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Abstract 

An improved k-means clustering algorithm is proposed after analyzing the disadvantages of the 

traditional k-means algorithm. The cluster centers are initialized by combining the sample mean 

and standard deviation, the optimal cluster centers are searched by the hybridizing particle 

swarm optimization and traditional k-means algorithm, and the criterion function is improved 

during the iteration process to search the optimal number of clusters. The theory analysis and 

experimental results show that the improved algorithm not only avoids the local optima, also has 

greater searching capability than the traditional algorithm. This improved algorithm is used to 

analyze the morphology of the ridge sail (the upper surface of ice ridges). The comparison with 

the measured data shows that the influences of the geographical locations and the growing 

environments on the formation of ice ridges can be perfectly reflected by the clustered results. 
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1. Introduction 

 

The formation of ice ridges is one of the results on the upper and lower ice surfaces owing to the 

crushing and piling up of ice blocks [1]. These ridges play key effects on the estimations of the ice 

mass, thickness, and the momentum and thermal exchange between the atmosphere and sea ice as well 

as the ocean and sea ice [2]. Significant morphological diversities of ice ridges are caused mainly by 

the geographical locations and the growing environments, thus the ridges are generally researched by 

the classifying methods [3, 4]. And the accuracy of the classification has been more and more 

important. 

Cluster analysis is a method of reassigning the elements of a sample set into different clusters 

according to their similarity. The samples in the same cluster should be similar to each other as much as 

possible, but samples in different clusters are very dissimilar. The k-means clustering is a typical 
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partitioning method which has been widely applied in data mining and knowledge discovery field [5-7]. 

Although it is simple, fast, relatively scalable (for large data set) and efficient, traditional k-means 

clustering algorithm also suffers some well-known drawbacks: the number of clusters should be 

previously fixed; the randomly initialed cluster centers may lead to different results, even the 

nonexistence of the solution; the extreme value is obtained by Gradient Method (along the decreasing 

direction of energies), which often leads to the local optimum. These drawbacks significantly limit the 

application of the traditional k-means algorithm. 

To overcome the above drawbacks, Genetic Algorithm (GA) has been used to improve the traditional 

k-means clustering algorithm in resent years, and have achieved certain results [8]. Although these 

algorithms theoretically converge to the global optimum with the probability of 1, the convergence is 

ensured by the inter-operability of the probability transfer matrix during the variation process, and 

excessive iterations and the lower clustering accuracy, even fluctuation phenomenon in the late 

evolution will be led to by the occurrence of the degradation during the evolution process. Particle 

swarm optimization (PSO) [9] originates from the simulation of the migration and cluster behavior of 

birds during their feeding process, and it has not only the global searching capability as GA, also strong 

local searching capability by adjusting parameters. The adjustment of parameters of PSO is simple, and 

thus more suitable for computer programming and processing. It converges faster to the optimal 

solution than GA in most cases, and can avoid the regression aroused by complete random searching. 

This study proposes an improved k-means algorithm based on (PSO), and compares it with the 

traditional k-means algorithm. The improved algorithm is applied in the research of the surface 

morphology of ice ridge sails, and the cluster results are analyzed by combining the geographical 

locations and the growing environments of ice ridges finally. 

 

2. Traditional k-means clustering algorithm and PSO 

 

2.1. Traditional k-means clustering algorithm 

 

  Let =( x1, x2, , xn) be the sample set, and k the number of clusters, where xi is a D-dimensional 

vector. Set C=( C1, C2, , Ck) is a division of the set , which satisfies: =1jkCj, Cj (1jk), and 

Cj Cj′ =, jj′, 1j, j′k. Then the clustering problem can be expressed as the following. 

  Definition 1. Define a mapping f:  C, such that the ith sample xi of the set  is mapped into the 

jth cluster Cj of the division C, where Cj={ xi| f(xi)=cj, xi , i=1,2,, n}, cj is the cluster center of Cj, 

j=1, 2, , k.  

In the traditional algorithm, the number of clusters is fixed and the cluster centers are randomly 

initialized firstly, then the remaining samples of the set are assigned to the nearest cluster by the 

minimum distance principle. The sample mean of each cluster are taken as the new cluster center, and 

all the samples are reassigned to the nearest cluster. The process is circled until the criterion function 

converges. The typical minimum distance principle is 

||||min
1

ji
kj

ji cxd 


                                               (1) 

Where |||| denotes the Euclidean (L2) norm, and dij the minimum distance between the sample xi and 
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the center cj , j=1, 2, , k. Namely, the sample xi is assigned into the nearest cluster. 

