Master Mix (Applied Biosystems, 4309155), sense and antisense primers amplifying for one 

gene and RNAse free water. The master mixes were ice cooled and the detailed composition 

is given in Table 2.8. 

 
Table 2.8: Composition of the master mix for qRT-PCR 
 
Components of the master mix Per reaction (18 µl) 
2X SYBR Mix  10.0 µl 
Sense primers   1.2 µl 
Antisense primers   1.2 µl 
RNAse free water   4.2 µl 

 

    Template             Dilution             ng per approach                         -(log) of total RNA 

Zoea 1 cDNA 1:20 2.00  3 

 1:40 1.00  2,70 

 1:100 0.40  2,30 

 1:200 0.20  2,00 

 1:1000 0.04  1,30 

Table 2.7: Sample dilution schedule: Dilution steps of the zoea 1 cDNA template for running the sample 
evaluation. Shown are the concentrations in the dilution approaches and the peculiar end concentration per 
well. Additionally the (-) log step calculated by the input of total RNA is shown 
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A 96 well plate (Applied Biosystems, MicroAmp® Optical 96-Well Reaction Plate, 

N8010560) was loaded with 2µl of samples and controls as shown for the ubiquitin in Fig.2.4.     

 

 

 

                                                                                                                                                                          

 

 

The plate was placed on ice and 18 µl of master mix, containing the primers, were added to 

each well. The plate was covered with an adhesive optical film (Applied Biosystems, 

4360954) and the Real-Time PCR was carried out at the Real-Time-PCR System (Applied 

Biosystems, 7500). Initially, the samples were incubated at 50 °C for 2 min. Then they were 

heated up to 95 °C for another 10 min. Subsequently, the PCR passed over to the cyclic phase 

of heating and cooling. The samples were incubated in each cycle for 15 s at 95 °C and were 

then cooled down to 60 °C for 1 min. This was repeated 40 times.  

 

Immediately after the PCR run a dissociation curve analysis was started. A temperature ramp 

was created in which the double-stranded DNA template, produced during the PCR run, was 

melted again into single stranded DNA. During melting the bound SYBR green is released 

and the fluorescent signal decreases. The melting point is thereby unique for each DNA 

template. This allows to control whether only a single or several templates were amplified. 

Moreover, primer failures like dimmer-forming or inter-specificity can be detected. The 

conditions for the dissociation curve analysis were composed of an incubation step at 95 °C 

for 15 s, followed by a 1 min lasting step at 60 °C. Afterward the temperature was 

continuously increased every 15 s until 95 °C were reached.  

 

 

 

 

1 2 3 4 5 6  7 8 9  10 11 12 

A 
Ubiquitin Ubiquitin Ubiquitin Ubiquitin 

2 ng   2 ng   2 ng   1 ng 1 ng 1 ng  0.4 ng 0.4 ng 0.4 ng  0.2 ng 0.2 ng 0.2 ng 

B 
Ubiquitin Ubiquitin Ubiquitin 

     0.04 ng 0.04 ng 0.04 ng  NTC NTC  (-RT) (-RT)  

     

Fig.2.4: Layout of the 96 well plate for the ubiquitin: Two µl of the different sample concentration were 
applied onto the well plate. To the wells 18 µl of master mix containing the fitting primer pairs were added. 
Additionally, two control assays were run; the no template control (NTC – containing water) and the no cDNA 
control (-RT – containing the total RNA sample)  
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2.3.5 Measurement of samples 

The procedure for analyzing the cDNA templates of all molt stages were mainly the same as 

described above. All samples were diluted 1:40 with RNase free water. Each sample was 

analyzed in triplicates and for each pair of primers. NTC and –RT controls were run for each 

sample and gene.  

 

2.3.6 Evaluation of data   

Differences in gene expression were calculated with the comparative delta-delta Ct method 

(pers. com.  Dr. Magnus Lucassen, AWI Bremerhaven) and expressed as x-fold change of 

amplification.  

The Ct values of the three parallels measured for each sample and each gene were averaged. 

Subsequently, the average Ct values were used to calculate the Δ Ct - value.  

Δ Ct = Average CtTarget – average CtHousekeeping 

 

  
The ∆∆ Ct – values were calculated with the freshly hatched Zoea 1 larvae as control group 

while the other larval and the juvenile stage were defined as treated groups.  

 

ΔΔ Ct = Δ CtTreated – Δ CtControl   
 
In the last step, the x-fold expression of the untreated group to the treated group was 

calculated as: 

Ratio =2 – ΔΔ Ct 

 

2.4. Two-dimensional Gel-Electrophoresis (IPG-DALT) 

Samples from the four inter-molt stages were used for analyzing the proteasomal subunit 

composition by IPG-DALT. First, the proteins were separated by isoelectric focusing (IEF) 

using Immobiline DryStrips with a pH gradient from pH 3 to pH 10 (GE Healthcare, 17-

6001-11).  

Thirty-five µl of samples were mixed with 90 µl of rehydration solution (see appendix for 

detailed buffer composition) according to the specification of the manufacturer. One approach 
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contained, besides the juvenile lobster sample, 2.5 µl of an internal standard (BioRad, 2D-

SDS-PAGE Standards, 161-0320).  

