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RLugworms Arenicola marina were collected from Arcachon Bay in two summers and winters of consecutive
years. The worms were acclimated to different temperatures (5 and 10 °C for winter animals and 15 °C for
summer animals). Each group was investigated over an experimental temperature range concerning its op-
timum in exercise performance, acute growth rate as well as respiration and ventilation activities to reveal
seasonal acclimatisation effects, potential inter-annual differences and the influence of laboratory acclima-
tion temperatures on the parameters of interest. The groups investigated at the two consecutive summers
yielded nearly identical results for ventilation and respiration activities. A clear seasonal difference developed
in exercise performance, with an optimum at lower temperatures in winter than in summer, irrespective of
acclimation temperature. Respiration and ventilation activities showed no significant differences between
winter specimens acclimated to 10 °C and summer specimens acclimated to 15 °C. However, an acclimation
temperature of 5 °C for winter animals caused noticeable differences to those acclimated at 10 °C. Acute
growth rates differed seasonally as well as between acclimation temperatures with the highest rates found
around 10 °C in summer and around 15 °C in winter. The lowest rates were recorded in winter worms accli-
mated to 5 °C. These acute patterns may reflect high thermal limits in warm acclimated winter worms and
temperature dependent shifts in energy demand in summer animals.
E
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R1. Introduction

Arenicola marina is one of the most eminent secondary producers
in the intertidal habitat. It is important for other epibenthic and infau-
nal animals aerating the habitat by sediment dwelling. The fresh
weight of individuals may rise up to more than 30 g. Field studies in
northern France showed that up to 346.6 kg lugworm faeces were
produced per m2 and year, which corresponds to a sediment layer
of 21.5 cm height (Pollack, 1979). A.marina feeds on ciliates, microal-
gae and bacteria in the sediment and the overlying water. Bacterial
biomass and chlorophyll a concentration in the sediment show a
clear seasonal variability with a maximum occurring between April
and October. In contrast, coastal surface waters show the highest
bacterial biomass and concentrations of chlorophyll a in March to July
(Hubas et al., 2007). Ciliates and other mesopsammon-organisms also
show the highest density in summer (Pollack, 1979). Themain food up-
take by A.marina occurs during high tide, when the sediment is covered
by surface water. A. marina not only exploits the nutrients enclosed in
the upper sand layer by consuming the sand caving in from the surface
like a funnel, but also extracts those from the surface water (Pollack,
1979) by generating a headward directed water current through its
83

84

85
burrow (Wells, 1945). Suspended substances and planctonic organisms
are trapped in the sand of the burrow headshaft, which acts as a filter
(Krüger, 1957). The worm emits mucus to fill the interstices so that
small colloidal particles are also retained. This way, the food region is
enriched of organic material, which the lugworm ingests together
with the sand.

A. marina is very abundant in Arcachon Bay. It is found at any
beach (Boisseau, 1962) in densities up to 20 or sometimes 30 to 40 in-
dividuals per m2, mostly in the intertidal zone and around the island
Ile aux Oiseaux even in direct neighbourhood of oyster and eelgrass
beds (Amoureux, 1966). The studied population is located at La
Hume, a sheltered beach at the southern coast of Arcachon Bay. The
surface inhabited by lugworms is a band of approximately 300 m
width, bordered by a Zostera nana bed at the lower margin and a
salt marsh vegetation at the upper margin (Cazaux, 1966). The popu-
lation consists of at least three generations. The youngest generation
is found from the end of March onward in the highest zone of the in-
tertidal, close to the sandy beach. The older individuals with a body
weight of up to 6 g inhabit the lower intertidal (Cazaux, 1966). At
La Hume lugworms start the production of gametes around the end
of April, spawning occurs between the end of August and the begin-
ning of October. After reproduction, the oldest generation disappears
and the younger ones resume growing until spawning of the next
year (Cazaux, 1966).
ance of the lugworm Arenicola marina: A seasonal
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This strong seasonal pattern mirrors the temperature changes
between seasons which are accompanied by a shift in the widths
and positioning of thermal tolerance windows on a temperature
scale. Seasonal changes in A. marina thermal tolerance have al-
ready been investigated in a North Sea population (Sommer,
2001; Sommer and Pörtner, 2004; Sommer et al., 1997; Wittmann,
2005; Wittmann et al., 2008). According to the concept of oxygen
and capacity limited thermal tolerance, critical temperatures rep-
resent the threshold beyond which anaerobic metabolism is nec-
essary for survival because the oxygen demand can no longer be
met by aerobic processes (Frederich and Pörtner, 2000; Pörtner,
2001). A more or less parallel shift of both low and high critical
temperature values was found with seasonal acclimatisation, char-
acterised by anaerobic end product accumulation (Sommer et al.,
1997). Investigations at the mitochondria level revealed that sea-
sonal cold acclimatisation in North Sea lugworms involved a drop
in mitochondrial density below summer values, combined with an
increasing efficiency of aerobic energy production of each indi-
vidual mitochondrion (Sommer, 2001; Sommer and Pörtner, 2004).
Wittmann et al. (2008) compared thermal tolerance windows of
North Sea lugworms during winter to those during summer and dem-
onstrated a widening of the window, accompanied by a shift of critical
temperatures towards higher values.