The most commonly used criterion function is the squared-error criterion which is defined as 

2

1

)()(
||||);,( )(  


k

j Cx j
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ij
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j
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cxkcxJ                                   (2) 

where J(xi
(j)

,cj; k) is the square-error sum for all samples in the set .  

The main process of the traditional k-means clustering algorithm consists of the following steps. 

(Step 1.) k samples are selected randomly as the initial centers of the k clusters.  

(Step 2.) Each object xi (i=1, 2,, n) in the set  is assigned into the nearest cluster Cj by the 

minimum distance principle (1). 

(Step 3.) Calculate the sample mean of each cluster: cj =1/ nj  1
 
i

 
nj xi

(j)
, where xi

(j)
 and nj are the 

sample and the number in Cj, respectively (j=1, 2, , k), and then taken as the new center. 

(Step 4.) Criterion (2) is calculated. If J(, cj; k)/cj=0, j=1, 2, , k, stop; else go to (Step 2). 

From the above process, we can see that the results of the traditional k-means clustering algorithm 

are very sensitive to the initial centers, and also impacted the number of clusters: the randomly selected 

initial cluster centers may lead to unreasonable results, and an inappropriate number k may lead to 

unreasonable clusters which can’t represent certain characteristics of the sample set. Additionally, the 

convergence of the criterion function is judged by its gradient, which easily leads the algorithm to the 

local optimum. 

 

2.2. Particle swarm optimization (PSO) 

 

  PSO originates from the simulation of the migration and clustering behavior of birds during their 

feeding process. By using fully the intelligence of the group and their own, the individuals in the group 

search for the optimal region in the complex space by constantly adjusting and learning. It is a class of 

stochastic global optimization algorithm based on the iteration [9]. In PSO, each solution is taken as a 

"particle" in the search space, and flights to the better position according to its own "experience" (the 

optimal solution searched by itself, e.g., the individual optimal position pbest-s with the fitness value pbest) 

and the optimal "experience" of the group (the optimal solution searched by the group so far, e.g., the 

global optimal position gbest-s with the fitness value gbest), until the optimal solution is obtained (the 

advantage of a solution is judged by a fitness function). 

Let N be the total number of particles in the group, si=( si1, si2, , siD)
T
, vi=( vi1, vi2, , viD)

T
, and 

pbest-s=( pi1, pi2, , piD)
T
 the position, velocity, and individual extreme value of the ith particle 

respectively, i=1, 2, , N, and gbest-s=( pg1, pg2, , pgD)
T the global extreme value. The iteration 

equations of the (t+1)th generation in the standard PSO are then  
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where w is the inertia weight, the value of which determines the degree of inheritance of the current 

velocity of the particle. c1 and c2 are learning factors, and usually taken as c1=c2=2. r1 and r2 are random 

numbers uniformly distributed in the interval (0, 1). 
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Because the effect of the previous victory of the particle on the current victory is mainly determined 

by the inertia weight w, the adjusting of w thus can achieve a balance between the local and global 

search: the larger value of w, the stronger global search ability of the algorithm; while the algorithm 

tends to local search for the smaller w. Therefore, an appropriate value of w not only can improve the 

performance and optimization of the algorithm, but also reduce the times of the iteration. The linear 

differential decreasing strategy [10] is used to improve the inertia weight in this study 

tTwwdttdw es  2

max)(2)(                                             (5) 

Namely, 

22

max)()( tTwwwtw ess                                              (6) 

where ws is the inertial inertia weight, we is the inertia at the end of the iteration, t is the current 

iterations, and Tmax the total iterations. Generally, ws=0.9 and we =0.4 is used. 

 

3. Improved k-means clustering algorithm 

 

3.1. Improved k-means clustering algorithm 

 

Because all the samples are clustered from the initial centers, then if better initial cluster centers are 

selected at the very start, the algorithm should require fewer iterative procedures before converging. 

Hence, the strategy for selecting the initial cluster centers greatly affects the computational complexity 

of the k-means algorithm. According to the distribution characteristics of the random function, the 

elements in the sample set distribute mainly near the sample mean. Let  be the mean of the sample set, 

and  the standard deviation, then the initial cluster centers can be randomly selected from the interval 

[-,+]. 

The optimal cluster centers are searched by the combining of PSO and the traditional k-means 

clustering algorithm. And to obtain the optimal number of clusters, a function related to the 

squared-error criterion (2) is introduced during the clustering process to guide the updating of k [11]. 

The improved algorithm works as following. 