The total volume (125 µl) was transferred onto the bottom of the dry strip-holders. The cover 

foils of the IEF-dry strips were carefully removed and the strips were placed, with the gel side 

downward, into the rehydration solution. The strips were overlaid with ca. 700 µl of dry strip 

cover fluid and the strip holders were covered with the lid. Then, the strip holders were placed 

onto the electrode plate of the IPGphor device (Pharmacia Biotech). The power supply was 

set to 0.05 mA per strip. The voltage conditions were 30 V for 15 h, the 500 V for 30 min, 

1000 V for 30 min, and, finally, 8000 V for 1 hour. 

The separating gels (T=10 % and C=2.7 %) for the second dimension were prepared 

according to Laemmli (1970) and are shown in Tab.2.9.  

 

Tab.2.9: Composition of the separating gels 

                                                                                                                             Separating gel (ml) 
Distilled water  5.000 
Stacking gel buffer  3.120 
Separating gel buffer - 
Acrylamide (30 %)                4.160 
SDS (10 %)  0.125 
APS (10 %)   0.063 
TEMED   0.010 

  Total volume                12.500        

 

After the IEF finished, the IPG strips were taken from the strip holders, carefully rinsed with 

distilled water, and transferred into test tubes containing solution A (detailed buffer 

composition is given in the appendix). The strips were incubated in this solution for 15 min at 

room temperature. The buffer A was discarded and buffer B was filled into the test tubes. The 

strips were incubated in this solution for another 15 min. Then the strips were taken out and 

carefully, rinsed with distilled water and placed with the anode side to the left onto the 

separating gel. It was very important to ensure that there was no cleft between the strip and 

the gel.  

Electrophoresis was carried out in a Hoefer Mighty Small II SE-250 chamber at room 

temperature. Power supply conditions were 15 mA for each gel and maximum 300 V. After 

electrophoresis the gels were washed with distilled water and silver stained.  
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2.4.1 Silver Staining 

Polyacrylamide gels were silver stained with the Silver Staining Kit (Amersham Pharmacia 

Biotec AB, 17-1150-01). All reagent solutions were freshly prepared before use.  

The gels were briefly washed with distilled water and then soaked for 30 min in the fixation 

solution. Thereafter, the gels were incubated for another 30 min in the sensitizing solution and 

then washed 3 times for 5 min with distilled water. Then they were incubated in the silver 

reaction solution for another 20 min and again briefly washed with distilled water. Protein 

bands became visible after soaking the gels for 2 to 5 min in the developing solution. This 

reaction was stopped using the stopping solution as soon as dots became visible. A last 

washing step with distilled water was done (three times for 5 min) and then protein dots were 

photographed with a gel documentation system (Biorad, ChemiDoc, program PDQuest). 
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Fig. 3.1 a) Correlation between the protein contents of the claws and their fresh weights: Indicated is the 
regression line with the confidence intervals (95%, dashed line). The solid interval lines indicate the predicted 
intervals. 
b) Claw fresh weight and protein content per developmental stage: The bars represent the average fresh 
weight of a pair of claws. The curve represents the average protein content of a pair of claws. The Values are 
given as means ± SEM (n=10). Different letters indicate significant differences between the groups  

 3. Results 

The size, the fresh weight, and the protein content of the claws increased significantly during 

the development of the lobster larvae. Moreover, the fresh weight and protein content 

displayed a significant correlation (Fig. 3.1.a; r = 0.81; r2 = 0.6, p<0.001).  

The weight of a pair of claws increased significantly from stage to stage (Fig. 3.1.b). The 

claws of the zoea 1 larvae weighed on average 0.63 mg. The weight increased until the first 

juvenile stage to about 2.2 mg. The protein content rose continuously from 15.95 µg in zoea 1 

to 23.68 µg in zoea 3. Between zoea 3 and juv 1 the protein content increased about 2.3-fold.   

 

 

 

 

 

 

 

  

The weight and the protein content did not change significantly within the three molt stages of 

the zoea 1 (Fig. 3.2). Both values, however, increased in zoea 2 larvae where post-molt and 

pre-molt animals displayed significant differences. This trend continued for the fresh weight 

within the zoea 3 larvae. The claws of pre-molt zoea 3 individuals were significantly heavier 

than those of post-molt zoea 3. The protein content rose from the post-molt to the inter-molt 

individuals significantly but the pre-molt animals possessed less protein again. The two 
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juvenile molt stages showed significantly higher weights than the larvae but they did not 

differ in their protein content.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.1. Enzymatic measurements  

3.1.1 Michaelis-Menten Kinetics  

The three proteasomal activities displayed great differences in maximum activity and affinity 

towards the substrates. The trypsin-like site revealed the highest activity (VMax = 0.4141U̇g-1) 

as well as the highest affinity towards the substrate (KM = 0.1550 mmol˙L-1, Fig. 3.3, on the 

left). The chymotrypsin-like site possessed the lowest activity (VMax = 0.0618) but its affinity 

towards the substrate (KM = 0.1708) was only slightly lower than the affinity of the trypsin-

like activity (Fig. 3.3, on the right). The values obtained for the PGPH-like activity differed 

most from the results of the other two activities. While the activity was about half of the 

activity calculated for the trypsin-like site VMax = 0.1983, the affinity was lowest (KM = 

1.066).  
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Fig. 3.2 Claw fresh weight and protein content per molt stage: Z1 – Z3 = zoea 1 to zoea 3, juv 1 = Juvenil 
1, Numbers 1 – 3 in the brackets indicate the molt stage: (1) = freshly hatched or post-molt stages, (2) = inter-
molt stages, (3) = pre-molt stages. Values are given as average amounts ± SEM, different letters on top of the 
bars indicate significant differences between the groups.  
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3.1.2 Inhibition and activation of proteasomal activities  

The trypsin-like and chymotrypsin-like proteasomal activities of the claw muscle extract of 

the adult European lobster were significantly inhibited by epoxomycin (Fig. 3.4). 

