Diagenetic barium cycling in Black Sea sediments – A case study for anoxic marine environments

Susann Henkel a,*, José M. Mogollón a, Kerstin Nöthen a, Christine Franke b, Kara Bogus c, Eric Robin d, André Bahr e, Martin Blumenberg f, Thomas Pape g, Richard Seifert h, Christian März i, Gert J. de Lange j, Sabine Kasten a

a Alfred Wegener Institute for Polar and Marine Research, Am Handelshafen 12, 27570 Bremerhaven, Germany
b Centre des Géosciences, Mines ParisTech, 35, rue Saint Honoré, 77305 Fontainebleau Cedex, France
c Department of Geosciences, University of Bremen, Klagenfurter Str., 28359 Bremen, Germany
d Laboratoire des Sciences du Climat et de l’Environnement, (CEA-CNRS/UVSQ), Avenue de la Terrasse, Bâtiment 12, 91198 Gif-sur-Yvette Cedex, France
e Institute of Geoscience, Goethe-University Frankfurt, Altenhöferallee 1, 60438 Frankfurt am Main, Germany
f Geoscience Center, Geobiology Group, Georg-August-University Göttingen, Goldschmiedstr. 3, 37077 Göttingen, Germany
g MARUM – Center for Marine Environmental Sciences and Department of Geosciences, University of Bremen, Klagenfurter Str., P.O. Box 330440, D-28334 Bremen, Germany
h Institute of Biogeochemistry and Marine Chemistry, University of Hamburg, Bundesstr. 55, 20146 Hamburg, Germany
i School of Civil Engineering and Geosciences (CEG), Newcastle University, Newcastle upon Tyne NE1 7RU, United Kingdom
j Department of Earth Sciences – Geochemistry, Utrecht University, P.O. Box 80.021, 3508 TA Utrecht, The Netherlands

Received 23 December 2010; accepted in revised form 6 April 2012; available online 16 April 2012

Abstract

High-resolution sedimentary records of major and minor elements (Al, Ba, Ca, Sr, Ti), total organic carbon (TOC), and profiles of pore water constituents (SO_4^{2-}, CH_4, Ca^{2+}, Ba^{2+}, Mg^{2+}, alkalinity) were obtained for two gravity cores (core 755, 501 m water depth and core 214, 1686 m water depth) from the northwestern Black Sea. The records were examined in order to gain insight into the cycling of Ba in anoxic marine sediments characterized by a shallow sulfate–methane transition (SMT) as well as the applicability of barite as a primary productivity proxy in such a setting. The Ba records are strongly overprinted by diagenetic barite (BaSO_4) precipitation and remobilization; authigenic Ba enrichments were found at both sites at and slightly above the current SMT. Transport reaction modeling was applied to simulate the migration of the SMT during the changing geochemical conditions after the Holocene seawater intrusion into the Black Sea. Based on this, sediment intervals affected by diagenetic Ba redistribution were identified. Results reveal that the intense overprint of Ba and Ba_excess (Ba excess above detrital average) strongly limits its correlation to primary productivity. These findings have implications for other modern and ancient anoxic basins, such as sections covering the Oceanic Anoxic Events which Ba is frequently used as a primary productivity indicator. Our study also demonstrates the limitations concerning the use of Ba_excess as a tracer for downward migrations of the SMT: due to high sedimentation rates at the investigated sites, diagenetic barite fronts are buried below the SMT within a relatively short period. Thus, ‘relict’ barite fronts would only be preserved for a few thousands of years, if at all.

© 2012 Elsevier Ltd. All rights reserved.

* Corresponding author. Current address: Institute of Geology and Mineralogy, Zülpicher Str. 49a, 50674 Cologne, Germany.
E-mail address: susann.henkel@uni-koeln.de (S. Henkel).

0016-7037/ - see front matter © 2012 Elsevier Ltd. All rights reserved.
http://dx.doi.org/10.1016/j.gca.2012.04.021
1. INTRODUCTION

Biogenic barite (BaSO₄) and excess Ba (Ba, non-terrigenous) are frequently used to reconstruct marine primary productivity because their flux and accumulation rates relate to the flux of total organic carbon (e.g., Goldberg and Arrhenius, 1958; Chow and Goldberg, 1960; Dymond et al., 1992; Français et al., 1995; Dymond and Collier, 1996; Kasten et al., 2001; Paytan and Griffith, 2007). Biogenic barite records have been generated across several past intervals including times of hypoxia/anoxia and enhanced burial of organic carbon, such as the Cretaceous Oceanic Anoxic Events, OAes (e.g., Scopelliti et al., 2004; Bak, 2007). Barite is highly refractory under oxic conditions, but under anoxic conditions early diagenetic barite dissolution and re-precipitation (Eq. (1)) may limit its ability to act as a proxy for marine primary productivity (e.g., von Breymann et al., 1992; Torres et al., 1996):

\[\text{BaSO}_4 \leftrightarrow \text{Ba}^{2+} + \text{SO}_4^{2-} \]

(1)