(Step 1.) Let k be the number of clusters, N the size of the particle group, Tmax the total iterations, and 

set t=0. Initialize the particle group P(0): select randomly k samples from the interval [-,+] as the 

initial centers, and cluster by the traditional k-means clustering algorithm. Circle N times, e.g., produce 

N particles (positions). Initialize the velocity of each particle, set the initial position of each particle as 

the individual optimal position pbest-s, and the optimal pbest-s as the global optimal position gbest-s . 

(Step 2.) Process of PSO. 

(2.1) Calculate the fitness of the particle si
t
: fi

t 
=f(si

t
) =k/(1+J(, ; k)), and initialize the velocity of si

t
, 

i=1, 2, , N;  

(2.2) If fi
t
 >pbest, set pbest= fi

t
 and pbest-s = si

t
, i=1, 2, , N; 

(2.3) If there exists at least one fi
t
 (i=1, 2, , N ) such that fi

t
 > gbest, set gbest = fm

t
 = max1iN {fi

t
}, and 

gbest-s = sm
t
. 

(2.4) Calculate the velocity and position of the particle si
t+1 

by combing equations (3), (4) and (6), 
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i=1, 2, , N, and obtain the (t+1)th particle group P(t+1). 

(Step 3.) Determine the cluster division of each particle in the group P(t+1) by the minimum 

distance principle (1). Set t = t + 1, if t < Tmax, go to (Step 2.). 

(Step 4.) Output the optimal particle and the corresponding cluster division. Set Q(k) = J(, ; k). 

(Step 5.) For each cluster, calculate the distance between every sample and the cluster center, and 

calculate the averaged distance:  


j
j

i Cx j

j

ijj cxnd )( ||||1
)( , j =1, 2, , k. Select the cluster with the 

largest average distance and divide it into two clusters, and recalculate Jj(, ; 

k+1)  


j
j

i Cx j

j

i cx)(

2)(
|||| , j = 1, 2, , k + 1. Set Q(k + 1) = min1jk+1 Jj(, ; k+1). 

  (Step 6.) Remove the cluster with the least number of data in (Step 4), then move all samples of it 

into the nearest other cluster, recalculate Jj(, ; k-1), j = 1, 2, , k - 1. Set Q(k-1) = min1jk-1 Jj(, ; k-1). 

  (Step 7.) Set k =argmax{ Q(k-1), Q(k), Q(k + 1)}. 

(Step 8.) Repeat (Step 2) ~ (Step7) until k remains unchanged. 

  In the improved algorithm, the initial cluster centers are selected by combining the sample mean and 

the standard deviation which can not only avoid the occurrence of the unrealistic results, but also 

reduce greatly the iterations. And the next generation particle group produced by PSO is very random, 

not only can efficiently overcome the drawback of falling easily into the local minimum, but also 

converges faster owing to the nonexistence of the degradation. 

 

3.2. Assessment of the cluster results 

 

To assess the results of the clustering algorithms, other two parameters are introduced except for the 

criterion function (2), e.g. the maximum distance within a cluster (dICmax) and the minimum distance 

between clusters (dBCmin). The distance within a cluster is the average Euclidean distance between a 

sample and the corresponding cluster center. The maximum distance within a cluster is defined as 



   jkjCx j

j

ijkjIC dcxnd
j

j
i

1

}{

1max max}||||/1{max }{                 (7) 

The distance between clusters is the Euclidean distance between any pair of cluster centers. And the 

minimum distance between clusters is 

||}{||min '',1min jjkjjBC ccd 


                                          (8) 

 

4. Application in the research of the morphology of ice ridge sails 

 

  The morphology parameters of the ice ridge upper surface include mainly the sail height (h), 

frequency (: 1/km), ridging intensity (Ri=<h>/<s>, where <h> is the mean sail height, <s> is the mean 

sail spacing), sail width, and sail cross-section area. Based on the assumption that all ridges have 

symmetric triangular cross sections with a similar slope angle, the sail width and cross-section area are 

w=2hcot and S=<h>
2
cot, respectively, where  is the ridge slope angle, and =26 is used in this 

paper as Dierking [3].  
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Data sets of sea ice surface elevation used in this study were obtained by Alfred Wegener Institute 

for Polar and Marine Research from August 24 to October 29, 2006, using a helicopter-borne laser 

altimeter. According to the Rayleigh criterion [3], we extract ridge sails from the height profiles of sea 

ice surface.  

Dierking [3] showed that the ridging intensity Ri should be selected as a quantitative index for the 

cluster of profiles because changes in the sail height distribution were generally coupled to the changes 

in the sail spacing distribution. Here we also use the ridging intensity Ri as a cluster index. 