 

 

 

 

 

 

 

  

 

 

 

Over 93 % of the chymotrypsin-like activity was inhibited when epoxomycin was present 

even in the lowest concentrations of 2.5 µmol·L-1. Around 50 % of the trypsin-like activity 

was inhibited by 10 µmol·L-1 epoxomycin. Increasing the concentration of epoxomycin did 

not considerably enhance the inhibition of the chymotrypsin-like activity. At the highest 
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Fig. 3.4 Inhibition of the proteasomal activity by epoxomycin: The residual activities (%) are presented for 
the chymotrypsin-like activity (on the left) and for the trypsin-like activities (on the right) at different 
concentrations of epoxomycin (µmol˙L-1).  
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Fig. 3.3 Michaelis-Menten kinetics for the trypsin-like (left), chymotrypsin-like and PGPH-like activities 
(right) of the lobster proteasome: The specific activities of the proteasome were assayed at different 
concentrations of substrates (mmol˙L-1) and expressed as mean ±SEM.  
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concentration of 50 µmol·L-1 only 3 % of the initial activity remained. The trypsin-like 

activity was inhibited by 75% with the highest epoxomycin concentration of 100 µmol·L-1.     

In the gastric fluids of the adult European lobsters the trypsin-like, the chymotrypsin-like, and 

the PGPH-like activities were not affected by epoxomycin (Fig. 3.5.a).  The chymotrypsin-

like activity was only reduced by 3 %. The trypsin-like activity (103 %) and the PGPH-like 

activity (104 %) were slightly higher than in the control assays.  

In contrast to the gastric fluid, the activities of the larval and juvenile lobster samples were 

highly affected by the inhibitor as well as by the activator (Fig. 3.5.b).  

 

  
              
                

 

 

 

 

 

 

 

 

 

 

 

 

 

The chymotrypsin-like activities of all investigated stages were inhibited by more than 90 %. 

The highest inhibition occurred in the third zoea stage where only 5.6 % of the initial activity 

remained. The average inhibition rate amounted to 90.7 % whereas no significant differences 

appeared between the stages. The trypsin-like activity was inhibited on average by about 75 

Fig. 3.5 Effects of epoxomycin and PA28 on the proteasomal activity:  
a) Effect of epoxomycin and PA28 on the digestive enzymes trypsin, chymotrypsin and cathepsin in the gastric 
fluid of adult European lobsters.  
b) Effect of epoxomycin and PA28 onto the three proteasomal activities of the larval and juvenile stages, zoea 1 
to zoea 3 and the first juvenile stage. Values are expressed as remaining activity in %. The activity of the un-
treated sample was set as 100 %  
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%. Like for the chymotrypsin-like activity no differences between the stages were detected. 

The endogenous activator complex PA28 enhanced PGPH activity on average by 45 %.    

 

3.1.3 Enzymatic activity of the 20S Proteasome 

The catalytic activities of the three active sides changed significantly within the larval 

development. The trypsin-like, the chymotrypsin-like and the PGPH-like activities increased 

within the zoea 1 and remained at a high level until zoea 3 (results not shown). All three 

activities decreased significantly when the larvae developed into the juvenile stage.   

 

Changes of activities were detected between the different molt stages (Fig.3.6 a – c). The 

chymotrypsin-like activity increased within zoea 1 individuals from initially 0.11 U̇g-1 and 

reached highest activities in post-molt zoea 2 individuals with 0.33 U̇g-1 (Fig. 3.6 a). Then, 

the activity decreased drastically in inter-molt individuals (0.14 U̇g-1) but reached highest 

activities again in the subsequent pre-molt individuals. Although, the activity did not change 

significantly within zoea 3 molt stages, a decreasing trend was evident. This trend continued 

in the juvenile stage where the activity decreased from 0.14 U̇g-1 in post-molt individuals to 

0.05 U̇g-1 in inter-molt juvenile lobsters.   

 

Similar trends were also found for the trypsin-like and the PGPH-like activities (Fig. 3.6 b 

and c). In both cases, the activities showed an increasing, though not significant, trend from 

freshly hatched zoea 1 larvae to the post-molt individuals of this stage. The inter-molt zoea 2 

possessed lowest trypsin-like (0.59 U˙g-1) and PGPH-like (0.23 U̇g-1) activities and both 

activities increased again in post-molt zoea 3 individuals. Both activities decreased in inter-

molt individuals of zoea 3. This was followed by an increase in pre-molt individuals again, 

although these trends were not significant. In the juvenile lobsters both activities decreased 

again. 
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Fig.3.6 Proteasomal activities: Average chymotrypsin-like activities (a) trypsin-like activities (b) and the 
PGPH-like activities (c) within the investigated larval and juvenile stages (n=10, mean ± SEM). Different letters 
indicate significant differences between the groups.   
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Each stage possessed an individual ratio between the three proteasomal activities (Fig. 3.7 a) 

and b)).  In all stages the trypsin-like activity dominated. 