The present study was designed to assess the physiological re-
sponses accompanying seasonal acclimatisation and the biochemical
changes reported above. Effects of temperature acclimation and
inter-annual variation were investigated in a Southern population of
the lugworm. Methods were chosen to investigate exercise perfor-
mance capacity, metabolic energy demand and supply as well as so-
matic growth. Recordings of digging periods have already been
established as a measure for muscular performance and were suc-
cessfully applied to show differences in performance levels of lug-
worm populations from various latitudes (Schröer et al., 2009). The
water volume which the lugworm pumps through its burrow gives
some information about oxygen demand, as oxygen is extracted by
gills and body surface from the bypassing water. Pumping frequency
is changed to enhance or reduce the water volume flow through the
burrow in order to adjust oxygen availability to the respective
demand. The experimental setup simultaneously recorded water vol-
ume flow and oxygen content and also provided data for pumping
frequency and oxygen extraction efficiency determination. Pumping
frequency has already been used as a measure for performance
depending on salinity (Shumway and Davenport, 1977) and temper-
ature (Schröer et al., 2009; Wittmann, 2005; Wittmann et al., 2008).
The mechanical aspects of the lugworm pump (Riisgård et al.,
1996) and the biogeochemical consequences for the vented burrow
fluids (Davey et al., 1990) have also been of interest. For the deter-
mination of acute growth optima, the incorporation of 13C labelled
phenylalanine was tracked by 13C NMR spectroscopy as introduced
by Wittmann et al. (2008).

2. Materials and methods

2.1. Animals

Specimens of the polychaete A. marina (L.) were collected in the
intertidal zone at the sampling site in La Hume (44.65° N, 1.17° W)
near Arcachon at the French Atlantic coast. Lugworms collected in
August 2005 were used for investigations of respiration, ventilation
and protein syntheses. For the same experiments during winter,
animals were collected in January/February 2006. For yearly com-
parison the collection of animals was repeated in August 2006
and reinvestigated for potential annual changes. Digging performance
was studied on animals from August 2006 and February 2007, for
summer and winter, respectively. All worms were maintained in ba-
sins filled with natural sediment in a natural seawater flow-through
Please cite this article as: Schröer, M., et al., Oxygen and capacity limit
comparison, J. Exp. Mar. Biol. Ecol. (2011), doi:10.1016/j.jembe.2011.0
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aquarium system at the Alfred Wegener Institute until experimental
use. The specimens collected in winter were divided between incuba-
tion temperatures of 5 °C and 10 °C, those collected in summer were
kept at 15 °C. All animals were exposed to a salinity of 32‰ and a
12 h/12 h light/dark cycle in the aquaria and fed with ground and
soaked Tetramin® flakes every other week.

2.2. Field measurements

In parallel to animal collection, biotic and abiotic field parameters
were recorded at the sampling site as described by Schröer et al.
(2009). In particular, temperatures in air, tidal puddles and sediment
were recorded with a thermometer (Testo 925, Testo, Lenzkirch,
Germany) using a special temperature-receiving element (6 mm
diameter, 500 mm length, TC Direct, Mönchengladbach, Germany).
Salinity was measured in tidal puddles by use of a multiple parameter
pocket measurement device (Multi 340i, WTW, Weilheim, Germany).
The length of the tail shaft of the worm's burrow was taken as a mea-
sure of burrow depth by using a scaled metal stick inserted into the
opening of the burrow. For abundance recordings, a 1 m×1 mwooden
frame was placed onto the intertidal sediment at haphazard and the
number of faecal piles therein was counted. Bodyweight wasmeasured
using a scale (EMB 220-I, Kern, Balingen-Frommern, Deutschland).

2.3. Digging performance

Experimental temperatures were chosen at 4 °C steps, between−1
and 19 °C for the winter worms. Specimens sampled in summer were
measured at 7 to 27 °C. For initial short-term acclimation animals
were transferred to a plastic container placed into a temperature con-
trolled aerated seawater bath. Temperature was changed at 2 °C h−1

starting from maintenance conditions and kept constant for at least
12 h at the new experimental temperature. After acclimation for at
least 12 h, animals were transferred into the experimental setup 1 h
prior to measurements.

The experimental setup and procedure were the same as described
by Schröer et al. (2009). Briefly, the animalswere positioned on the sed-
iment surface and the duration of each digging period was recorded
using a stopwatch. For an analysis of burrowing capacity during a
limited time window this routine was repeated for 90 min and the
number of digging periods was recorded. In total, five specimens of
each group were examined at each temperature (n=5). Summer
(15 °C acclimated) data were published in our previous work recently
(Schröer et al., 2009).

2.4. Respiration and ventilation experiment

Analyses of respiration and ventilatory activity were carried out as
described previously (Wittmann et al., 2008). Briefly, measurements
were performed in the dark using artificial burrows consisting of
straight Perspex tubes with a rough inner surface. As in their natural
burrows, animals generated a water current to provide themselves
with oxygen. Air saturation of incurrent and excurrent water wasmon-
itored continuously with oxygen micro-optodes (PreSens, Regensburg,
Germany). The volume flow produced by the worms was measured
using an electromagnetic flowmeter (inner diameter of probe head:
3 mm, RT-500, Hugo Sachs Elektronik, March-Hugstetten, Germany).

Experiments started at a temperature of 4.5 °C for winter animals
kept at 5 °C and at 10.7 °C for those kept at 10 °C. Summer animals
were tested beginning at 15 °C. Temperature was changed at a rate
of 1 °C h−1 (first lowered) by steps of 3 °C and kept constant for
6 h. Lugworms collected in winter were exposed to a temperature
range from −0.0 to 22.8 °C, summer worms experienced a range
from 2.8 to 26.1 °C. Mean oxygen partial pressure of incurrent and
excurrent water (PIO2

and PEO2
, kPa) and weight specific volume flow

(Vw, ml h−1 g−1) were calculated for the last 3 h of each incubation
ed thermal tolerance of the lugworm Arenicola marina: A seasonal
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period. From these data oxygen consumption (MO2
, μmol O2 h−1 g−1)

and the extraction coefficient (%) were determined. The analysis
also included the mean volume flow during the phases of active ven-
tilation (active volume flow, ml min−1) and the number of contrac-
tion waves of the body wall (pumping frequency, min−1). The water
volume transported per peristaltic wave of the body wall musculature
(wave volume, ml, see Wittmann et al., 2008) was calculated from
volume flow recordings during active ventilation periods. Results
from summer 2006 animals were published before (Schröer et al.,
2009).