The traditional and improved k-means clustering algorithm are both employed to cluster the profiles 

(the number of samples is n=94) in the following. The sample mean is =0.0169, standard deviation is 

 =0.0145. In the improved algorithm, the size of the particle group is N=10, the learning factors are 

c1=c2=2, the initial cluster centers are selected from the interval [0.0024, 0.0314], and the max 

generation is Tmax= 500. 

The results of the improved algorithm show that k =3 is the optimal number of clusters. The cluster 

results of the traditional and improved k-means algorithm for k =3 are compared in Fig. 1(a, b) (the 

corresponding clusters are donated by C1, C2 and C3, respectively). The cluster results of the traditional 

k-means algorithm are shown in Fig. 1(a), obviously, the boundaries of the clusters are not clear and 

difficult to distinguish, and there exist some profiles with different formation mechanism and ridge age 

in the same cluster. These phenomena don’t exist in the results of the improved algorithm (Fig. 1(b)), 

which indicate better results of the improved k-means algorithm than that of the traditional algorithm. 

 

  

Figure 1. Cluster results of (a) traditional and (b) improved k-means algorithms. Optimal centers are 

donated by solid points. The number of samples for each cluster is given in parentheses 

 

Table 1 is the comparison results between the two algorithms, indicating that the three assessment 

parameters of the improved algorithm are all better than those of the traditional k-means algorithm, and 

reflecting that the improved k-means algorithm is better than the traditional algorithm.  

 

Table 1. Comparison of the traditional and improved k-means algorithm 

k-means Algorithm J(10
4
) dICmax(10

4
) dBCmin(10

4
) Centers (for C1, C2 and C3) 

Traditional 37.1 7.9 114 0.0036, 0.0152 and 0.0361 

Improved 34.6 7.7 122 0.0043, 0.0165 and 0.0314 
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From Fig. 1(b) we can see that the differences of the three clusters are very obvious: the sail 

frequencies are all smaller than 10/km in the cluster C1, larger than 10/km, but smaller than 22/km in 

the middle cluster C2, whereas all larger than 22/km with the largest 46/km in the upmost cluster C3. 

The diversities of the mean sail heights of the three clusters are small (ranging from 0.8 m to 1.3 m). 

The number of samples in the cluster of C1 is the largest (about 42.6% to the total), the proportions of 

other two clusters are 29.7% (C2) and 27.7% (C3) to the total samples respectively, representing well 

statistics significance.  

To obtain the better statistical representation, the average ridging intensity, mean sail height, 

frequency, width and cross-section area for different clusters obtained by the improved algorithm are 

listed in Table 2. It is obvious that the average sail height increases slowly from 0.96 m to 1.14 m, 

while the average frequency increases vapidly from 4/km to 32/km with increasing ridging intensity, 

which indicate a much larger change speed of the average sail frequency than height with the ridging 

intensity. The differences of mean sail width and cross-section area of the three clusters are not large. 

The values of the parameters indicate no distinctive variances of the ice ridge surface morphology, e.g., 

the ridges have similar shapes, although the deformation of sea ice in different regions of the 

northwestern Weddell Sea varies wildly. 

 

Table 2. Morphology parameters of the clustered profiles obtained by the improved algorithm 

Cluster <Ri> <w>/m <h>/m <>/(/km) <S>/m
2
 

C1 0.004 3.88 0.96 4.2 1.88 

C2 0.017 4.40 1.08 15.0 2.42 

C3 0.037 4.64 1.14 31.9 2.69 

 

The comparison results in the measured data shows that the samples in the cluster C1 occur mainly in 

the marginal ice zone (MIZ) and Larsen polynyas, and the ridging intensities and frequencies are 

smaller due to the lower overlapping and rafting rate of floe ice; nearly all samples in the cluster C2 

exist on the band of first- and second-year ice (FYI and SYI) in the center investigated region, the 

ridging intensities and frequencies are larger relatively due to the dynamic action of FYI or SYI and the 

refreezing of sea ice in the next winter which didn’t melt completely in the summer; samples in the 

cluster C3 occur only in the stationary ice pack adjacent to the shelf ice edge of the southern 

investigation region, and the ridges are formed mainly by the movement of glacial under the dynamic 

force (such as wind, currents and waves). The above analysis shows that the cluster results of the 

improved algorithm reflect perfectly the important influence of the geographical locations and the 

environmental conditions on the formation of the ridges. 

  

5. Conclusions 

 

Theoretical analysis and data experimental results show that the proposed algorithm in this study not 

only overcomes the drawbacks of traditional k-means clustering algorithm, also has a faster 

convergence rate, and thus is more efficient for clustering analysis. The cluster results of ice ridge sails 

obtained by the improved algorithm perfectly reflects the important influence of the geographical 
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locations and environmental conditions on the formation of ice ridges. 
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