An Overview on Data Assimilation

Lars Nerger
Alfred Wegener Institute for Polar and Marine Research
Bremerhaven, Germany

and

Bremen Supercomputing Competence Center BremHLR

Lars.Nerger@awi.de
Combination of Information through Data Assimilation

Improved analysis and forecast of, for example,
- water temperature
- ice coverage
System Information: Chlorophyll in the ocean

Information: Model
- Generally correct, but has errors
- all fields, fluxes, …

Information: Observation
- Generally correct, but has errors
- sparse information
 (only surface, data gaps, one field)

Combine both sources of information by data assimilation

Lars Nerger - Overview on Data Assimilation
Overview

• Data assimilation
• Variational data assimilation
 • 3D-Var, 4D-Var, adjoint method
• Sequential data assimilation
 • Kalman filters
• Ensemble-based Kalman filters
 • SEIK and LSEIK filters
Data Assimilation

- Optimal estimation of system state:
 - initial conditions (for weather/ocean forecasts, …)
 - trajectory (temperature, concentrations, …)
 - parameters (growth of phytoplankton, …)
 - fluxes (heat, primary production, …)
 - boundary conditions and ‘forcing’ (wind stress, …)

- Characteristics of system:
 - high-dimensional numerical model - $\mathcal{O}(10^7)$
 - sparse observations
 - non-linear
Data Assimilation

Consider some physical system (ocean, atmosphere, …)

Optimal estimate basically by least-squares fitting

Two main approaches:
- Variational assimilation
- Sequential assimilation
Variational Data Assimilation

3D-Var, 4D-Var, Adjoint method
Formulate cost function J in terms of “control variable”
Example: initial state x_0

Problem:
Find trajectory (defined by x_0) that minimizes cost J while fulfilling model dynamics

Use gradient-based algorithm:
- e.g. quasi-Newton
- Gradient for $J[x_0]$ is computed using adjoint of tangent linear model operator
- The art is to formulate the adjoint model and weights in J
 (No closed formulation of model operator)
- Iterative procedure (local in control space)

3D-Var: optimize locally in time
1. **Initialization**: Choose initial estimate of x_0

2. **Forward**: Integrate model start from x_0; store trajectory

3. Compute cost function; exit, if cost is below limit

4. **Backward**: Integrate adjoint model backward in time start from final residual (y-x); use trajectory from 2.

5. **Optimizer**: Update x_0 with optimization algorithm

Serial operation; difficult to parallelize
Sequential Data Assimilation

Kalman filters
Consider some physical system (ocean, atmosphere,…)

Sequential assimilation: correct model state estimate when observations are available (analysis); propagate estimate (forecast)

Size of correction determined by error estimates
Probabilistic view: Optimal estimation

Consider probability distribution of model and observations

Kalman Filter:
Assume Gaussian distributions

Lars Nerger - Overview on Data Assimilation
Gaussianity

- Assumed by all KF-based filters (for optimal minimum-variance estimate)
 - Gaussian forecast probability distribution
 - Observation errors Gaussian distributed
- Analysis is combination of two Gaussian distributions
- Estimation problem can be formulated in terms of means and covariance matrices of probability distributions
- Cost function J is consistent with Gaussian assumptions

But: Nonlinearity will not conserve Gaussianity!

(Extended KF conserves Gaussianity by first-order approximation, but can be unstable)
More issues … application side

- Storage of covariance matrix can be unfeasible
- Evolution of covariance matrix extremely costly
- Linearized evolution (like in Extended KF) can be unstable

⇒ Reduce cost
 - simplify dynamics
 - approximate state covariance matrix
Ensemble-based Kalman filters
 Ensemble-based Kalman Filters

- Foundation: Kalman filter (Kalman, 1960)
 - optimal estimation problem
 - express problem in terms of state estimate \mathbf{x} and error covariance matrix \mathbf{P} (Gaussian distributions)
 - propagate matrix \mathbf{P} by linear (linearized) model
 - variance-minimizing analysis

- Ensemble-based Kalman filter:
 - sample state \mathbf{x} and covariance matrix \mathbf{P} by ensemble of model states
 - propagate \mathbf{x} and \mathbf{P} by integration of ensemble states
 - Apply linear analysis of Kalman filter

First filter in oceanography: “Ensemble Kalman Filter” (Evensen, 1994), second: SEIK (Pham, 1998)
Ensemble-based Kalman Filter

Approximate probability distributions by ensembles

Questions:
• How to generate initial ensemble?
• How to resample after analysis?