2.5. Protein biosynthesis

Analyses of protein biosynthesis were carried out as described
previously (Wittmann et al., 2008) and following the principles out-
lined by Langenbuch et al. (2006). Briefly, uniformly labelled 13C-L-
phenylalanine, dissolved in filtered seawater (75 mmol l−1), was
injected at 40 μl g−1 body weight into the coelomic cavity of the
lugworms. The animals were then inserted into their artificial bur-
rows and incubated at temperatures of −0.9, 3.5, 6.9, 11, 15.2 and
19.2 °C for winter animals and 7.4, 10.2, 14.3, 17.8 and 22.8 °C for
summer animals while they were actively ventilating their bur-
rows. For animals collected in summer the experiment was carried
out with 8 animals at each temperature. Animals were exposed to
incubation temperatures for 24 h, then injected and incubated for
another 30, 60, 90, 120, 180, 240, 300 and 360 min, respectively.
For winter animals, 12 specimens were used at each temperature
and 2 of them pooled after 30, 60, 120, 180, 240 and 360 min,
respectively.

After the respective incubation time, the cuticulo-muscular tube
was frozen in liquid nitrogen. The frozen tissue was ground under
liquid nitrogen and extracted with TCA (trichloroacetic acid). The
homogenate was centrifuged and supernatant and pellet were trea-
ted differently. The supernatant representing the cytosolic fraction
and containing low molecular weight constituents was neutralised,
dried and dissolved in D2O (deuterium oxide).

The pellet was washed, suspended in distilled water and neutra-
lised. After centrifugation, the supernatant containing water-soluble
proteins was removed and stored while the pellet was boiled in a
water bath with 1 M NaOH. The water-insoluble proteins were then
added to the water-soluble protein fraction and both were dried.
The total protein was dissolved in D2O.

Both cytosolic and protein extracts were measured in a NMR Spec-
trometer (9.4 T Avance, Bruker, Rheinstetten, Germany) at frequen-
cies of 100.6 MHz for 13C spectra. The same parameters of the NMR
recordings were used as described in Wittmann et al. (2008).

The protein contents of the protein extracts were quantified
according to Bradford (1976). The amount of incorporated 13C-L-
phenylalanine was obtained as described by Wittmann et al. (2008).
The calculated amount of incorporated 13C-L-phenylalaninewas related
to the respective protein content of the sample and plotted against
incubation temperature for incubation time. Due to the insensitiv-
ity of the NMR technique and the fact that only one sample per indivi-
duum could be analysed we could not track the time-dependent
increase of incorporated 13C-L-phenylalanine in sufficiently high resolu-
tion. Inter-individual differences exceeded those determined over
time, which is why data points were pooled into two time frames:
short incubation period (30 to 120 min) and long incubation period
(180 to 360 min) (see also Wittmann et al., 2008).

2.6. Statistics

Statistical analysis was performed using GraphPad Prism ver-
sion 4.0c for Macintosh (GraphPad Software, San Diego, California,
USA). Nonlinear regression curves were fitted to temperature depen-
dent burrowing activities, using the equation EP(T)=F1(T)+F2(T)=
Please cite this article as: Schröer, M., et al., Oxygen and capacity limit
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(A1eB1T+C1)+(A2eB2T+C2) according to Pörtner and Knust (2007).
For weight specific volume flow data the equation Vw(T)=AeBT+C
was used as described in Wittmann et al. (2008). Significant devia-
tions of Vw values from the hypothetical value extrapolated from
the exponential relationship were identified by one-sample Student's
t-test. One-way ANOVA was performed to detect significant changes
in pumping frequency, extraction coefficient and protein synthesis
values over the temperature range within each group (F-test). Two-
way ANOVA combined with a Bonferroni posthoc test was applied
to detect significant differences in pumping frequency between the
groups at each temperature. Q10 values were calculated for specific
temperature ranges using standard procedures as in Sommer and
Pörtner (2002). One-way ANOVA and Tukey's posthoc test were
used to identify differences in field data between the groups. Statis-
tical significance was identified at the p≤0.05 level. All data are
given as means±SE if not stated otherwise.

3. Results

3.1. Field measurements

Biotic and abiotic field parameters (Table 1) were recorded to
characterise the natural habitat conditions of the population at the
time of collection during the respective season. Salinity was signifi-
cantly (pb0.001) lower in winter than in summer, whereas vari-
ability between the two consecutive years was small. Temperatures
in air, tidal puddles and sediment (20 cm depth) differed significantly
(pb0.001) between winter and summer. Differences between the two
winters or the two summers, respectively,weremuch smaller, although
some significant deviations could still be found (air temperature in
winter 2006 vs. winter 2007: pb0.001; temperature in tidal puddles
summer 2005 vs. summer 2006: pb0.001; sediment temperature in
20 cm depth: pb0.001 between all groups), as data were only avail-
able for the week of animal collection. Burrow depth (length of the
tail shaft) did not show any seasonal differences. Abundance also
did not vary between winter and summer. A seasonal variation in
animal weight could be detected; specimens collected in summer
2006 were significantly heavier than animals collected in winter
(vs. winter 2007: pb0.001; vs. winter 2006: pb0.05). The value for
summer 2005 is not representative, as juveniles were comprised in
the measurement.

3.2. Digging performance

Fig. 1 shows the temperature dependent number of digging periods
performed during 90 minutes experimental intervals. Lugworms col-
lected in winter and acclimated to 5 °C showed up to 8.60±0.24 dig-
ging periods 90 min−1 at 15.4 °C. Digging performance decreased
rapidly towards higher temperatures and more slowly towards lower
temperatures. At −0.8, 3.0 and 7.0 °C, digging activity stayed on the
same level of about 4 periods 90 min−1. The regression analysis of
performance exhibited a maximum of 7.35 digging periods 90 min−1

at 14.2 °C.
Winter animals acclimated to 10 °C showed similar digging per-

formances. They displayed the highest number of digging periods
(7.80±0.37 90 min−1) at 15.3 °C. As seen in 5 °C acclimated worms,
digging performance decreased rapidly towards higher temperatures
and more slowly towards lower temperatures. In contrast to the lat-
ter, values at −1.1, 3.0 and 6.9 °C did not stay at the same level but
increased steadily. The performance model indicated a maximum of
7.48 periods 90 min−1 at 13.3 °C.