Organic matter plays a determinant role in sedimentary redox geochemistry (e.g., Froelich et al., 1979). In organic-rich, anoxic sediments, organoclastic sulfate reduction (Eq. (2)) directly consumes sulfate in the presence of organic matter (chemically represented as carbohydrate, CH₂O):

\[\text{CH}_2\text{O} + 0.5\text{SO}_4^{2-} \rightarrow \text{HCO}_3^- + 0.5\text{H}_2\text{S} \]

(2)

Once sulfate is consumed to near depletion, methanogenesis takes over as the dominant pathway for organic matter degradation (Eq. (3)).

\[\text{CH}_2\text{O} \rightarrow 0.5\text{CO}_2 + 0.5\text{CH}_4 \]

(3)

Through advection and diffusion, methane migrates upwards where it meets sulfate in the zone called sulfate-methane transition (SMT). Here, methane and sulfate are concomitantly consumed through a process termed anaerobic oxidation of methane (AOM, e.g., Barnes and Goldberg, 1976; Reeburgh, 1976):

\[\text{CH}_4 + \text{SO}_4^{2-} \rightarrow \text{HCO}_3^- + \text{HS}^- + \text{H}_2\text{O} \]

(4)

The SMT represents an important redox boundary with respect to the barium cycle. Above the SMT, barite is stable due to the presence of sulfate. Below the SMT, however, the absence of sulfate may lead to barite dissolution. Furthermore, dissolved Ba\(^{2+}\) may diffuse upward from the deeper anoxic sediments and reprecipitate as authigenic barite at the transition to the sulfate-bearing zone (e.g., Brumsack, 1986; van Os et al., 1991; von Breymann et al., 1992; Torres et al., 1996; Pfeifer et al., 2001; Riedinger et al., 2006; Snyder et al., 2007).

Changes in the sulfate and methane geochemistry lead to a migration of the SMT relative to the sediment surface, and thus to a transient/non-steady state behavior of the pore water system (Kasten et al., 2003). Authigenic barite fronts/enrichments are preserved when the SMT moves at a faster downward rate compared to sediment accumulation, and can therefore potentially be used to trace such shifts (Dickens, 2001). Prominent barite enrichments distributed over several hundreds of meters above deeply buried black shales at the Demerara Rise (Ocean Drilling Program Leg 207) were, for example, shown to trace the movement of the SMT in response to changing sedimentation rates, increasing sulfate concentrations, and a decrease in methanogenesis within the black shale over time (Arndt et al., 2006, 2009). In this study, we assess an ocean basin where the water column geochemistry changes from oxic to anoxic. Increasing anoxic conditions may limit the downward movement of the SMT. Thus, early diagenesis has the potential to considerably affect the barium cycle. We address the issue by examining two sediment cores from the Black Sea, a marine system that is considered to represent a modern analogue to ocean basins during the OAes.

In this study, we assess the formation and redistribution mechanisms of solid Ba in these anoxic sediments by compiling pore water and solid phase data. In order to identify the sediment intervals potentially affected by a post-depositional overprint of solid phase Ba, we applied a numerical transport/reaction model and simulated the movement of the SMT in response to the changing geochemical conditions after the Holocene flooding of the Black Sea.

2. GEOLOGICAL AND GEOCHEMICAL SETTING OF THE STUDY AREA

The Black Sea has a surface area of 423,000 km\(^2\) and a maximum water depth of 2200 m (Ross and Degens, 1974). The Bosporus Strait, with a sill depth presently 35 m below sea level, represents the only connection between the Black Sea and the Mediterranean Sea. Changes in sea level thus strongly affect the amount of seawater entering the Black Sea. After the last glacial period, the Black Sea was flooded by saline waters and transformed from an oxygenated freshwater lake to a well-stratified marine basin with anoxic conditions below ~150 m water depth (e.g., Degens and Ross, 1972; Hay et al., 1991; Jones and Gagnon, 1994). At present, saline waters (\(T > 8.5^\circ\text{C}, \text{salinity} >21\%\)) characterize the deep water mass (Ozsoy and Unluata, 1997).

The environmental and geochemical/redox variations are well documented in the sedimentary record. From the late Pleistocene to the Holocene, the typical Black Sea succession comprises three major units: Unit III (older than ~7.5 kyr before present; BP) consists of lacustrine deposits formed below a well-oxygenated water column; Unit II (~7.5–3.5 kyr BP) is of marine origin and shows total organic carbon (TOC) contents of 1-20 wt.% reflecting a permanently stratified, mainly anoxic water column; Unit I (~3.5 kyr to present) is represented by finely laminated calcareous ooze with 1–10 wt.% TOC that was deposited after the invasion of coccolithophores (Ross and Degens, 1974; Hay et al., 1991; Arthur et al., 1994; Arthur and Dean, 1998; Pape et al., 2010).