 

 

 

 

 

 

 

 

 

In freshly hatched zoea 1 individuals, the trypsin-like activity was more than 6 times higher 

than the chymotrypsin-like activity and almost 3 times higher than the PGPH-like activity. In 

the subsequent stages, until post-molt zoea 2, the ratio of trypsin to chymotrypsin decreased to 

about 3. The ratio of trypsin to PGPH did not change within these stages. Inter-molt zoea 2 

animals showed again higher trypsin-like activities. The ratio changed in the following stages 

in favor to the chymotrypsin like activity until the larvae developed into post-molt juvenile 

lobsters. As soon as the juvenile lobsters passed the molt, the ratio increased until the trypsin-

like activity was 6-fold higher than the chymotrypsin-like activity. The ratio of trypsin vs. 

PGPH did not change until they larvae reached the inter-molt zoea 3 stages. There, the PGPH-

activity decreased and the trypsin-like activity was 4 times higher than the PGPH-activity. 

The ratio between the PGPH and the chymotrypsin activity ranged at around 1 showing that 

both activities were similarly high. Within the most stages the PHPG-like activity was on 

average 0.5 times higher than those of the chymotrypsin-like side. However, in the pre-molt 

zoea 2 and the inter-molt zoea 3 stages the ratio changed in favor to the chymotrypsin-like 

activity. In these two stages the chymotrypsin-like activity was slightly higher than the PGPH 

activity (max. 1.5 fold higher).    

 

Fig. 3.7 Ratios between the specific protesomal activities: a) Trypsin-like side vs. chymotrypsin-like side b) 
Trypsin-like side vs. PGPH like side   
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3.2 Quantitative Real-Time PCR 

3.2.1 Primer and sample evaluation 

The amplificates for ubiquitin, ß-actin and the sodium-potassium ATPase α-subunit were 

clearly detected in the dilution series of the cDNA template. Only the α-Actin gene was not 

amplified in the PCR and accordingly, the standard curves were only created for the three 

remaining amplificates (Fig. 3.8).   

 

 

 

 

 

 

 

 

 

 

 

 

 

   

 

 

 

 

Fig. 3.8 a) and b) Standard curves of the ubiquitin, the ß-Actin and the sodium-potassium ATPase α-
subunit: The average Ct-values were plotted against the log of the applied RNA (µg). The linear equation of 
each regression is given in the right upper corner 
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The “no template control” and the “no cDNA control” were never detected within the Real-

Time PCR for any gene. The dissociation curve analysis showed that only one template was 

amplified for each gene (Fig. 3.9). The melting points occurred at an average temperature of 

74.38 °C for the ubiquitin amplificates, 75.25 °C for the ß-actin amplificates, and 78.10 °C for 

the sodium-potassium ATPase α-subunit.  

 

 

 

  

 

 

 

 

 

The mRNA quantities of the sodium-potassium ATPase α-subunit changed less within the 

different developmental stages than the quantities of the ß-actin (Data not shown). Therefore, 

the sodium-potassium ATPase α-subunit was chosen as a housekeeping gene. Hence, beside 

the ubiquitin gene expression, the ß-actin expression could be investigated as well.  

The developmental stages displayed slight variations in the ubiquitin and the ß-actin mRNA 

quantities (Fig. 3.10). These variations between the stages were different for both investigated 

amplificates. Two-fold changes, i.e. the duplication or the halving of the relative quantities, 

were used as references for predicting significant differences.  

The quantities of the ubiquitin mRNA levels differed less than 2-fold within the first two 

larval stages zoea 1 and zoea 2. The only exception was seen for the pre-molt zoea 1 where 

the quantity of mRNA decreased about 3-fold in comparison to the inter-molt zoea 1. The m-

RNA quantity decreased from post-molt zoea 3 to inter-molt zoea 3 about 4-fold and 

immediately increased in the pre-molt zoea 3 about nearly 6-fold. The greatest change in 

comparison to the freshly hatched zoea 1 larvae was reached in the post-molt juvenile lobster; 

Fig. 3.9 Dissociation curve analysis of the PCR products: Shown are the melting curves of the ubiquitin, ß-
Actin and sodium-potassium ATPase α-subunit amplificates.  

Ubiquitin             ß-Actin 

                                               

                                            Sodium-potassium-ATPase α-subunit 
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there the quantities change about 8-fold. The quantity of ubiquitin mRNA decreased again 

about 3.6-fold in inter-molt juveniles.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The ß-actin quantity remained up to the inter-molt zoea 3 at a level of 0.7-fold. Towards the 

pre-molt zoea 3, the ß-actin quantity increased about 3-fold and reached the highest value in 

the post-molt juvenile stage with a 1.7-fold change of quantity compared those of the freshly 

hatched zoea 1. In the inter-molt juvenile lobster sample the level decreased again to the 

quantities observed in the first juvenile stages.  
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Fig.3.10 Quantities of the ubiquitin and ß-actin mRNA levels in different molt stages of the European 
lobster larvae.  The levels of mRNA are expressed as the relative x-fold change “Ratio (2-∆∆ Ct)” in 
comparison to the control group, the freshly hatched zoea 1. The level of this group was set to be 1, indicated 
by the black horizontal line. Doubled or halved quantities are indicated by dotted lines (ratios 0.5 and 2).The 
bars symbolize the quantity of ubiquitin, whereas the red line symbolizes the level of the ß-actin mRNA.    
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3.3. 2D-PAGE 

The claw extracts of the four inter-molt stages displayed a great variety within their detectable 

protein spots (Fig 3.11a, the major protein spots were labeled with numbers). In all stages the 

protein dots were mainly detected at acidic to slightly neutral pI-values. Except two proteins 

with high, basic pI values, hardly any proteins were found in a neutral to basic range. Identical 

spots within the stages differed in their intensity (e.g. 1, 2, 5).    

