Surface velocities in the hinterland of the Neumayer III station (Antarctica) derived from SAR-Interferometry

Who?Niklas Neckel^{1,2}, Reinhard Drews¹, Wolfgang Rack³When?September 30, 2011

¹Alfred Wegener Institute for Polar and Marine Research
 ²University of Tübingen
 ³Gateway Antarctica, University of Canterbury, Christchurch

	Table of contents	
Introduction		
	Goals of this study	
	Region of interest	
InSAR?		
	Basics of SAR-Interferometry	
	Interferogram	
Interferometric		
processing		
	Work flow	
	DEMs	
	Velocity field generation	
Final product		
	Errors	
	Final product	
Conclusion		

Goals of this study

- identify critical steps in the interferometric processing.automate the processing chain.
- analyze the dependency of the interferometric approach on external elevation models.
- derive an area-wide velocity field with error estimates in the region of interest.
- derive an estimate of the grounding zone location in the region of interest.

Region of interest

Figure: Hinterland of the German overwintering station Neumayer III.

Interferometric SAR

Figure: Setup for interferometric imaging.

$$\Delta\phi_{ij} = \Delta\phi_{orbit} + \Delta\phi_{topography} + \Delta\phi_{motion} + \Delta\phi_{atm} + \Delta\phi_{noise} \qquad (1)$$

Interferometric SAR

$$\Delta \phi_{ij} = \phi_j - \phi_i = \frac{4\pi}{\lambda} \Delta r \tag{2}$$

...if the random scattering is equal for ϕ_j and ϕ_i .

$$\Delta\phi_{ij} = \frac{4\pi}{\lambda} B_{ij} \cos(\theta_0 - \alpha_{ij}) \frac{z}{\rho_0 \sin(\theta_0)} + \frac{4\pi}{\lambda} \Delta\rho \tag{3}$$

Altitude of ambiguity:

$$z2\pi = \frac{\lambda}{2} \frac{r\sin(\theta)}{B_{\perp}} \tag{4}$$

Interferometric SAR

Figure: Sensitivity of ERS to vertical and horizontal motion.

For a 2π phase shift, this leads to

$$H2\pi = \frac{\lambda}{2\sin(\theta)} \approx 7.24cm \tag{5}$$

for horizontal motion and to

$$V2\pi = \frac{\lambda}{2\cos(\theta)} \approx 3.07 cm \tag{6}$$

for vertical motion.

Interferogram

Figure: Interferogram. Fringes caused by topography, surface displacement and tidal movement.

Work flow

DEMs

Table: Available DEMs for the region of interest.

Name	GRID	RMSE	Coverage
ASTER GDEM	30 m	894.9 m	World-wide
Bamber DEM	1 km	40.5 m	Antarctic-wide
Landsat DEM	20 m	-	Coastal areas
Local InSAR DEM	50 m	12.3 m	Local
RAMP DEM	200 m	177.3 m	Antarctic-wide
Wesche DEM	2.5 km	24 m	DML

Figure: Elevation differences along airborne laser altimeter profiles.

Figure: Fringes induced by surface displacement in the satellite's LOS and surface topography.

Figure: Interferogram after subtracting a simulated 'topography-only' phase trend.

Figure: Interferogram after phase unwrapping with GAMMA's MCF algorithm.

Figure: Profiles from wrapped and unwrapped interferogram.

Figure: Relation between GPS-derived velocity (\mathbf{g} , yellow) and the velocity along the satellite's LOS (\mathbf{r}_s (slant range); \mathbf{r}_g (ground range)).

Figure: Left: One-dimensional flow field of a descending satellite track (geocoded). Right: One-dimensional flow field of the overlapping ascending satellite track (geocoded).

Figure: Three-dimensional velocity field in m/d. Composed from ascending and descending ERS tracks.

Errors

Figure: Mosaic of three-dimensional flow velocities of grounded ice in m/d.

$$\overline{x}_{overlap1} = 0.003 \text{ m/d}$$

$$\overline{x}_{overlap2} = 0.098 \text{ m/d}$$
(8)

Errors

Figure: Differences between surface velocities based on the local InSAR DEM and the Bamber DEM in m/d.

Errors

Figure: Differences in surface velocity calculated using various DEMs.

Final product

Figure: Ice flow in the Neumayer III hinterland.

Final product

Figure: Profile in the region of the main ice flow. Black dots indicate the GCPs used for adjustment (*GLSS*) and comparison.

Field work

Figure: Ground Penetrating Radar and Global Positioning System measurements (LIMPICS ANT-Land campaign 2009/2010).