The temporal development of the Holocene seawater intrusion into the Black Sea is subject to debate (e.g., Ross et al., 1970; Deuser, 1972; Ross and Degens, 1974; Ryan et al., 1997; Ballard et al., 2000; Major et al., 2002; Bahr et al., 2008; Soulet et al., 2010). Most recent studies (based on Sr/Ca ratios, stable oxygen and strontium isotopes of carbonate shells) indicate that the seawater intrusion started ~9.5–9.3 kyr BP (Bahr et al., 2006; Major et al., 2007).
was used (Seeberg-Elverfeldt et al., 2005). Pore water for core 755), Fe\(^{2+}\), hydrogen sulfide (fixed as ZnS), sulfate, core collection. Subsamples were taken for alkalinity (only extraction was completed within a couple of hours after the initial seawater intrusion (Lüschen, 2004). Studies on salinity changes over the course of the intrusion are scarce and often limited to changes in the biotic assemblages, which reflect the conditions in the oxic surface waters (e.g., Wall and Dale, 1974; Ryan et al., 1997; Marret et al., 2009). Very recently, however, it was concluded from δ\(^{18}\)O pore water profiles that modern Black Sea hydrologic conditions were not reached until ~2 kyr BP, and that salinity had gradually increased over 7 kyr (Soulet et al., 2010). Besides the post-glacial establishment of anoxia, the Black Sea water column is characterized by its exceptionally high dissolved Ba\(^{2+}\) concentrations (~450 nM in the deep water) and oversaturation with respect to pure barite by at least a factor of two (Falkner et al., 1993).

Only a few datasets are available on sedimentary Ba concentrations in the Black Sea (Brumsack, 1989; Lüschen, 2004; Baturin, 2011). However, Ba is not discussed in detail in these studies and information on dissolved Ba\(^{2+}\) is not provided. Calvert (1990) presented solid phase Ba data for two gravity cores from the central and eastern Black Sea and inferred that Ba/Al maxima associated with TOC enrichments reflect an “increased fertility of the Black Sea”.

3. MATERIALS AND METHODS

3.1. Sampling procedure

The gravity cores 755 and 214 were retrieved from the northwestern Black Sea continental margin during RV Poseidon cruise P317/2 (September 2004) and RV Meteor cruise M72/1 (February 2007), respectively (Fig. 1). Core 755 (44°44.13’ N, 32°01.70’ E; 574 cm length) was recovered from 501 m below sea level (mbsl) and core 214 (44°24.10’ N; 32°51.27’ E; 412 cm length) from 1686 mbsl.

Immediately after recovery, the cores were cut into 1 m-segments. For methane analyses, samples were taken according to Schulz (2006). While segmenting the core, 5 ml of sediment were sampled from the lower end of each segment using syringes with cut tips, and transferred into headspace vials containing a saturated NaCl-solution. The vials were closed gas-tight, shaken, and stored at 4 °C until analysis. Additional sampling for methane was carried out through small openings cut into the core liner at 25 cm depth intervals. Pore water samples from core 755 were obtained using the squeezer method in an argon-flooded glove box (Reeburgh, 1967; Schlüter, 1990; De Lange, 1992), while for core 214 the rhizon technique (pore size 0.1 µm) was used (Seeberg-Elverfeldt et al., 2005). Pore water extraction was completed within a couple of hours after core collection. Subsamples were taken for alkalinity (only for core 755), Fe\(^{2+}\), hydrogen sulfide (fixed as ZnS), sulfate, and cation analysis. All pore water samples as well as the cores were stored at 4 °C.

Solid phase samples were taken in 2 cm-intervals using plastic syringes with cut tips (core 755) or a ceramic knife (core 214). The sediment samples were frozen immediately, freeze-dried, and homogenized in an agate mortar before analysis.

3.2. Pore water analyses

Alkalinity was determined onboard by titration with HCl following the procedure of Grasshoff et al. (1983). Methane was measured onboard either using a Thermo Trace gas chromatograph pulse-discharge detector as previously described by Blumenberg et al. (2007) (core 755), or by applying a Carlo Erba gas chromatograph equipped with a flame ionization detector as described by Seifert et al. (1999) (core 214). The values were corrected for a sediment porosity of 0.8. The methane concentrations reported here are affected by degassing during and after core retrieval due to loss of hydrostatic pressure (e.g., Dickens et al., 1997; Pauli et al., 2000) and therefore represent minimum values. Site 214 lies within the methane hydrate stability field, located below ~720 m water depth in the Black Sea (Bohrmann et al., 2003; Naudts et al., 2006; Pape et al., 2010). Remarkable degassing features in the sediment, probably due to gas hydrate destabilization induced by pressure release, were observed in this core at about 260 cmbsf. Stable carbon isotope signatures of methane in core 214 were analyzed at the University of Hamburg as described by Seifert et al. (2006).

Sulfide, sulfate, and cation analyses were performed at the University of Bremen and at the Alfred Wegener Institute for Polar and Marine Research (AWI). Hydrogen sulfide was analyzed photometrically using the methylene blue method (Cline, 1969). For sulfate concentrations, aliquots of diluted samples were injected into an ion chromatograph (Metrohm IC Net 2.3) with a Metrosep A Supp 5 anion column. The consistency of the measurements was checked by analyzing replicates of a sulfate standard and standard seawater (International Association for the Physical Sciences of the Ocean) after every 15th sample. In core 214, sulfate was detected below the SMT (at 155–275 cmbsf). These data need to be considered with caution because they are possibly affected by sulfide oxidation during storage. Cation concentrations (Ba\(^{2+}\), Ca\(^{2+}\), Mg\(^{2+}\)) in the pore water samples were measured by inductively coupled plasma optical emission spectrometry (ICP-OES; Perkin Elmer Optima 3300).