Please note:
In general, this is not an approximation of the Kalman filter!
Initialization: Sample state \mathbf{x} and covariance matrix \mathbf{P} by Monte-Carlo ensemble of model states

Forecast: Evolve each of the ensemble members with the full non-linear stochastic model

Analysis: Apply EKF update step to each ensemble member with observation from an observation ensemble. Covariance matrix approx. by ensemble statistics, state estimate by ensemble mean.
Error Subspace Algorithms

⇒ Approximate state covariance matrix by low-rank matrix
⇒ Keep matrix in decomposed form \(XX^T, VUV^T\)

Mathematical motivation:
• state error covariance matrix represents error space at location of state estimate
• directions of different uncertainty
• consider only directions with largest errors (error subspace)
⇒ degrees of freedom for state correction in analysis: \(\text{rank}(P)\)

\[P = VUV^T \]

Error space: \(E = \text{span}(v_1, v_2, \ldots)\)
Sampling Example

\[P_t = \begin{pmatrix} 3.0 & 1.0 & 0.0 \\ 1.0 & 3.0 & 0.0 \\ 0.0 & 0.0 & 0.01 \end{pmatrix}; \quad x_t = \begin{pmatrix} 0.0 \\ 0.0 \end{pmatrix} \]
More ensemble-based/error-subspace Kalman filters

- A little “zoo” (not complete):
 - EnKF(94/98)
 - SEIK
 - EAKF
 - ETKF
 - EnSQRRTKF
 - EnKF(2003)
 - EnKF(2004)
 - SEEK
 - RRSQRT
 - ROEK
 - MLEF
 - SPKF
 - ESSE

(Properties and differences are hardly understood)
Computational Aspects

- Ensemble integration can be easily parallelized
- Filter algorithms can be implemented independently from model
- Observations need information about the fields and the location of data

Motivation for PDAF (Parallel Data Assimilation Framework)
- Software framework (Fortran) to simplify implementation of data assimilation systems based on existing models
- Provide parallelization support for ensemble forecasts
- Provide parallelized and optimized filter algorithms
- Open source: http://pdaf.awi.de
The SEIK filter
The SEIK* filter (Pham, 1998)

- Use factorization of covariance matrix \(P = VUVT \) (singular value decomposition)
- Approximate \(P \) by truncation to leading singular values (low rank \(r \ll \text{state dimension } n \))
- **Forecast**: Use ensemble of minimum size \(N = r+1 \)
- **Analysis**:
 - Regular KF update of state estimate \(x \)
 - Update \(P \) by updating \(U \)
- **Re-initialization**: Transform ensemble states to represent new \(x \) and \(P \)

Singular “Evolutive” Interpolated Kalman
The SEIK filter (Pham, 1998) - differences from EnKF

Initialization: Approximate covariance matrix by low-rank matrix in the form $\textbf{P} = \textbf{V} \textbf{U} \textbf{U}^T$. Generate ensemble of minimum size exactly representing error statistics.

Forecast: Evolve each of the ensemble members with the full non-linear stochastic model.

Analysis: Apply EKF update step to ensemble mean and the "eigenvalue matrix" \textbf{U}. Covariance matrix approx. by ensemble statistics.

Re-Initialization: Transform state ensemble to exactly represent updated error statistics.

Overall: A more efficient ensemble-based Kalman filter.
The SEIK filter - Properties

- Computational complexity
 - linear in dimension of state vector
 - approx. linear in dimension of observation vector
 - cubic with ensemble size

- Low complexity due to explicit consideration of error subspace:
 - Degrees of freedom given by ensemble size -1
 - Analysis increment: combination of ensemble members with weight computed in error subspace

- Simple application to non-linear models due to ensemble forecasts (e.g. no linearized or adjoint models)
 - but not “optimal”

- Equivalent of ETKF under particular conditions
Issues of ensemble-based/error-subspace KFs

- No filter works without tuning
 - forgetting factor/covariance inflation
 - localization

- Other issues
 - Optimal initialization unknown (is it important?)
 - ensemble integration still costly
 - Simulating model error
 - Nonlinearity
 - Non-Gaussian fields or observations
 - Bias (model and observations)
 - …
Example:

Assimilation of pseudo sea surface height observations in the North Atlantic
FEOM – Mesh for North Atlantic

finite-element discretization

surface nodes: 16000
3D nodes: 220000
z-levels: 23
eddy-permitting
Configuration of twin experiments

