ePIC

Phylogeny-wide analysis of social amoeba genomes highlights ancient origins for complex intercellular communication.

Edit Item Edit Item

General Information:

Citation:
Heidel, A. J. , Lawal, H. M. , Felder, M. , Schilde, C. , Helps, N. R. , Tunggal, B. , Rivero, F. , John, U. , Schleicher, M. , Eichinger, L. , Platzer, M. , Noegel, A. A. , Schaap, P. and Glöckner, G. (2011): Phylogeny-wide analysis of social amoeba genomes highlights ancient origins for complex intercellular communication. , Genome Research., 21 , pp. 1882-1891 . doi: 10.1101/gr.121137.111
Cite this page as:
DOI:
Official URL:
Contact Email:
Download:

[img]
Preview
PDF
Heidel_et_al_2011_Genome_Res_intracellular_communication_amoeba.pdf

Download (713Kb) | Preview
Cite this document as:
Supplementary Information:

Abstract:

Dictyostelium discoideum (DD), an extensively studied model organism for cell and developmental biology, belongs to the most derived group 4 of social amoebas, a clade of altruistic multicellular organisms. To understand genome evolution over long time periods and the genetic basis of social evolution, we sequenced the genomes of Dictyostelium fasciculatum (DF) and Polysphondylium pallidum (PP), which represent the early diverging groups 1 and 2, respectively. In contrast to DD, PP and DF have conventional telomere organization and strongly reduced numbers of transposable elements. The number of proteincoding genes is similar between species, but only half of them comprise an identifiable set of orthologous genes. In general, genes involved in primary metabolism, cytoskeletal functions and signal transduction are conserved, while genes involved in secondary metabolism, export, and signal perception underwent large differential gene family expansions. This most likely signifies involvement of the conserved set in core cell and developmental mechanisms, and of the diverged set in niche- and species-specific adaptations for defense and food, mate, and kin selection. Phylogenetic dating using a concatenated data set and extensive loss of synteny indicate that DF, PP, and DD split from their last common ancestor at least 0.6 billion years ago.

Further Details:

Imprint
AWI
Policies:
read more
OAI 2.0:
http://epic.awi.de/cgi/oai2
ePIC is powered by:
EPrints 3