Lugworms collected in summer and acclimated to 15 °C per-
formed the highest number of digging periods (5.80±0.80 90 min−1)
at 23.2 °C, while the model predicted a maximum of 5.26 periods
90 min−1 at 19.6 °C. As observed in winter worms, performance ca-
pacity decreased more rapidly towards higher than towards lower
ed thermal tolerance of the lugworm Arenicola marina: A seasonal
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Table 1t1:1

Abiotic and biotic field parameters at the time of collection of Arenicola marina specimens at the sampling site in La Hume near Arcachon (Atlantic, France), mean values±SD.
t1:2
t1:3 Sampling month Salinity (‰) T (°C) air T (°C) tidal puddles T (°C) in 20 cm depth Length of tail shaft (cm) Abundance (m−2) Weight (g)

t1:4 August
2005

35.8±1.2
n=17

20.2±2.4
n=13

20.7±2.4
n=13

20.3±0.6
n=13

8.0±2.4
n=6

22.7±5.0
n=6

4.1±1.4
n=29

t1:5 January
2006

26.7±0.5
n=25

7.6±2.4
n=23

9.5±2.3
n=23

7.1±0.8
n=23

13.0±2.4
n=10

23.0±9.1
n=20

4.7±1.6
n=72

t1:6 August
2006

34.1±0.6
n=20

22.1±2.4
n=20

25.8±4.1
n=20

22.2±0.8
n=20

12.9±2.9
n=20

28.4±11.2
n=20

5.7±1.8
n=30

t1:7 February
2007

25.1±4.2
n=10

12.5±0.4
n=10

12.1±0.8
n=10

9.0±0.3
n=10

12.8±2.0
n=10

8.2±3.2
n=13

4.1±1.3
n=30

Fig. 1. Temperature dependent burrowing capacity in Arenicola marina. Mean values±
SE for animals collected in summer 2006 and in winter 2007 at the French Atlantic
coast, n=5. Winter animals were acclimated to 5 and 10 °C and tested between
−1.1 and 18.9 °C. Summer animals were acclimated to 15 °C and investigated between
6.8 and 26.8 °C (depicted from Schröer et al., 2009). Data were fitted to the equation
EP(T)=F1(T)+F2(T)=(A1eB1T+C1)+(A2eB2T+C2) with EP(T) = temperature de-
pendent muscle exercise performance capacity. The first term, F1(T)=A1eB1T+C1,
represents the temperature dependence of aerobic processes supporting exercise
performance. The second term, F2(T)=A2eB2T+C2, represents the parallel exponen-
tial rise in processes limiting aerobic scope and thus exercise performance capacity.
For the winter data (5 °C acclimated): A1=−12.02, B1=0.1385, C1=1.800,
A2=15.23, B2=0.1276, C2=−1.807, r=0.6472. For the winter data (10 °C acclimated):
A1=7.403, B1=0.1173, C1=0.9182, A2=−3.791, B2=0.1494, C2=−0.9866, r=0.6810.
For the summer data: A1=4.083, B1=0.06221, C1=−0.4552, A2=−1.081, B2=0.1038,
C2=0.1652, r=0.3723. Shaded area: naturally experienced habitat temperatures in
the respective season.
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temperatures. Temperature dependence was less pronounced and
lower maximum values were reached in summer animals, all values
stayed between 3.6 and 5.8 digging periods 90 min−1.

3.3. Respiration and ventilation experiment

Fig. 2 depicts temperature dependent weight specific volume flow
(ml g−1 h−1) in winter animals acclimated to 5 and 10 °C and in sum-
mer worms acclimated to 15 °C from two years. Specimens collected
in winter and acclimated to 5 °C showed an exponential increase in
weight specific volume flow over the experimental temperature
range with a Q10 value of 5.57±0.63 and remarkably larger error
bars at temperatures ≥17.2 °C.

Winter animals acclimated to 10 °C also exhibited an exponential
increase over the experimental temperature range, but the Q10 of
2.38±0.38 was significantly lower than in 5 °C acclimated specimens.

Animals collected in summer 2005 and acclimated to 15 °C dis-
played a Q10 of 2.36±0.12 within the temperature range of exponen-
tial increase, similar to 10 °C acclimated winter specimens. At 2.8 °C
only one value was available, as the other worms stopped ventilation
activity during cooling. No statistics could be applied here. The value
recorded at 2.8 °C was lower than all values at 5.4 °C, therefore, the
one at 2.8 °C was excluded from the exponential range.

Summer lugworms from 2006 (also acclimated to 15 °C) displayed
the same exponential range as those from the preceding year, the
value at 2.9 °C differed significantly from the hypothetical value pre-
dicted by the regression curve. The Q10 of 2.24±0.23 was comparable
to the one evaluated in 2005.

In general, weight specific volume flow curves were similar in
winter and summer animals acclimated to 10 °C and 15 °C, respec-
tively. Only the data collected in winter animals acclimated to 5 °C
differed remarkably with around two times higher values in the tem-
perature range above 15 °C (Fig. 2).

Fig. 3 shows temperature dependent pumping frequencies (min−1)
during the phases of active ventilation. Winter specimens that were
acclimated at 5 °C showed a significant increase (F-test) over the
experimental temperature range. Values at 19.7 and 22.6 °C displayed
large variabilitywithmeans significantly higher than in all other groups.
Animals acclimated to 10 °C in winter and to 15 °C in summer both
displayed a significant increase (F-test) with warming. Pumping
frequency in lugworms collected in summer 2005 did differed sig-
nificantly neither from the frequency recorded in winter animals
acclimated to 10 °C nor from data collected in summer 2006. The
only significant differences observed were the values at 10.9 and
23.2 °C from summer 2006 animals in comparison to both winter
groups.