The computer program PHREEQC 2.15 (Parkhurst and Appelo, 1999) was used to calculate the saturation index for BaSO\(_4\) (SI = log (IAP/K\(_{sp}\)), where IAP denotes the Ion Activity Product and K\(_{sp}\) the solubility product constant of barite (log K\(_{sp}\) = -10.28 at a temperature of 8.5 °C; based on molar concentrations). The SI was converted into the saturation state (Ω = IAP/K\(_{sp}\)) indicating super-saturation at Ω > 1.

3.3. Solid phase analyses

3.3.1. Major and minor elements

About 50 mg of bulk sediment were dissolved in a microwave system (MLS ETHOS 1600) and MEGA II for core 755, CEM MARS for core 214) using a concentrated acid mixture of HNO\(_3\), HCl, and HF (3:2:2 for core 755,
After full evaporation of the solution, the residue was re-dissolved in a HNO₃ solution. No inter-calibration was performed for the different labs, but standards were used to check the accuracy and precision of the data. For core 755, the standard reference sediment USGS-MAG-1 (Gladney and Roelandts, 1988) and the two in-house marine sediment standards MAX and CAX-MAX (Gleiß, 2005) were processed every 10 samples. For core 214, the standard reference material SRM2702 (National Institute of Standards & Technology) was used. Elements present in the digestion solution of core 755 were measured by ICP-OES (Perkin-Elmer Optima 3300) at the University of Bremen. The recoveries were 101.0 ± 2.8% for Al, 99.0 ± 3.8% for Ba, 102.4 ± 4.2% for Ca, 98.5 ± 4.3% for Sr, and 103.9 ± 3.7% for Ti. The multi-element analyses of core 214 were performed at the AWI using an ICP sector field mass spectrometer (ICP-MS, Thermo Finnigan MAT Element 2 with an Apex-Q nebulizer). Rhodium was added to the samples as an internal standard. For all elements, the analytical precision was better than 3%. The error with respect to the certified concentrations of elements in the standard material was less than 5%.

Excess Ba (Baₜₐₓ) was calculated following the approach of Dymond et al. (1992):

\[\text{Baₜₐₓ} = \text{Ba}_{\text{total}} - (\text{Al} \times \text{Ba}/\text{Al}_{\text{detritus}}) \] (5)

We used the lowest Ba/Al mass ratio determined for the two cores (0.004) as an estimate for the detrital fraction (Ba/Al_{detritus}). While this ratio is at the lower end of values typical for crustal rocks (Taylor, 1964; Rössler and Lange, 1972), it fits well to the global average ratio (0.0037) proposed by Reitz et al. (2004) and the ratio in Danube River sediment (0.005) (Yigitihan and Murray, 2008). According to Panin and Jipa (2002), the Danube River is the main source of suspended material discharged into the northwestern Black Sea. Although the calculation of Baₜₐₓ using a single Ba/Al mass ratio bears the risk of neglecting changing detrital Ba/Al ratios over time, it is regarded as sufficient within the frame of this study.

3.3.2. Total organic carbon

Total organic carbon (TOC) concentrations in samples from both cores were determined with a Leco CS-200 combustion analyzer. Before combustion, the sediment was decalcified with 12.5% HCl, washed twice, and dried on a heating plate. The TOC contents in core 214 (up to 8%) were published by Blumenberg et al. (2009).

3.3.3. Optical analysis of barite particles

Heavy mineral grains were examined at selected depths in core 214 (0–2 cmbsf, 64–66 cmbsf, 94–96 cmbsf, 120–122 cmbsf, and 150–152 cmbsf) at the Laboratoire des Sci-
ences du Climat et de l’Environnement (LSCE). About 250 µg of bulk sediment were dispersed in ethanol using ultrasonification and subsequently filtered onto nucelopore filters (0.2 µm pore size). The filters were fixed onto sample stubs, coated with a thin layer of carbon, and introduced into a scanning electron microscope (SEM) (type JEOL JSM 840) coupled to an energy dispersive spectrometer (EDS) and an automated particle counting and classification system. The first image was processed at 500× magnification from the backscattered electron beam. After conversion into a binary image, a threshold that allows for the detection of heavy minerals such as barite (BaSO₄), rutile (TiO₂), and pyrite (FeS₂) was adjusted. The mineralogy of each particle was determined with an X-ray spectrum (15 kV, 3 s). Using this method, up to 3400 grains per sample were classified automatically. Pictures of selected barites visualized in the secondary electron mode were used to classify the grains according to their shapes. The procedure was described in detail by Robin et al. (2003).

3.4. Geochemical model

The SMT migration resulting from the increase in water column sulfate concentrations and variable TOC fluxes during the Holocene Black Sea flooding was simulated using a one-dimensional reaction-transport model (e.g., Boudreau, 1997; Mogollón et al., 2011 (Eqs. (1) and (2))). Initially, a transport model for a conservative tracer (Mg²⁺) was used to discern speed and timing of the change from freshwater to marine conditions. Then, a model comprised two dissolved species (methane, sulfate), one solid species (TOC, chemically represented as carbohydrate, CH₂O), and three dissolved species (methane, sulfate), one solid species (TOC, to marine conditions. Then, a model comprised two dissolved species (methane, sulfate), one solid species (TOC, chemically represented as carbohydrate, CH₂O), and three reactions (organoclastic sulfate reduction – R_OSR, methanogenesis – R_MET, and AOM – R_AOM), in addition to burial and diffusion processes, was used to simulate the shift of the SMT with time (e.g., Mogollón et al., 2011).