The zoea 1 larva and the first juvenile had mainly proteins with a slightly more acidic pI than 

the the second and third zoea stages. Furthermore, in the samples of the zoea 2 and zoea 3 

larvae more proteins were detected in general with a lower molecular weight (e.g. protein 

pattern labeled with 10, 11, 12, 13).    
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Fig.3.11 Two Dimensional gel images of the 4 inter-molt stages (zoea 1 to juv 1): From the left to the right 
side the pH gradient proceed, labeled with acidic (pH 3) and basic (pH10). The numbered circles indicate the 
same protein spots within different samples.  

  

Although the proteins of single larvae claws could be successfully separated by 2D-

electrophoresis, the immunochemical detection of the subunits failed. It remains to be 

investigated whether the amount of protein was to low or the cross-reactivity of the antibodies 

with the lobster proteasome subunits was too poor. Since here is not specific product on the 

market, the lobster proteasome has to be isolated and antibodies have to be raised against the 

lobster subunits. This task, however, is far beyond the aim of the present bachelor thesis but, 

hopefully, will be considered in future research activities. 
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4. Discussion 

The presented results indicate that the 20S proteasome plays an important role already during 

the larval development of the European lobster. The trypsin-like, the chymotrypsin-like and 

the PGPH-like sites showed high catalytic activities within all larval stages. In the first 

juvenile stage the activities decreased remarkably. In comparison with the claw muscle tissue 

of adult European lobsters the proteasomal activities of the larvae seem to be several times 

higher than in adults. Accordingly, it is very likely that these high activities are indicative for 

the extensive physiological and anatomical changes the larvae go through during their 

development (Charmantier 1991).  

 

4.1 Variations of proteasomal activity levels 

The activities varied distinctly between stages and within stages. While within zoea 1 larvae 

the activities continuously increased, the activity patterns in zoea 2 and zoea 3 seemed to be 

more related to the molt stage. It is most likely that in the first larval stage general anabolic 

processes occur. The continuously rising activities may reflect the continuous formation of the 

proteasome. Lower activities in the inter-molt individuals of zoea 2 and zoea 3 may reflect a 

period of lower protein turnover and, therefore, of lower proteasomal activities due to a down-

regulation of the enzyme. In contrast, the increasing activities particularly of the trypsin-like 

and the chymotrypsin-like sites of the pre-molt zoea 2 may indicate a phase of enhanced 

protein turnover closely before molt. The increase of activities was most distinct in the pre-

molt zoea 2. In zoea 3 pre-molt individuals the activities followed a similar trend but the 

increase of activities in the pre-molt stage was not statistically significant.  

 

The lacking increase of activities in pre-molt zoea 3 may be explained by the difficult 

determination of the individuals during sampling. The only possibility to identify pre-molt 

larvae was to take other larvae as a clue. Larvae of the first two zoea stages pass their 

development on average within 4 and 8 days, respectively. Furthermore, larvae of these stages 

molted into the next stage almost simultaneously which made it relatively easy to collect them 

at a defined time shortly before molt. The greater variation shown for the duration of the zoea 

2 stage (see Material and Methods, Tab.2.1) is due to different hatches of larvae, which still 

molted simultaneously but needed slightly different periods for their development. In contrast, 

zoea 3 larvae needed almost 13 days to reach the next stage and, moreover, they did not molt 

as simultaneously as the earlier stages did. For example, if the first larva of a hatch molted 
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after 11 days then the other larvae, which were sampled for analysis at this time, may still 

have needed another 2-3 days which, however, is quite far before molt.  Some few larvae even 

did not molt into the juvenile stage at all. They remained in the zoea 3 stage and died about 

one week after their predicted molt date. Thus, these potentially falsely classified individuals 

might have caused a great scatter in the proteasomal activity data and, apparently, may have 

lead to an underestimation of the enzyme activity values. A second feasible reason for the 

lack of activity increase may be related to the transition from larval metabolic processes to 

juvenile metabolic processes. The first juvenile stage showed significantly lower proteasomal 

activities than the zoea 2 and zoea 3 stages. Since the larval development of the lobster is 

more continuous than in other decapods lacking a distinct metamorphosis from e.g. the 

megalopa into the first juvenile stage it might be speculated that the late zoea 3 already start to 

adopt the metabolic characteristics of the juvenile. Accordingly, the high proteasomal 

activities and the molt-related activity patterns of the larvae may be masked by the generally 

lower proteasomal activities of the upcoming juvenile stage. 

 

4.2 Variation of proteasomal activity sites  

Similar to the enzymatic properties of the latent 20S proteasome which was isolated from 

adult lobster muscle tissue (Mykles 1997), the proteasome of the larvae possessed highest 

trypsin-like activities and remarkably lower chymotrypsin-like and PGPH-like activities. 

Remarkably, the ratios between the proteasomal activities changed during the larval 

development. While in freshly hatched larvae and in juvenile inter-molt individuals the 

trypsin-like site was dominant, the chymotrypsin-like site seems to gain relevance in the Zoea 

2 and Zoea 3 stages.  

