ePIC

Interannual to decadal summer drought variability over Europe and its relationship to global sea surface temperature

Edit Item Edit Item

General Information:

Citation:
Ionita, M. , Lohmann, G. , Rimbu, N. , Chelcea, S. and Dima, M. (2011): Interannual to decadal summer drought variability over Europe and its relationship to global sea surface temperature , Climate Dynamics. . doi: 10.1007/s00382-011-1028-y
Cite this page as:
DOI:
Official URL:
Contact Email:
Download:

Supplementary Information:

Abstract:

Interannual to decadal variability of European summer drought and its relationship with global sea surface temperature (SST) is investigated using the newly developed self calibrated Palmer drought severity index (scPDSI) and global sea surface temperature (SST) field for the period 1901–2002. A European drought severity index defined as the average of scPDSI over entire Europe shows quasiperiodic variations in the 2.5–5 year band as well as at 12–13 years suggesting a possible potential predictability of averaged drought conditions over Europe. A Canonical Correlation Analysis between summer scPDSI anomalies over Europe and global SST anomalies reveals the existence of three modes of coupled summer drought scPDSI patterns and winter global SST anomalies. The first scPDSI-SST coupled mode represents the long-term trends in the data which manifest in SST as warming over all oceans. The associated long-term trend in scPDSI suggests increasing drought conditions over the central part of Europe. The second mode is related to the inter-annual ENSO and decadal PDO influence on the European climate and the third one captures mainly the drought pattern associated to Atlantic Multidecadal Oscillation. The lag relationships between winter SST and summer drought conditions established in this study can provide a valuable skill for the prediction of drought conditions over Europe on interannual to decadal time scales.

Further Details:

Imprint
AWI
Policies:
read more
OAI 2.0:
http://epic.awi.de/cgi/oai2
ePIC is powered by:
EPrints 3