Fig. 4 depicts the temperature dependent extraction coefficient
(%), i.e. the proportion of oxygen that the animals were able to with-
draw from the inflowing water. Lugworms sampled in winter and
acclimated to 5 °C showed a more or less stable extraction coeffi-
cient in the temperature range between 0 and 5.1 °C while a slight
decrease was observed upon warming. In contrast, animals accli-
mated at 10 °C displayed a significant rise in the extraction coeffi-
cient from 0 to 17.7 °C followed by a slight decline. Summer specimens
ed thermal tolerance of the lugworm Arenicola marina: A seasonal
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Fig. 2. Temperature (°C) dependent weight specific volume flow (ml g−1 h−1, mean values±SE) in Arenicola marina dwelling in an artificial burrow. Animals were collected in
summer 2005, in winter 2006 and in summer 2006 at the French Atlantic coast. n=5 except for winter (5 °C acclimated) at 22.6 °C, winter (10 °C acclimated) at 10.7 °C as well
as summer 2005 at 15.4 and 5.4 °C with n=4 and summer 2005 at 2.8 °C with n=1. Winter worms were acclimated to 5 and 10 °C one half each, summer animals to 15 °C.
The winter specimens were investigated from −0.0 to 22.8 °C, both summer groups were exposed to a temperature range from 2.8 to 26.1 °C. (Summer 2006 data depicted
from Schröer et al., 2009). Data were fitted to VW(T)=AeBT+C (Wittmann et al., 2008). For the winter 5 °C acclimated group: A=0.8083, B=0.1952, C=4.497, r=0.8118. For
the winter 10 °C acclimated group: A=19.41, B=0.02816, C=−16.36, r=0.6654. For the summer 2005 group: A=0.2620, B=0.1694, C=5.714, r=0.6989. For the summer
2006 group: A=0.08428, B=0.2273, C=7.832, r=0.7495. Asterisks (*) designate data points, which are significantly different from the exponential regression curve
(p=0.0234 for summer 2006 at 2.9 °C). Shaded area: naturally experienced habitat temperatures in the respective season.

Fig. 3. Ventilatory performance of Arenicola marina dwelling in an artificial burrow. For each group (winter 5 °C acclimated, winter 10 °C acclimated, summer 2005 and summer
2006 (after Schröer et al., 2009)) pumping frequency (min−1) is plotted against incubation temperature (°C). Mean values±SE; n=5 except for winter (5 °C acclimated) at
19.7 and 22.6 °C, winter (10 °C acclimated) at 10.7 °C as well as summer 2005 at 15.4 and 5.4 °C with n=4 and summer 2005 at 2.8 °C with n=1. Sampling time and acclimation
see legend Fig. 2. Incubation temperatures ranged from 2.8 to 26.1 °C for summer worms and from −0.0 to 22.8 °C for winter animals. Shaded area: naturally experienced habitat
temperatures in the respective season.
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Fig. 4. Oxygen extraction by Arenicola marina dwelling in an artificial burrow. The oxygen extraction coefficient (%) versus incubation temperature (°C) is shown for the four groups
(winter 5 °C acclimated, winter 10 °C acclimated, summer 2005, summer 2006 (from Schröer et al., 2009), mean values±SE, for further information see Fig. 2. * = significantly
higher than at −0.0 °C.
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from both years showed a slight increase between 2.8 and 14.7 °C. With
further warming, values stayed more or less constant. Again, the
extraction coefficient in warm acclimated winter lugworms and
summer specimens shows similar trends and differed from data
obtained in winter animals acclimated at 5 °C.

3.4. Protein biosynthesis

Fig. 5 shows the temperature dependent incorporation of 13C-
phenylalanine into proteins of the body wall after short and long
term incubation times. A comparison of the three graphs reveals an
overall increase of the amount of incorporated 13C-phenylalanine
with acclimation temperature. In particular, winter animals accli-
mated to 5 °C displayed no increase in 13C-phenylalanine content
over time at −0.9 °C. Data points for short and long incubation pe-
riods resulted similarly at around 4.4 nmol mg−1 protein. At all
other incubation temperatures, at least a slight increase between
short and long incubation timeswas detectable with a significant dif-
ference at the highest incubation temperature (19.2 °C). In winter
worms acclimated to 10 °C, the rise in the amount of incorporated
amino acids over time was seen at all incubation temperatures. The
maximum of 24.26±1.55 nmol mg−1 protein was reached at 15.2 °C
after long incubation times. Summer animals also showed an increasing
incorporation of labelled phenylalanine over experimental time at all
incubation temperatures. The largest amount of 13C-phenylalanine
was incorporated at 10.2 °C, reaching 32.48±1.24 nmol mg−1 protein,
a value significantly higher than at all other temperatures after short as
well as long incubation periods.

4. Discussion

The aim of this study was to investigate potential seasonal accli-
matisation effects in physiological performances of the lugworm
A. marina from a southern population and to distinguish possible
Please cite this article as: Schröer, M., et al., Oxygen and capacity limit
comparison, J. Exp. Mar. Biol. Ecol. (2011), doi:10.1016/j.jembe.2011.0
E

effects of acclimation temperature and inter-annual variability. Recent-
ly, we could show that animals from the southern-most population dis-
played a lower performance level than their counterparts from higher
latitudes (Schröer et al., 2009).