The proteasome is characterized by high plasticity and, moreover, distinct tissue allocation 

(Cardozo et al. 1995, Mykles 1999b, Dahlmann 2000). Several authors studied the 

proteasome in embryonic tissues (Haas and Kloetzel 1989, Klein et al. 1990) and Young et al. 

(1991) described a change in the enzymatic activities during the embryonic development of 

chick skeletal muscle. Most considerable in this study was the fact that there is a short period 

within the development of the chick skeletal muscle in which the chymotrypsin-like activity 

increased while the other activities remained at the same level. Moreover, the proteasomal 

activities decrease in the further progress of development. These results are in good 

agreement with my own observations which showed that within the larval stages the 
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chymotrypsin-like activity of the 20S proteasome increases but decreases again in the juvenile 

stages.   

All catalytic sites are closely interlinked and influence each other through allosteric 

interactions for most efficient degradation (Kisselev et al. 1999). For example it was shown 

that the two chymotrypsin-like sites cooperatively influence each other. Moreover, substrate 

binding to the chymotrypsin-like site stimulates the activity of the PGPH-like site. Therefore, 

Kisselev et al. (1999) suggested a “bite-chew” mechanism to describe the proteasomal de-

gradation of proteins (Tab.4.1). The polypeptides are initially bound by one of the two 

chymotrypsin-like sites and cleft into fragments. Simultaneously, the other 4 catalytic sites are 

stimulated as they take over the further degradation. With increasing trypsin-like and PGPH-

like activities, the chymotrypsin-like site is progressively inhibited to prevent excessive 

generation of fragments. When the fragments are completely degraded and released, the 

chymotrypsin-like site is again activated. This mechanism implies that the chymotrypsin-like 

sites of the 20S proteasome are those which control the rate of protein degradation 

(Heinemeyer et al. 1997, Arendt et al. 1997, Kisselev et al. 1999).    

 

Tab. 4.1 “Bite-and-Chewing” mechanism of the 20S proteasome for protein degradation (after Kisselev 

1999): The functional states of the active sites are illustrated in green (active state), yellow (reduced activity) or 

red (inhibited activity)  

Site 

Functional State of the active sites  

Beginning 
“Bite” 

of a incoming polypeptide 

“Chewing”                         

of a incoming polypeptide 
End 

CHY    

 

 

 

TRY    

PGPH    

 

 

The controlling functions of the chymotrypsin-like sites were supported by studies which 

showed that the inhibition or inactivation of these sites through mutations or site specific 

inhibitor significantly influenced the proteasomal activity and the cell survival. The 

deactivation of the two other active sites seemed to have only a weak influence (Lee and 

Goldberg 1996, Heinemeyer et al. 1997). However, more recent investigations revised this 

assumption, because (i.g. Kisselev et al. 2006) proved that a significant decrease in the whole 

protein breakdown (in vitro and in vivo) could not be achieved by inhibition of the 

chymotrypsin-like sites alone. Only the inhibition of the chymotrypsin-like sites and the 
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simultaneous inhibition of either the trypsin-like site or the PGPH-like site lead to a 

significant decrease of activity. Together with the “bite-chew” mechanism, these findings 

imply that although the chymotrypsin-like sites seem to limit the protein breakdown rate, all 

three active sites are closely interlinked and, only together, they perform the effective 

degradation of proteins. The mechanism proposed by Kisselev (1999) strongly indicates that 

the shift from a very dominant to a less dominant trypsin-like site, and instead rising 

chymotrypsin-like activities, may be another evidence for a better adjustment of the 

proteasome to facilitate higher protein turnover rates. 

The lobster larvae showed a distinct and continuous change from lower chymotrypsin-like 

activity in the first stage to higher chymotrypsin-like activities during the entire larval 

development. Only in the juveniles the chymotrypsin-like activity was reduced again and both 

enzymes reached the same ratio as in the first larval stage. These results indicate that, beside 

the general increase of the proteolytic enzyme activities, the proteasome is adjusted to better 

cope with higher protein turnover rates during the entire larval development 

 

4.3 Proteasome and muscle claw atrophy 

The proteasomal involvement of muscle claw atrophy in adult decapod crustaceans was 

mainly studied by D.L. Mykles and colleagues. Mykles (1991) proposed a direct involvement 

of the ATP/Ubiquitin-dependent proteolytic pathway of the 26S proteasome in the claw 

muscle atrophy of adult decapod crustaceans. Mykles (1992, 1999a, 1999b) showed that the 

proteasome is able to degrade myofibrillar proteins, at least in vitro. However, myofibrillar 

proteins turned out to be only poor substrates for the basal conformation of the multicatalytic 

complex (20S proteasome, Mykles and Haire, 1991). Only the heat-activated proteasomal 

conformation, mainly the branched-chain-amino-acid-preferring activity (BRAAP), was able 

to degrade myofibrillar proteins such as myosin, troponin or tropomyosin at a remarkable 

extent. Other studies figured out that the BRAAP activity is not due to an independent 

additional active site, but this activity is actually performed by the chymotrypsin and the 

PGPH-like sites (McCormack, 1998). This result again underlines the suggestion that the 

chymotrypsin-like sites seem to have a specific relevance for the degradation of myofibrillar 

proteins. 
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4.4 Proteasome and tissue-reorganization  

I showed in this study that the latent, not purified 20S proteasome exhibits a variety of 

catalytic activities within the larval development which seems to reflect the physiological 

state of the 20S proteasome in vivo. However, it is not clear whether the changes in the 

catalytic preferences as well as the increasing capabilities of degradation are solely due to 

myofibrillar degradation or also participate in other cellular processes.  The anatomical design 

of the claws implies that already the larvae need to reduce and reorganize muscle tissue before 

ecdysis. So it seems obligatory that the proteasome might also be involved in these 

reorganization processes.  