Organoclastic sulfate reduction and methanogenesis are related to the degradation of organic matter through the stoichiometry of Eqs. (2) and (3), respectively. Organic matter degradation (R_CH₄O) is described according to the reactive continuum model using a gamma function distribution for the reactivity of the organic matter pools (Boudreau and Ruddick, 1991), while AOM was depicted as a bimolecular rate constant. The parameters employed in the model and the equations used for the model are depicted in Tables 1 and 2, respectively.

The sites investigated in this study are unaffected by gas seepage and advective fluid flow. Due to the lack of site-specific temperature data, it was assumed to be constant with depth and time at 8.5 °C (Ozsoy and Ünlüata, 1997). As no porosity or biologically induced mixing data were obtained at these sites, an exponentially decreasing porosity profile was assumed (Table 1), while biologically induced mixing was not taken into account, which is a reasonable assumption for anoxic settings. Although such simplifications may ultimately impact the parameters selected for the model, the uncertainties do not significantly alter the main conclusions of the simulations, and are commonly employed in reaction-transport modeling (e.g., Jørgensen et al., 2001, 2004). The barium cycle was excluded from the model due to the independent variations exhibited by Ba, and TOC contents (see below) even within the diagenetically “unaffected” section, which would limit the ability to constrain the barite flux. The consumption/production of sulfate from barite production/dissolution is assumed to be negligible compared to the sulfate flux and methanotrophic sulfate reduction (AOM), respectively.

The upper boundary conditions for the dissolved species were defined by their respective bottom water concentrations. The lower model boundaries for the dissolved species were defined as zero gradient boundaries, and were placed deep enough (50 mbsf) as to minimize their impact on the top 7 meters of the sediment (Table 1). The top boundary condition for organic matter was described as the TOC flux to the sediment, which was varied over different time intervals in order to fit the data (Table 3). Further initial conditions as were as follows: 0 mM for sulfate (freshwater conditions), steady state lacustrine conditions for methane and organic carbon, and 0.126 mM for Mg²⁺ (Falkner et al., 1991).

A 20 cm thick slump at site 214 during the Unit I/II transition (3.5 kyr BP) was simulated as an instantaneous deposit with a constant pore water chemistry (equal to the bottom water chemistry) and a constant TOC content of 8%, which was assumed to consist of highly refractory material and thus was assumed unreactive for modeling purposes.

4. RESULTS AND DISCUSSION

4.1. Sediment composition and core stratigraphy

For core 755, a linear extrapolation of pore water sulfate concentrations to the sediment–water interface (SWI) indicates a loss of the top ~35 cm during core retrieval (Fig. 2d). The sampled interval appears unaffected by turbidites or slumps and contains all three Black Sea lithological units. The Unit III/II boundary (~7.5 kyr BP) is marked by the onset of gradually increasing TOC contents at 215 cmbsf (Fig. 2a). The maximum TOC content of 8.6 wt.% is reached at 192 cmbsf. At 202 cmbsf, solid phase Ca and Sr (Fig. 2b and c) show pronounced peaks (140.8 g kg⁻¹ and 1.85 g kg⁻¹, respectively) indicating the characteristic aragonite layer located in the lower Unit II (Ross and Degens, 1974; Jones and Gagnon, 1994; Morse et al., 2007). The sharp increase in Ca contents from 39.3 g kg⁻¹ at 100 cmbsf to 87.4 g kg⁻¹ at 98 cmbsf marks the Unit II/II boundary.

The stratigraphy for core 214 (Fig. 3a–h) was established by Blumenberg et al. (2009). The Unit III/II boundary is located at 245 cmbsf. A slump deposit between 80 and 105 cmbsf prevents a precise identification of the Unit II/I boundary. However, the sediment below the slump deposit is identified as Unit II, whereas the material above it belongs to Unit I. A noticeable turbidite sequence occurs at 133–145.5 cmbsf. Further below, several thin turbidites appear as light gray clayey intervals at 161.5–165, 187–188.5, 197–199, 202–203.5, 214–217, and 225.5–228.5 cmbsf. Three additional coarse-grained turbidites are
Table 1
Model parameters, note that some values are time and/or depth dependent (see text and Table 3).