Final product

Figure: Grounding line detection from different satellite sensors.

identify critical steps in the interferometric processing.
 DEM essential → should be tested beforehand. High expectations on TanDEM-X and Cryosat-2.

identify critical steps in the interferometric processing.
 DEM essential → should be tested beforehand. High expectations on TanDEM-X and Cryosat-2.

■ GCP essential → no exposed bedrock → adjustment of spatial baseline?

- identify critical steps in the interferometric processing.
- DEM essential \rightarrow should be tested beforehand. High expectations on TanDEM-X and Cryosat-2.
- GCP essential \rightarrow no exposed bedrock \rightarrow adjustment of spatial baseline?
 - one three-dimensional combination looks nice (for fast ice flow in particular).

- identify critical steps in the interferometric processing.
- DEM essential \rightarrow should be tested beforehand. High expectations on TanDEM-X and Cryosat-2.
- GCP essential → no exposed bedrock → adjustment of spatial baseline?
- one three-dimensional combination looks nice (for fast ice flow in particular).
- combination with other methods/sensors (e.g. feature tracking, speckle tracking, Palsar/ALOS)?

- identify critical steps in the interferometric processing.
- DEM essential \rightarrow should be tested beforehand. High expectations on TanDEM-X and Cryosat-2.
- GCP essential → no exposed bedrock → adjustment of spatial baseline?
- one three-dimensional combination looks nice (for fast ice flow in particular).
- combination with other methods/sensors (e.g. feature tracking, speckle tracking, Palsar/ALOS)?

 \blacksquare automate the processing chain. \checkmark

- identify critical steps in the interferometric processing.
- DEM essential \rightarrow should be tested beforehand. High expectations on TanDEM-X and Cryosat-2.
- GCP essential → no exposed bedrock → adjustment of spatial baseline?
- one three-dimensional combination looks nice (for fast ice flow in particular).
- combination with other methods/sensors (e.g. feature tracking, speckle tracking, Palsar/ALOS)?
- \blacksquare automate the processing chain. \checkmark
- analyze the dependency of the interferometric approach on external elevation models. √

- identify critical steps in the interferometric processing.
- DEM essential \rightarrow should be tested beforehand. High expectations on TanDEM-X and Cryosat-2.
- GCP essential → no exposed bedrock → adjustment of spatial baseline?
- one three-dimensional combination looks nice (for fast ice flow in particular).
- combination with other methods/sensors (e.g. feature tracking, speckle tracking, Palsar/ALOS)?
- \blacksquare automate the processing chain. \checkmark
- analyze the dependency of the interferometric approach on external elevation models. √
- derive an area-wide velocity field with error estimates in the region of interest. √

- identify critical steps in the interferometric processing.
- DEM essential \rightarrow should be tested beforehand. High expectations on TanDEM-X and Cryosat-2.
- GCP essential → no exposed bedrock → adjustment of spatial baseline?
- one three-dimensional combination looks nice (for fast ice flow in particular).
- combination with other methods/sensors (e.g. feature tracking, speckle tracking, Palsar/ALOS)?
- \blacksquare automate the processing chain. \checkmark
- analyze the dependency of the interferometric approach on external elevation models. √
- derive an area-wide velocity field with error estimates in the region of interest. √
- error estimate of calculated ice flow 4 ± 18 m/a.

- identify critical steps in the interferometric processing.
- DEM essential \rightarrow should be tested beforehand. High expectations on TanDEM-X and Cryosat-2.
- GCP essential → no exposed bedrock → adjustment of spatial baseline?
- one three-dimensional combination looks nice (for fast ice flow in particular).
- combination with other methods/sensors (e.g. feature tracking, speckle tracking, Palsar/ALOS)?
- automate the processing chain. \checkmark
- analyze the dependency of the interferometric approach on external elevation models. √
- derive an area-wide velocity field with error estimates in the region of interest. √
- error estimate of calculated ice flow 4±18 m/a.
 - derive an estimate of the grounding zone location in the region of interst. \checkmark

- identify critical steps in the interferometric processing.
- DEM essential \rightarrow should be tested beforehand. High expectations on TanDEM-X and Cryosat-2.
- GCP essential → no exposed bedrock → adjustment of spatial baseline?
- one three-dimensional combination looks nice (for fast ice flow in particular).
- combination with other methods/sensors (e.g. feature tracking, speckle tracking, Palsar/ALOS)?
- automate the processing chain. \checkmark
- analyze the dependency of the interferometric approach on external elevation models. √
- derive an area-wide velocity field with error estimates in the region of interest. √
- error estimate of calculated ice flow 4 ± 18 m/a.
- derive an estimate of the grounding zone location in the region of interst. \checkmark

Thank you!

Contact:

Niklas Neckel University of Tübingen Institute for Physical Geography and GIS Rümelinstr. 19–23 72070 Tübingen Niklas.Neckel@uni-tuebingen.de