The enormous reduction of claw muscle tissue prior to each molt confront adult crustaceans 

with serious degradation- and remodeling processes. Although, the muscle mass has to be 

reduced so far that the tissue fits through the narrow joint, the muscle has to maintain its 

contractile function. This is done through a distinct remodeling of the myofibrillar structures 

(Mykles and Skinner 1981, Ismail and Mykles 1992). Surprisingly, the protein synthesis in 

the claw tissues is not reduced in pre-molt crustaceans, but instead significantly increased 

(Dahlmann et al. 1995, El Haj et al. 1996, Mykles 1997). The reason for the steady protein 

synthesis is a complex mechanism to re-modulate the myofibrillar structures and to reduce the 

muscle tissue while the contractile function should not be impaired (Mykles and Skinner 

1981). I assume that this mechanism, as it represents a period of enhanced protein turnover, 

will strongly depend on proteasomal activity as well. The proteasome is one of the main 

regulators of the cell-cycle (Richter-Ruoff and Wolf 1993, Naujokat and Hoffmann 2002), 

differentiation processes such as remodeling (De Diego et al. 2001), and growth. Therefore it 

seems likely that especially in developmental stages which are characterized by high mitotic 

activity, growth and high transcription rates might demand an active and regulating 

proteasome. Unfortunately, only a few studies have been done so far which investigated the 

activities of the proteasome within developmental stages and a comparison with lobster molt 

processes is somehow inaccurate. Klein and Kloetzel (1990) reported a cell specific 

accumulation of Drosophila proteasome during the early development and its occurrence in 

proliferating cells. De Diego et al. (2001) assumed that the enzyme plays an important role 

during the remodeling phase of Trypanosoma cruzi. The larvae of clawed lobster seem to be 

suitable models to study tissue related processes with biochemical as well as histochemical 

methods. The larvae have short and defined molt phases and they are large enough to provide 

sufficient material for analyses. 
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4.5 Expression of ubiquitin during the molt cycle  

The quantitative Real-Time PCR indicates that the ubiquitin expression does not show molt 

depending variations within the first two larval stages. The molt cycle-dependent ubiquitin 

expression in adult lobster claw muscle tissue observed by various scientists (Shean et al. 

1995, Koenders et al. 2002, Spees et al. 2003), seem to start in the third larval stage. Only in 

this stage, the high, several-fold change of the mRNA quantities indicates that these changes 

are not due to random variations but to different requirements in protein degradation before 

the molt. The observation that the greatest change happened in the post-molt juvenile 

individuals fits quite nicely into this picture. These animals were sampled only a short time 

after they molt and therefore, the expression of ubiquitin was probably not down-regulated 

yet. The study of Spees et al. (2003) supports this suggestion as he showed that the poly-

ubiquitin mRNA amount reached highest values in animals at their day of molt. In contrast to 

the ubiquitin, the ß-actin quantities did not change that drastically. Within all stages, the ß-

actin reached never half or double quantities in comparison to the freshly hatched zoea 1.  

Unfortunately the qRT-PCR could only be done once though with 10 pooled animals in each 

assay. The reason for pooling samples was mainly the little size of the larvae. It was not 

possible to extract enough total RNA (0.4 µg) from the claw tissue of one individual. As a 

consequence, a minimum of ten individuals had to be pooled and therefore not enough larvae 

were available to run replicates in qRT-PCR. However, it has to be kept in mind, that the 

received quantities represent the mean amount of ubiquitin or ß-actin of 10 individuals per 

stage. Furthermore, these 10 individuals were analyzed in triplicates, so it is likely that the 

observed quantities may well represent the approximate level of mRNA of both “genes”. Due 

to the lack of statistic, the quantity changes cannot be stated as significant but according to 

Dr. Lucassen (personal pers. com.) a 4-fold changes between two stages most likely would 

turn out to be significant.  

The two target amplificates showed different trends of quantity changes during the larval 

development. This indicates that the ubiquitin changes are likely due to an ubiquitin specific 

gene expression.  
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4.6 Subunit identification  

The 2D-gelelectrophoresis was successfully done with the claws for the four inter-molt 

individuals. The protein spots showed a high variability within each stage. Since proteasomal 

subunits have a molecular weight between 21 kDa and 32 kDa (Review: Baumeister et al. 

1998) the protein spots of interest will most likely be those found in the lower half of the 2D-

Gel.  

The protein pattern in zoea 1 fitted better to those pattern of the first juvenile individual than 

to the pattern of the other two zoea stages. Zoea 2 and zoea 3 again showed higher similarities 

to each other. These results may indicate that the proteasomal subunit composition does 

somehow change within the lobster development. The zoea 2 and zoea 3 seem to have an 

exceptional subunit composition which maybe is due to different metabolic requirements. But 

to make secured statements about the change in proteasomal subunit composition and the 

resulting consequences for the proteasomal activities, it would be necessary to identify the 

subunits and to exactly determine the pI and the molecular weight of each subunit. 