Our results show clear seasonal differences in temperature tol-
erance and performance of A. marina. These are most likely due to
seasonal temperature changes, however, other biotic and abiotic
parameters also differ seasonally with potential influences on organ-
ismic performance. We observed a higher animal weight in summer
2006 compared to both winter samplings (Table 1), which might be
explained by a higher food availability in summer and more impor-
tantly, the onset of gamete production. In summer 2005, juveniles
were included in the samples and resulted in a lower average weight
than in 2006 and not higher than in winter. Under field conditions
growth in A. marina was only observed during spring and summer
until October (Beukema and de Vlas, 1979; Newell, 1948; Smidt, 1951;
Wolff and de Wolf, 1979) whereas during autumn and winter growth
was absent. Moreover, the weight of adults tends to decrease in winter
(Beukema and de Vlas, 1979; Newell, 1948). Pollack (1979) argued
that the lower mean animal weight in winter is not necessarily due
to individual weight loss but may also result from the immigration
of smaller worms to the sampling area and/or from a higher mortal-
ity among older and thereby larger worms. Any effects of lower
food availability in winter are exacerbated by a higher precipitation
in this season, easily visible in the changing salinity of the surface
water (Table 1). The lugworm shelters from the influence of fresh-
water by closing its burrow and reducing its pumping and feeding
activities during rainfall (Pollack, 1979). The maximally tolerated
daily salinity variation amounts to 4–6‰ (Amoureux, 1966).

Maximum food availability fromApril to October coincides perfectly
with the period of reproductive growth from the end of April until the
beginning of October (Cazaux, 1966). Although water temperature
has been well correlated with reproductive cycles and has often been
considered to be a major factor in their control, studies have also
ed thermal tolerance of the lugworm Arenicola marina: A seasonal
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Fig. 5. Amount of incorporated 13C-phenylalanine (nmol mg−1 protein, means±SE)
into protein of the cuticulo-muscular tube of lugworms, dependent on incubation
temperature. Specimens were collected in August 2005 and January/February 2006.
Winter worms were acclimated to 5 and 10 °C one half each and summer animals to
15 °C. Incubation temperatures ranged from −0.9 to 19.2 °C for the winter groups
and from 7.4 to 22.8 °C for summer animals. Open diamonds: amount of incorporated
13C-phenylalanine after 30 to 120 min of incubation; closed diamonds: amount after
180 to 360 min; n=4 for summer data except for short incubation times at 22.8 °C
with n=3, n=3 for winter data. *1 = significantly higher than the values after short
incubation times at −0.9, 3.5 and 19.2 °C as well as at −0.9 °C after long incubation
times. *2 = significantly higher than the values after short incubation times at −0.9
and 6.9 °C. *3 = significantly higher than all other values.
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Uemphasised the importance of local food conditions (MacDonald and
Thompson, 1986), as demonstrated by Newell et al. (1982) inMytilus
edulis populations, which experienced nearly identical temperature
cycles but different regimes of food availability.

Our measurements of acute somatic growth rates by tracking the
incorporation of phenylalanine into the body wall revealed an opti-
mum temperature for growth without substrate limitation at 15.2 °C
in winter animals and at 10.2 °C in summer animals (Fig. 5). Interest-
ingly, neither 15.2 °C is experienced in winter nor 10.2 °C in summer
in the natural habitat. A look at the sea surface temperature (Ifremer,
2007), which correlates well with the sediment temperature in 20 cm
depth (Nießing, 2006), showed that temperatures between 10 and
16 °C are experienced in March, April and May as well as in October,
November and December. Our winter animals which were acclimated
Please cite this article as: Schröer, M., et al., Oxygen and capacity limit
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to 10 °C showed maximum somatic growth at 15.2 °C and thereby,
the capacity to tolerate higher temperatures. This might indicate an
early shift to sustain spring conditions. Somatic growth is expected
to take place in spring (March to May) when temperature is at its op-
timum and food is already available, as was the case in our aquarium
system. Phytoplanctonic and therewith phytobenthic growth takes
place a bit earlier in the year at Arcachon (Ifremer, 2007) compared
to the more northern beaches, for which the food availability data
are mentioned in the Introduction. The fact that A. marina juveniles
are found already at the end of March (Cazaux, 1966) also argues
for food availability already in March.

Our summer animals which were acclimated to 15 °C showed
maximum acute somatic growth at an exposure temperature of 10.2 °C.
Following the same rationale as before, this might be seen as a prepara-
tion for autumn conditions. Thismight also involve constraints on energy
budget in the warmth where cold exposure slows motor activity and
supports a shift of resources to growth. After spawning in autumn, the
worms are expected to replenish their glycogen reserves for winter
survival (see below). So growth is controlled by exposure rather
than acclimation temperature. Similarly complex interactions were
previously shown for juveniles of the oyster Ostrea edulis, which dis-
played a maximum scope for growth at an acclimation temperature
of approximately 17 °C and an exposure temperature of approxi-
mately 25 °C, a common condition found in shallow waters during
the summer months (Buxton et al., 1981). In A. marina, all energy
is invested into reproductive growth during summer, while somatic
growth takes place in spring and autumn, suggesting a close rela-
tionship between energy available for growth, the reproductive
cycle and thermal limits. In fact, Füßner (2009) observed a higher
sensitivity to temperature changes in North Sea summer worms
compared to North Sea spring animals, which might be due to the
increased energy expenditure for reproductive growth.

Bayne and Newell (1983) suggested that scope for growth and
growth efficiency are more dependent on food availability than on
temperature. Both, a trade-off between growth and reproduction
and a strong dependence on food availability, were found in the
giant scallop Placopecten magellanicus: scope for growth was low
or negative during winter, rapid gamete maturation was observed
during the spring bloom and somatic weight declined during gamete
development while it increased after spawning and during periods
of low gametogenic activity (MacDonald and Thompson, 1986).
Similarly, low or negative growth during the winter and generally
higher values in the spring and/or summer are also described for
Chlamys islandica (Vahl, 1980), M. edulis (Bayne and Widdows, 1978;
Thompson, 1984) and Mya arenaria (Gilfillan et al., 1976). Whether
somatic tissueweight declines during gamete development in A.marina
has not been investigated so far and may depend on local temperature
and food conditions. For example, Chlamys varia shows both, simulta-
neous reproductive and somatic growth as well as gamete development
fuelled by somatic reserves, depending on environmental conditions
(Shafee, 1980). In Macoma balthica, somatic growth becomes negative
during gametogenesis when temperatures are high, but continues
despite gamete development at low temperatures (DeWilde, 1975).
High food availability combined with low temperatures and thereby a
reducedmetabolic demand results in high scope for growth. These con-
ditions would allow for simultaneous somatic and reproductive growth
and might be found at Arcachon in April and May. In these months,
gamete development already begins (Cazaux, 1966) and temperature
ranges around the optimum for somatic growth (see above).