- Assimilate synthetic observations of sea surface height (generated by adding uncorrelated Gaussian noise with std. deviation 5cm to true state)
- Covariance matrix estimated from variability of 9-year model trajectory (1991-1999) initialized from climatology
- Initial state estimate from perpetual 1990 model spin-up
- Monthly analysis updates (at initial time and after each month of model integration)
- No model error; forgetting factor 0.8 for both filters
Modeled Sea Surface Height (Dec. 1992)

- large-scale deviations of small amplitude
- small-scale deviations up to 40 cm
Improvement of Sea Surface Height (Dec. 1992)

N=8

SSH: improvement by assimilation for SEIK, N=8 at 1st analysis

- **Improvement**: red - deterioration: blue

⇒ For N=8 rather coarse-scale corrections

⇒ Increased ensemble size adds finer scales (systematically)
Localization - LSEIK
Global SEIK filter - filtering behavior

• SEIK performs global optimization
• Degrees of freedom is small (ensemble size - 1)

Implications:

• Global averaging in analysis can lead to local increase in estimation error
• Small-scale errors can be corrected, but error reduction is small
• True errors are underestimated (Due to inconsistency between true and estimated errors)
Local SEIK filter

- Analysis:
 - Update small regions (e.g. single water columns)
 - Consider only observations within cut-off distance
 - neglects long-range correlations

- Re-Initialization:
 - Transform local ensemble
 - Use same transformation matrix in each local domain

Local SEIK filter II

Localizing weight

- reduce weight for remote observations by increasing variance estimates
- use e.g. exponential decrease or polynomial representing correlation function of compact support
- similar, sometimes equivalent, to covariance localization used in other ensemble-based KFs
Global vs. Local SEIK, N=32 (Mar. 1993)

- Improvement regions of global SEIK also improved by local SEIK
- Localization provides improvements in regions not improved by global SEIK
- Regions with error increase diminished for local SEIK

rrms = 83.6%
rrms = 31.7%
Relative rms errors for SSH

- global filter: significant improvement for larger ensemble
- global filter with N=100: relative rms error 0.74
- localization strongly improves estimate
 - larger error-reduction at each analysis update
 - but: stronger error increase during forecast
- very small radius results in over-fitting to noise
Effect of assimilation on non-observed fields

- velocity field updated via cross-correlations
- localization improves estimates
- minimum errors for 100km (N=8), 200km (N=32)
- special behavior for total localization (l=0km): overfitting

Lars Nerger - Overview on Data Assimilation
Local SEIK filter - findings

• LSEIK performs series of local optimizations
• Degrees of freedom given by ensemble size - 1 for each analysis domain

Implications:

• Localization can strongly improve filtering performance over the global SEIK
• Localization can lead to faster error-increase during forecast (imbalance problem)
 ⇒ possible trade off between improved analysis update and forecast error-increase
• LSEIK is more costly than global SEIK, but computationally still efficient
Bias Estimation
Bias Estimation

- un-biased system: fluctuation around true state
- biased system: systematic over- and underestimation (common situation with real data)

- 2-stage bias online bias correction
 1. Estimate bias (using fraction of covariance matrix used in 2.)
 2. Estimate de-biased state

- Forecast
 1. forecast ensemble of biased states
 2. no propagation of bias vector

Satellite Ocean Color (Chlorophyll) Observations

Natural Color 3/16/2004

Chlorophyll Concentrations

Source: NASA “Visible Earth”, Image courtesy the SeaWiFS Project, NASA/GSFC, and Orbimage

Lars Nerger - Overview on Data Assimilation
Assimilated Observations

- Daily gridded SeaWiFS chlorophyll data
 - gaps: satellite track, clouds, polar nights
 - ~13,000-18,000 data points daily
 (of 41,000 wet grid points)
 - irregular data availability

Estimated Chlorophyll - April 15, 2004

- strongly improved surface Chlorophyll estimate
- intended deviations (Arabian Sea, Congo, Amazon)
- other deviations in high-Chlorophyll regions
Comparison with independent data

• In situ data from SeaBASS/NODC over 1998-2004 (shown basins include about 87% of data)

• Independent from SeaWiFS data (only used for verification of algorithms)

• Compare daily co-located data points

⇒ Assimilation in most regions below SeaWiFS error

⇒ Bias correction improves almost all basins
Summary

• Data assimilation combines information from models and observations to generate improve estimates of the system.

• Ensemble-based Kalman filters are efficient assimilation methods. To some extent they can handle nonlinearity.

• Current assimilation algorithms require tuning

• There are various open issues regarding optimal application of assimilation algorithms.
Thank you!