Unfortunately, the identification of proteasomal subunits by a specific antibody was not 

successful (results not shown). Although the antibody was reported to possess cross-reactivity 

to the lobster proteasome (Haire et al. 1995), it was not possible to detect any subunits of the 

20S proteasome. It is not clear whether the antibody had poor cross-reactivity or the 

proteasome content of the samples was too low for detection. More comprehensive studies are 

required to isolate the lobster proteasome and to raise specific antibodies against the subunits. 

 

 

4.7 Conclusion 

The detected strong increase and the courses of proteasomal activities, the variation of activity 

patterns, and the ubiquitin mRNA expression, clearly indicate an important role of the 

proteasome in the developmental stages of lobster larvae. The enzyme is accurately adjusted 

to the different requirements of the claw muscle tissues, depending most likely on the molt 

stage of the individuals. This is especially evident in pre-molt individuals of the Zoea 2 (and 

Zoea 3) implying that already the early stages show an molt-induced claw muscle atrophy or 

myofibrillar reorganization. Furthermore, it seems that especially the second and third larval 

stages have to cope with cellular processes in which a high proteasome attendance is required. 

The exceptional activity patterns in inter-molt individuals of zoea 2 and zoea 3 most likely 

display variations in the subunit pattern of the 20S proteasome. It is the shift from lower 
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chymotrypsin-like activities in zoea 1 to higher activities in zoea 2 and zoea 3 and finally the 

shift back to low activities in the juvenile stages which indicate an adjustment of the 

proteasome to cope with specific physiological tasks during the larval development .  

 

4.8 Perspectives 

I was able demonstrate for the first time the involvement of the 20S proteasome during the 

larval claw muscle development of the European lobster, H.gammarus. But still some of the 

question I raised at the beginning of this study could not fully be answered. A main future 

focus would be the identification of proteasomal subunits. Since the antibody apparently did 

not bind to the lobster proteasome subunits, it appears necessary to purify the 20S proteasome 

of the European lobster and to raise own and highly specific antibodies. Simultaneously, the 

expression of subunits within the larval stages has to be quantified by Real-Time PCR 

approaches. Furthermore, it has to be investigated how the proteasome is regulated and 

whether this regulation is related to the endocrine processes of the molt cycle. Finally, 

expression studies of proteasomal activator complexes and maybe PA700 complexes would 

help to understand the higher activity of the 20S proteasome during the second and third zoea 

stage.  
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Appendix 

 
 
Buffer composition 
 
 
 
Homogenizing and assay buffer 
 
Homogenizing buffer (after Dawson, 1995) 
0.02   M Tris(hydroxymethyl)aminomethane (Tris) 
0.001 M Ethylenediaminetetraacetic acid (EDTA) 
0.005 M Magnesiumchloride (MgCl2) 

  pH 7.5 
 
 

Assay buffer (after Dawson, 1995) 
0.1 M Tris 

    pH 8.0 
 
 
Discontinuous Western Blotting 
 
Cathode buffer 
0.05 M Sodium tetraborate (Borax) 
0.10 % SDS 

 
 
Anode buffer 
0.05 M Sodium tetraborate (Borax) 
15,0 % Methanol 

 
 
Coomassie Brilliant Blue Staining solution 
 0.05 % (w/v) Coomassie Brilliant Blue G250 
10.0 %           Acetic Acid   
40.0 %           Methanol 

  Filled up to 1L with distilled water 
 
 
Destaining solution 
 10.0 %           Acetic Acid   
40.0 %           Methanol 

  Filled up to 1L with distilled water 
 

 



 

 

Two-Dimensional Gel Electrophoresis 

Urea stock solution (8M Urea) 
25 g urea solved in 50 ml distilled water 

  0.5 g Serdolit MB-1  
 
  
Rehydration solution  
2 % 3-[(3-Cholamidopropyl)dimethylammonio]-1-propanesulfonate (CHAPS) 
0.015 M Dithiothreitol (DTT) 
0.2 % Ampholytes  
dissolved in urea stock solution (8M Urea) 

  Prepared freshly before each use 
 
 
Equilibration buffer (stock solution) 
6 M Urea 
30 % Glycerol 
2 % Sodium dodecyl sulfate (SDS) solved 0.05 M Tris/HCL (pH 8.8) 

  Storable at room temperature up to two weeks 
 
 
Buffer A (per IPG strip) 
0.05 g DTT 
dissolved in 5 ml equilibration stock solution 

 
 
Buffer B (per IPG strip) 
0.2 g Iodoacetamide 
dissolved in 5 ml equilibration stock solution 

 
 
 
Silver Staining 
 
Fixation solution 
100.00 ml Ethanol 
  25.00 ml Acetic Acid 

   Fill up to 250 ml with distilled water 
 
 
Sensitizing solution 
 75.00 ml Ethanol 
   1.25 ml Glutardialdehyde (25 % w/v) – add shortly before use 
 10.00 ml Sodium thiosulfate (5% w/v) 
 17.00   g Sodium acetate (one packet)  

   Fill up to 250 ml with distilled water 
 
 



 

 

Silver reaction solution 
  25.00 ml Silver nitrate solution (2.5 % w/v) 
    0.10 ml Formaldehyde (37 % w/v) 

   Fill up to 250 ml with distilled water 
 
 
Developing solution 
   6.25   g Sodium carbonate (one packet) 
   0.05 ml Formaldehyde (37 % w/v) 

   Fill up to 250 ml with distilled water 
 
Stopping solution 
   3.65   g Silver nitrate solution (2.5 % w/v) 

   Fill up to 250 ml with distilled water 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 



 

 

 

 

 

 

 