Laboratory experiments on somatic growth in A. marina were
already carried out by de Wilde and Berghuis (1979). Their study
was performed on animals from the Netherlands with constant
food supply and excluding the influence of reproduction by using
juvenile worms. In that study, maximum growth rates in length
and weight were observed at 20 °C with a small influence between
5 and 20 °C and a strong influence between 20 and 25 °C, as at 25 °C
ed thermal tolerance of the lugworm Arenicola marina: A seasonal
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the growth rate was considerably lower than at 5 °C (de Wilde and
Berghuis, 1979). It should be noted that these were acclimated,
not acute growth rates. In natural populations of juvenile lugworms
growth rateswere usually foundmuch lower than in the experiments. It
may be assumed that the main limiting factor for growth in Arenicola is
food limitation, caused either by food competition with other small
mud flat inhabiting organisms or by a poor quantity and/or quality of
the organic matter available (Boon and Haverkamp, 1979; de Wilde
and Berghuis, 1979). Interestingly, the increase in biomass, i.e. the
product of numerical density and mean weight, was highest at 10 °C
in laboratory experiments, indicating a higher mortality with rising
temperature, probably caused by permanently low oxygen concentra-
tions induced by the combination of high amounts of organic matter
and high temperatures (de Wilde and Berghuis, 1979). In field studies,
the highest mortality rates were found from January toMarch, decreas-
ing during spring and resulting in considerably lower values in summer
than in winter (Pollack, 1979). This observation suggests once more
that food availability is a limiting factor for growth in the field.

The only remarkable seasonal difference was found in exercise per-
formance (Fig. 1). Corresponding to the concept of oxygen and capacity
limited thermal tolerance (Pörtner and Knust, 2007; Pörtner et al.,
2004), digging activity displays an asymmetric bell shaped curve,
as already shown in a previous study (Schröer et al., 2009). This
study demonstrated clear seasonal acclimatisation with a more pro-
nounced optimum at lower temperatures in winter and a wider and
less distinct performance curve with an optimum at higher temper-
atures in summer. The data suggest a trend for curve width to increase
from winter to summer at the expense of a decrease in performance
amplitude. Comparing cold- and warm-adapted lugworms from dif-
ferent latitudes (Schröer et al., 2009) a trade-off between the width
and the amplitude of the performance curve also became apparent
(cf. Angilletta et al., 2002; Huey and Hertz, 1984; Pörtner, 2006).
For ectothermic vertebrates, it has already been shown that muscle
twitch tension decreases with increasing temperature in fast-twitch
muscles (Bennett, 1984). In addition, viscoelastic properties of cell
membranes change with temperature, as seen for example in
human red blood cells (Hochmuth et al., 1980). So higher temper-
atures in summer might result in a higher elasticity of cell mem-
branes and change the worm's whole bodywall. For this reason,
only a lower internal resting pressure (turgor) might be achieved
in lugworms, causing lower amplitudes of body wall contraction
pressure resulting in reduced digging performance. Seymour (1971)
observed that a higher resting pressure resulted in a higher peak pres-
sure in burrowing lugworms. Our observations of the internal pressure
in burrowing lugworms by use of a catheter (data not shown) in fact
exhibited a tendency of higher pressures at lower temperatures,
but rising contraction frequencies with rising temperature. There-
fore, the internal pressure might be the limiting factor at higher
temperatures, while contraction frequency may be the limiting fac-
tor at lower temperatures.

Temperature fluctuation is higher in summer (16 to 29 °C) than
in winter (4 to 14 °C), which might be one reason for a broader per-
formance curve in summer. The lower performance amplitude in
summer argues for a trade-off between reproductive growth and
exercise performance. Performance curves of 5 and 10 °C acclimated
specimens in winter were nearly identical leading to the conclusion
that acclimation temperature alonehas no effect on performance capac-
ity. Consequently, seasonal acclimatisation does not only depend on
temperature, but other seasonal changes (e.g. photoperiod, precipita-
tion and food availability), as well as competing physiological pro-
cesses like reproductive growth can also play an important role for
the observed seasonal differences in muscular performance (i.e. dig-
ging activity).

Thermal acclimatisation of muscle performance has already been
shown before in other marine invertebrates as in the European queen
scallop, Aequipecten opercularis (Bailey and Johnston, 2005) and the
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giant scallop, P. magellanicus (Guderley et al., 2008). In these studies,
higher performance amplitudes also result in cold acclimated animals.
Cold acclimated A. opercularis attained higher swimming velocities
and accelerated faster at winter temperatures than warm acclimated
animals at summer temperatures (Bailey and Johnston, 2005). A
study by Guderley et al. (2008) reported that even handling stress
had less impact on cold than on warm acclimatised animals of the
species P. magellanicus. Guderley (2004) suggested that locomotor
performance and reproduction are closely coupled, as muscle meta-
bolic capacities fall in parallel with glycogen mobilisation for game-
togenesis, and reproductive fitness will be favoured more than
maintenance of performance. This interpretation might explain our
observations on lugworms as well. In our study, winter acclimatised
worms displayed the highest performance optima, as reproductive
growth takes place in summer (from end of April to the beginning
of October, Cazaux, 1966) and spawning occurs during autumn
(October to November). So in summer animals the gonads take up
most of the body mass, whereas winter animals do not invest any
energy into reproduction. Also A. opercularis and P. magellanicus
both have their spawning period until October and achieve perfor-
mance maxima in winter after spawning. Füßner (2009) observed a
much narrower thermal tolerance window in A. marina from the
North Sea during the time of spawning than in specimens during
the early stage of gamete production.