<table>
<thead>
<tr>
<th>Name</th>
<th>Symbol</th>
<th>Value</th>
<th>Unit</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Porosity at SWI²</td>
<td>φ₀</td>
<td>0.85</td>
<td></td>
<td>Assumed²</td>
</tr>
<tr>
<td>Porosity at depth²</td>
<td>φ₀₀</td>
<td>0.60</td>
<td></td>
<td>Assumed²</td>
</tr>
<tr>
<td>Porosity attenuation with depth²</td>
<td>γ</td>
<td>0.007</td>
<td>cm⁻¹</td>
<td></td>
</tr>
<tr>
<td>1st constant for sulfate diffusion</td>
<td>m₀SO₂⁻</td>
<td>4.88e-6</td>
<td>cm² s⁻¹</td>
<td>Boudreau (1997)²</td>
</tr>
<tr>
<td>2nd constant for sulfate diffusion</td>
<td>m₁SO₂⁻</td>
<td>0.232e-6</td>
<td>cm² s⁻¹</td>
<td>Boudreau (1997)²</td>
</tr>
<tr>
<td>1st constant for sulfate magnesium</td>
<td>m₀Mg²⁺</td>
<td>3.43e-6</td>
<td>cm² s⁻¹</td>
<td>Boudreau (1997)²</td>
</tr>
<tr>
<td>2nd constant for sulfate magnesium</td>
<td>m₁Mg²⁺</td>
<td>0.144e-6</td>
<td>cm² s⁻¹</td>
<td>Boudreau (1997)²</td>
</tr>
<tr>
<td>Pre-exponential factor methane diffusion</td>
<td>A</td>
<td>3047e-5</td>
<td>cm² s⁻¹</td>
<td>Boudreau (1997)²</td>
</tr>
<tr>
<td>Activation energy for methane diffusion</td>
<td>Eₜ</td>
<td>18.36</td>
<td>J mol⁻¹</td>
<td></td>
</tr>
<tr>
<td>Bimolecular AOM rate constant</td>
<td>kₐOM</td>
<td>5.0</td>
<td>mM⁻¹ yr⁻¹</td>
<td>Mogollón et al., 2011</td>
</tr>
<tr>
<td>Sulfate half-saturation concentration</td>
<td>KSO₄⁻</td>
<td>0.1</td>
<td>mM</td>
<td>Mogollón et al., 2011</td>
</tr>
<tr>
<td>Temperature</td>
<td>T</td>
<td>8.5</td>
<td>°C</td>
<td>Ref in text.</td>
</tr>
<tr>
<td>Burial velocity of solids below compacted</td>
<td>wₙ</td>
<td>Table 3</td>
<td>cm kyr⁻¹</td>
<td>This study</td>
</tr>
<tr>
<td>layer</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Average age of fast-decaying TOC pools</td>
<td>z</td>
<td>Footnote¹ yr</td>
<td>Boudreau and Ruddick (1991)</td>
<td></td>
</tr>
<tr>
<td>Distribution of most refractive TOC pools</td>
<td></td>
<td>Table 3</td>
<td></td>
<td>Boudreau and Ruddick (1991)</td>
</tr>
<tr>
<td>Organic matter flux into the sediment</td>
<td>FCH₄/O</td>
<td>Table 3</td>
<td>mol m³ yr⁻¹</td>
<td>This study</td>
</tr>
<tr>
<td>Top boundary (0) condition sulfate, magnesium</td>
<td>[X]₀</td>
<td>Footnote¹</td>
<td>mM</td>
<td>This study</td>
</tr>
<tr>
<td>Top boundary condition methane</td>
<td>[CH₄]₀</td>
<td>0.0</td>
<td>mM</td>
<td>This study</td>
</tr>
<tr>
<td>Bottom boundary (L) conditions sulfate, methane, magnesium</td>
<td>[A]₀/L</td>
<td>0.0</td>
<td>mM cm⁻¹</td>
<td>This study</td>
</tr>
<tr>
<td>Contemporary Mg⁵⁺ bottom water concentration</td>
<td>[Mg⁵⁺]₀,t=0-9.3 kyr BP</td>
<td>34.0</td>
<td>mM</td>
<td>This study</td>
</tr>
<tr>
<td>Contemporary sulfate bottom water concentration</td>
<td>[SO₄²⁻]₀,t=0-9.3 kyr BP</td>
<td>16.0</td>
<td>mM</td>
<td>This study</td>
</tr>
</tbody>
</table>

¹ φ = φ₀₀ + (φ₀₀ − φ₀) exp(−γz), where z is the sediment depth.
² No porosity data available for the study sites.
³ DX = (m₀X + m₁X T)/(1 − 2 ln(φ)).
⁴ DCH₄ = A exp(−Eₚ/(RT))/(1 − 2 ln(φ)), where R is the universal gas constant.
⁵ w = wₙ (1 − φ₀)/ (1 − φ).
⁶ z = 4970 exp(−0.0296wₙ).
⁷ [X] is the concentration of species X.
⁸ [X]₀ = min([X]₀,t=0-9.3 kyr BP, [X]₀,t=0-9.3 kyr BP(t − 9.3)/7), where t is time in kyr BP.

Table 2
Mathematical description of the reaction rates employed in the reaction-transport model.

<table>
<thead>
<tr>
<th>Rate</th>
<th>Symbol</th>
<th>Equation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Organic matter degradation</td>
<td>RCH₄/O</td>
<td>kCH₄/O exp(−Eₚ/(RT))</td>
</tr>
<tr>
<td>Organoclastic sulfate reduction</td>
<td>ROSR</td>
<td>0.5k(SO₂⁻)/RCH₄/O</td>
</tr>
<tr>
<td>Methanogenesis</td>
<td>RMET</td>
<td>0.5k(1 − fSO₂⁻)/RCH₄/O</td>
</tr>
<tr>
<td>Anaerobic oxidation of methane</td>
<td>RAOM</td>
<td>kₐOM(CH₄)[SO₂⁻]</td>
</tr>
</tbody>
</table>

[X] is the concentration of species X.

