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Goals of this study

identify critical steps in the interferometric processing.

automate the processing chain.

analyze the dependency of the interferometric approach
on external elevation models.

derive an area-wide velocity field with error estimates in
the region of interest.

derive an estimate of the grounding zone location in the
region of interest.



Region of interest

Figure: Hinterland of the German overwintering station
Neumayer III.



Interferometric SAR

Figure: Setup for interferometric imaging.

∆φij = ∆φorbit +∆φtopography +∆φmotion +∆φatm +∆φnoise (1)



Interferometric SAR

∆φij = φj − φi =
4π

λ
∆r (2)

...if the random scattering is equal for φj and φi .
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Interferometric SAR

Figure: Sensitivity of ERS to vertical and horizontal motion.

For a 2π phase shift, this leads to

H2π =
λ

2 sin(θ)
≈ 7.24cm (5)

for horizontal motion and to

V 2π =
λ

2 cos(θ)
≈ 3.07cm (6)

for vertical motion.



Interferogram

Figure: Interferogram. Fringes caused by topography, surface
displacement and tidal movement.



Work flow



DEMs

Table: Available DEMs for the region of interest.

Name GRID RMSE Coverage

ASTER GDEM 30 m 894.9 m World-wide
Bamber DEM 1 km 40.5 m Antarctic-wide
Landsat DEM 20 m - Coastal areas
Local InSAR DEM 50 m 12.3 m Local
RAMP DEM 200 m 177.3 m Antarctic-wide
Wesche DEM 2.5 km 24 m DML

Figure: Elevation differences along airborne laser altimeter
profiles.



Velocity field generation

Figure: Fringes induced by surface displacement in the
satellite’s LOS and surface topography.



Velocity field generation

Figure: Interferogram after subtracting a simulated
‘topography-only’ phase trend.



Velocity field generation

Figure: Interferogram after phase unwrapping with
GAMMA’s MCF algorithm.



Velocity field generation

Figure: Profiles from wrapped and unwrapped interferogram.



Velocity field generation

Figure: Relation between GPS-derived velocity (g, yellow)
and the velocity along the satellite’s LOS (rs (slant range); rg
(ground range)).



Velocity field generation

Figure: Left: One-dimensional flow field of a descending
satellite track (geocoded). Right: One-dimensional flow field
of the overlapping ascending satellite track (geocoded).



Velocity field generation

Figure: Three-dimensional velocity field in m/d. Composed
from ascending and descending ERS tracks.



Errors

Figure: Mosaic of three-dimensional flow velocities of
grounded ice in m/d.

x̄overlap1 = 0.003m/d (7)

x̄overlap2 = 0.098m/d (8)



Errors

Figure: Differences between surface velocities based on the
local InSAR DEM and the Bamber DEM in m/d.



Errors

Figure: Differences in surface velocity calculated using various
DEMs.



Final product

Figure: Ice flow in the Neumayer III hinterland.



Final product

Figure: Profile in the region of the main ice flow. Black dots
indicate the GCPs used for adjustment (GLSS) and
comparison.



Field work

Figure: Ground Penetrating Radar and Global Positioning
System measurements (LIMPICS ANT-Land campaign
2009/2010).



Final product

Figure: Grounding line detection from different satellite
sensors.



Conclusion

identify critical steps in the interferometric processing.

DEM essential → should be tested beforehand. High
expectations on TanDEM-X and Cryosat-2.

GCP essential → no exposed bedrock → adjustment of
spatial baseline?

one three-dimensional combination looks nice (for fast
ice flow in particular).

combination with other methods/sensors (e.g. feature
tracking, speckle tracking, Palsar/ALOS)?

automate the processing chain. X
analyze the dependency of the interferometric approach
on external elevation models. X
derive an area-wide velocity field with error estimates in
the region of interest. X
error estimate of calculated ice flow 4±18 m/a.

derive an estimate of the grounding zone location in the
region of interst. X
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Thank you!

Contact:
Niklas Neckel
University of Tübingen
Institute for Physical Geography and GIS
Rümelinstr. 19–23
72070 Tübingen
Niklas.Neckel@uni-tuebingen.de
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