• Browse
    • Author
    • Year
    • Platform
    • Organizations
    • Programs
    • Research Networks
    • Type
  • Search
    • Simple
    • Advanced
  • About
    • About
    • Policies
    • Citation Guide
  • Login
    Logo Alfred Wegener Institut
    Logo Alfred Wegener Institut
    Alfred-Wegener-Institut
    Helmholtz-Zentrum für Polar-
    und Meeresforschung
    • Imprint
    • Contact
    • OAI
    • RSS 2.0

    EPIC.awi.de

    Home
    • Browse
      • Author
      • Year
      • Platform
      • Organizations
      • Programs
      • Research Networks
      • Type
    • Search
      • Simple
      • Advanced
    • About
      • About
      • Policies
      • Citation Guide
    • Login
      Login

      Simulation and observations of stratospheric aerosols from the 2009 Sarychev volcanic eruption

      Edit Item Edit Item

      General Information:

      Citation:
      Kravitz, B. , Robock, A. , Bourassa, A. , Deshler, T. , Wu, D. , Mattis, I. , Finger, F. , Hoffmann, A. , Ritter, C. , Bitar, L. , Duck, T. and Barnes, J. E. (2011): Simulation and observations of stratospheric aerosols from the 2009 Sarychev volcanic eruption , J. Geophys. Res . doi: 10.1029/2010JD015501
      Cite this page as:
      hdl:10013/epic.38871
      DOI:
      10.1029/2010JD015501
      Contact Email:
      Christoph.Ritter@awi.de
      Related Data:

      Download:

      [img]
      Preview
      PDF
      Kravitz_2011_Sarychev.pdf

      Download (2MB) | Preview
      Cite this document as:
      hdl:10013/epic.38871.d001
      Abstract:

      We used a general circulation model of Earth’s climate to conduct simulations of the 12-16 June 2009 eruption of Sarychev volcano (48.1°N, 153.2°E). The model simulates the formation and transport of the stratospheric sulfate aerosol cloud from the eruption and the resulting climate response. We compared optical depth results from these simulations with limb scatter measurements from the Optical Spectrograph and InfraRed Imaging System (OSIRIS), in situ measurements from balloon-borne instruments lofted from Laramie, Wyoming (41.3°N, 105.7°W), and five lidar stations located throughout the Northern Hemisphere. The aerosol cloud covered most of the Northern Hemisphere, extending slightly into the tropics, with peak backscatter measured between 12 and 16 km in altitude. Aerosol concentrations returned to near background levels by Spring, 2010. After accounting for expected sources of discrepancy between each of the data sources, the magnitudes and spatial distributions of aerosol optical depth due to the eruption largely agree. In conducting the simulations, we likely overestimated both particle size and the amount of SO2 injected into the stratosphere, resulting in modeled optical depth values that were a factor of 2-4 too high. Model results of optical depth due to the eruption show a peak too late in high latitudes and too early in low latitudes, suggesting a problem with stratospheric circulation in the model. The model also shows a higher annual decay rate in optical depth than is observed, showing an inaccuracy in seasonal deposition rates. The modeled deposition rate of sulfate aerosols from the Sarychev eruption is higher than the rate calculated for aerosols from the 1991 eruption of Mt. Pinatubo.

      Further Details:

      Item Type:
      Article
      Authors:
      Kravitz, Ben ; Robock, Alan ; Bourassa, Adam ; Deshler, Terry ; Wu, Decheng ; Mattis, Ina ; Finger, Fanny ; Hoffmann, Anne ; Ritter, Christoph ; Bitar, Lubna ; Duck, Thomas ; Barnes, John E.
      Divisions:
      AWI Organizations > Climate Sciences > Atmospheric Circulations
      Programs:
      Helmholtz Research Programs > PACES I (2009-2013) > TOPIC 1: The Changing Arctic and Antarctic > WP 1.2: Aerosol, Water Vapour, and Ozone Feedbacks in the Arctic Climate System
      Eprint ID:
      25057
      Logo Alfred Wegener Institut
      Alfred-Wegener-Institut
      Helmholtz-Zentrum für Polar-
      und Meeresforschung
      Logo Helmholtz

      • Browse
        • Author
        • Year
        • Platform
        • Organizations
        • Programs
        • Research Networks
        • Type
      • Search
        • Simple
        • Advanced
      • About
        • About
        • Policies
        • Citation Guide
      • Imprint
      • Contact
      • OAI
      © Alfred-Wegener-Institut