Consistent with previous findings (Schröer et al., 2009), perfor-
mance optima were found within the naturally experienced temper-
ature range during the respective season in this study. In winter,
modelled performance maxima of 14.2 and 13.3 °C, respectively,
were found close to the upper limit of naturally experienced habitat
temperatures of around 14 °C. In contrast, the modelled performance
maximum of 19.6 °C in summer was found close to the lower limit of
habitat temperatures during the respective season (around 17 °C).
This leads to the conclusion that performance, despite its seasonal
acclimatisation, is well adapted to the yearly mean habitat tempera-
ture of approximately 16 °C ensuring constant performance during
the whole year. By extrapolating the model curve, it also becomes
obvious that the upper critical temperature in summer, which is pre-
dicted by the model at 31.7 °C, nearly falls into the naturally experi-
enced range of habitat temperatures of up to 29 °C in summer. This
suggests that the population is more sensitive to warming effects in
summer than in winter.

Effects of temperature acclimation without the influence of repro-
duction have been investigated in tadpoles of Limnodynastes peronii
as well as tadpoles and adults of Xenopus laevis (Wilson and Franklin,
1999; Wilson et al., 2000). Cold acclimated organisms reached a higher
swimming velocity at low temperatures than warm acclimated speci-
mens, while at high temperatures warm acclimated animals showed a
higher swimming performance than cold acclimated ones. This simple
relationship is overlaid with the effects of reproductive growth in our
study when comparing digging activity in winter and summer acclima-
tised lugworms.

Despite a nearly identical performance curve, the group of winter
animals acclimated to 5 °C showed a much higher volume flow than
those acclimated to 10 °C. Differences became obvious especially at
temperatures above 15 °C, resulting in a high Q10 value of 5.57±0.63
compared to values between 2.24 and 2.38 in the other winter and
summer groups. 5 °C acclimated winter specimens showed their
highest extraction coefficients at temperatures from 0.0 to 5.1 °C,
whereas 10 °C acclimated winter worms and both groups of sum-
mer worms exhibited their lowest extraction coefficient values in
this temperature range. Cold compensation at the cellular level like-
ly occurred at 5 °C. Sommer and Pörtner (2004) found changes in
mitochondrial functions taking place in A. marina from the North
Sea, which were acclimated to 0 °C in comparison to those acclimat-
ed to 5 and 11 °C. These findings suggest that cold acclimatisation
occurs below a threshold temperature rather than progressively
ed thermal tolerance of the lugworm Arenicola marina: A seasonal
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with falling environmental temperatures. The other way round,
returning to warm acclimatisation also seems to occur stepwise, as
Wittmann (2005) found different thermal tolerance windows in
worms which experienced a warming pulse of 3 °C compared to
those which were investigated before. Somatic growth (Fig. 5) was
minimal in our 5 °C acclimated compared to 10 °C acclimated winter
lugworms. These findings could be an indication for a temperature
induced dormant condition as it is found in the common shallow-
water and littoral bivalve Cardium (=Cerastoderma) edule L. in win-
ter (Newell and Bayne, 1980). Dormancy has also been found in other
marine polychaetes like Lanice conchilega (Cáceres, 1997). Dormant
individual relies on carbohydrate reserves for maintenance energy
requirements (Newell and Bayne, 1980). Lugworms also show a
decrease in the glycogen content of the body wall between November
and February (Nießing, 2006), which coincides with the time of low
food availability (see above). Accordingly, winter specimens in our
study displayed a significantly lower freshweight than summer animals
(Table 1). Field observations revealed a lower faeces production and
hence food uptake from October to January compared to the spring
and summer months (Pollack, 1979), possibly initiated by a drop in
temperature and/or a reduced food availability. It was shown in labora-
tory experiments that faeces production and hence feeding activity is
dependent on the food content of the sediment. Considerable differ-
ences between actual numbers of lugworms and number of faecal
casts occurred, indicating part of the animals to be inactive at less
favourable conditions in poor sediments (deWilde and Berghuis, 1979).

Also the organic matter content of the water was shown to influ-
ence the pumping activity (Krüger, 1964). Our 5 °C cold-acclimated
winter lugworms pursued the strategy of a “conserver”, which lives
under conditions of short food, feeds at a low rate because a higher
rate might increase the costs of foraging more than the gains, and
has a low growth rate in favour of longevity (Branch et al., 1988). In
contrast to volume flow, pumping frequency, extraction coefficient
and growth, the modelled exercise performance curves and maxima
(Fig. 1) were nearly identical for both winter groups. This emphasises
that maintenance of muscle exercise capacity seemed to be important
for winter lugworms. An explanation might be the observation of ac-
tive winter migrations in A.marina, initiated by temperatures close to
critical values (Werner, 1956). When the limits of acclimatory adjust-
ment are reached, the animals leave their habitat and rebury in a
lower zone of the intertidal. De Wilde and Berghuis (1979) made a
similar observation in a laboratory experiment, when lugworms fed
and maintained at 5 °C left the sediment for migration.
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O5. Conclusions

Seasonal differences become obvious in exercise performance
curves of A. marina. Winter animals exhibit an optimum at around
14 °C and a high performance amplitude. In summer, the optimum is
shifted towards 19 °C, accompanied by a widening of the performance
window and lower performance amplitudes. A trade-off between exer-
cise capacity and reproductive growth seems to take place in summer.
In addition to temperature food availability is likely an important factor
controlling seasonal acclimatisation processes. Somatic growth may
occur mostly in spring and autumn, when food is available, and outside
the reproductive period. The experimentally determined optimum
combination of acclimation and exposure temperatures for growth
matches well with the temperature conditions found in spring and
autumn in theworms' natural habitat. Altogether, the present results
show that temperature determines the metabolic state of lugworms
despite of the season. Furthermore, our data confirm that the inves-
tigated lugworm population from Arcachon lives at the upper level of
its thermal limit, making it most susceptible for warming waters in
the near future.
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