Table 3
Time and site-specific parameters.

<table>
<thead>
<tr>
<th>Time interval (kyr BP)</th>
<th>Unit</th>
<th>Site 755 FCH₄/O (mol m⁻² yr⁻¹)</th>
<th>w₀ (cm kyr⁻¹)</th>
<th>ν</th>
<th>Site 214 FCH₄/O (mol m⁻² yr⁻¹)</th>
<th>w₀ (cm kyr⁻¹)</th>
<th>ν</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.3–7.5</td>
<td>III</td>
<td>0.27</td>
<td>11.0</td>
<td>0.65</td>
<td>0.1</td>
<td>4.0</td>
<td>0.65</td>
</tr>
<tr>
<td>7.5–6.2</td>
<td>II</td>
<td>1.8</td>
<td>22.0</td>
<td>0.125</td>
<td>2.7</td>
<td>28.6</td>
<td>0.2</td>
</tr>
<tr>
<td>6.2–4.5</td>
<td>II</td>
<td>0.58</td>
<td>22.0</td>
<td>0.125</td>
<td>1.1</td>
<td>28.6</td>
<td>0.2</td>
</tr>
<tr>
<td>4.5–3.5</td>
<td>II</td>
<td>0.58</td>
<td>22.0</td>
<td>0.125</td>
<td>0.6</td>
<td>28.6</td>
<td>0.2</td>
</tr>
<tr>
<td>3.5–0.0</td>
<td>I</td>
<td>0.34</td>
<td>15.3</td>
<td>0.125</td>
<td>0.35</td>
<td>14.8</td>
<td>0.2</td>
</tr>
</tbody>
</table>

Identified at 268–276, 337–339, and 387–390 cmbsf. Most turbidites have higher Ba/Al ratios than the rest of the core (>0.009 compared to ~0.005; Fig. 3g), but fairly low Ca and TOC contents. This probably reflects an increased dilution of the latter two components by higher detrital Si contents in the turbiditic deposits.
4.2. Sedimentation rates

The sedimentation rates were calculated based on observable geochemical transitions between the different lithological units, and thus reflect time-averaged values for the different units. These calculations ignore possible effects of erosion and/or intervals of fast deposition (with the exception of the 20 cm thick slump at site 214 at the Unit II...
– Unit I boundary that was explicitly taken into account in the simulations). The assumed sediment compaction (Table 1) was considered when calculating the sedimentation rates.

The burial velocity of solids at the SWI (w_0, Table 1) for site 755 is 41 cm kyr$^{-1}$ for Unit I and 59 cm kyr$^{-1}$ for Unit II. The respective values for core 214 are 39 cm kyr$^{-1}$ (Unit I) and 76 cm kyr$^{-1}$ (Unit II). The w_0 values for Unit III were calculated only for the sections reflecting the limnic-marine transition according to Major et al. (2002). It was shown by Bahr et al. (2005) that this transition interval is characterized by fairly low Ca contents and high sedimentary Ti/Ca ratios, indicating a dominance of detrital components over biogenic carbonate. In our cores (Ti/Ca not shown), the intervals 215–255 cmbsf (core 755) and 245–260 cmbsf (core 214) represent this change from limnic to brackish/marine conditions. In core 214, determining the limnic-marine transition was complicated by several turbidites within the respective section. The approximated average w_0 values for the transition interval are 29 cm kyr$^{-1}$ for core 755 and 11 cm kyr$^{-1}$ for core 214. These results agree with Bahr et al. (2005), who observed similar thicknesses for Units I and II in five cores (western Black Sea) over a transect from 465 m to almost 2000 m water depth, but large variations in the thickness of Unit III.

4.3. Depth of the sulfate–methane transition

The pore water profiles of SO_4^{2-}, CH_4, H_2S, alkalinity, and Ca^{2+} of cores 755 and 214 are illustrated in Figs. 2 and 3. For both sites, the depth profiles indicate a current SMT within Unit II at about 190 cmbsf for core 755 (501 mbsl), and 150–155 cmbsf for core 214 (1686 mbsl).
The most negative δ^{13}C$_{CH_4}$ at the transition into Unit II suggests a methane source reaction from CH$_4$ to CO$_2$ (by AOM) and back to CH$_4$ (Borowski et al., 1997). Proposed that the repeated redox favoring in situ completely located below the current SMT (Figs. 3 and 4), upward diffusing methane. The Unit II sapropel is composed of AOM (Dale et al., 2006, 2008; Holmkvist et al., 2009). These studies attributed methane tailing in the sulfate reduction (about 13C-depletion within the lower Unit II suggests microbial formation of methane.

Core 755 shows an expanded zone (~140–180 cmbsf) of methane and sulfate co-existence. A similar tailing of the methane profile was observed in other Black Sea sediments (Reeburgh et al., 1991; Jorgensen et al., 2001; Knab et al., 2009). These studies attributed methane tailing in the sulfate zone to incomplete AOM, which could, in turn, be attributed to the dynamics of reactive intermediates involved in AOM (Dale et al., 2006, 2008; Holmkvist et al., 2011). At site 214, there is evidence for a microbial origin of the upward diffusing methane. The Unit II sapropel is completely located below the current SMT (Figs. 3 and 4), favoring in situ methanogenesis as the ultimate step in the microbial degradation of sapropel TOC (e.g., Martens and Klump, 1984) as indicated by a strong δ^{13}C$_{CH_4}$-depletion (about ~78‰). The shift to even more negative values at the transition into Unit II suggests a methane source within the sapropel (Fig. 4). The most negative δ^{13}C$_{CH_4}$ value (~95‰) was found directly at the SMT. Strongly negative values possibly result from successive carbon cycling in this biogeochemical reaction zone. Microbial methane production was shown to occur in shallow Black Sea sediments (Krüger et al., 2005; Knab et al., 2009; Pape et al., 2010). Borowski et al. (1997) proposed that the repeated redox reaction from CH$_4$ to CO$_2$ (by AOM) and back to CH$_4$ (CO$_2$ reduction) could lead to a progressive δ^{13}C$_{CH_4}$ depletion and extremely negative δ^{13}C$_{CH_4}$ values at the top of the methanogenic zone. The remaining methane diffusing upward from the SMT, however, becomes relatively δ^{13}C-enriched due to the preferential 13CH$_4$ consumption during AOM (Fig. 4, e.g., Whiticar, 1999; Pohlmans et al., 2009).

The sulfide profiles at both locations (Figs. 2d and 3d) are consistent with the inferred SMT depths. During AOM, HS$^-$ as well as HCO$_3^-$ are liberated into the interstitial water (see Eq. (4)) and increase the alkalinity (Fig. 2e). The sulfide profiles at both sites indicate an upward diffusion flow towards and across the SWI, and a downward flux into the limnic deposits of Unit III. Sulfide concentrations were below detection limit at 480 cmbsf (core 755) and at 360 cmbsf (core 214). According to Jorgensen et al. (2004), Neretin et al. (2004), and Knab et al. (2009), the depletion of H$_2$S within Unit III is attributed to the formation of iron sulfides upon reaction with upward-diffusing Fe$^{2+}$ that is released from the limnic deposits.

4.4. Diagenetic barium redistribution

The EDS spectra of the Ba-containing particles in the five selected samples reveal that BaSO$_4$ is the dominant Ba-containing heavy mineral above the SMT (Table 4). The only other Ba-mineral detected was gorceixite (BaAl$_2$(PO$_4$)(PO$_3$OH)(OH)$_6$). Nevertheless, these heavy minerals do not account for the bulk sedimentary Ba contents. Additional Ba might be incorporated in silicates and carbonates, but these minerals were not specifically studied by SEM/EDS. Excess barium was calculated to correct for Ba associated with detrital or carbonate minerals.

At both sites, the sedimentary Ba redistribution strongly depends on the extent of seawater penetration into the limnic sediments, and on the location of the SMT. The dissolved Ba$^{2+}$ profile at site 755 is characterized by minimum concentrations (0.5 µM) near the SWI, and a gradual increase with depth until below the SMT (Fig. 2f). The pore water profile suggests two Ba$^{2+}$ sources: one situated directly below the SMT at ~200 cmbsf (~Unit II/III boundary), and the other located within the limnic sediments (Unit III) around 500 cmbsf where Ba$^{2+}$ concentrations reach their maximum (18.0 µM). Similarly, at site 214, Ba$^{2+}$ concentrations increase with depth from 0.4 µM near the SWI until a maximum of 22 µM is reached directly below the SMT. Further below, however, the Ba$^{2+}$ concentrations follow a sinusoidal pattern, with relative highs at 210 and 335 cmbsf, and relative highs at 260 and 380 cmbsf.

The option that deep Ba$^{2+}$ originates from relict BaSO$_4$ enrichments in Unit III can be discarded due to (1) the limnic nature of this Unit (see below; Smith et al., 2004), and (2) the lack of Ba$_{as}$ peaks that can be correlated with the observed Ba$^{2+}$ sources (Figs. 2f and 3f). Instead, we postulate that Ba$^{2+}$ desorption from the mineral matrix occurs within Unit III as seawater diffuses into the limnic deposits, similar to Ba$^{2+}$ desorption from suspended riverine clay minerals across the estuarine mixing zone (Hanor and Chan, 1977; Coffey et al., 1997). Furthermore, in the Baltic Sea, authigenic barite micronodule formation is associated with the liberation of adsorbed Ba$^{2+}$ from underlying freshwater sediments due to contact with saline water (Suess, 1982; Böttcher and Lepland, 2000). The downward increase in Ca$^{2+}$ concentrations (Figs. 2b and 3b) is also attributed to salinity changes rather than to carbonate dissolution. The deep Ca$^{2+}$ originates from cation exchange from limnic Ca-rich clay minerals, whereas marine clays are dominated by Na, Mg, and K (De Lange, 1983). In contrast, although
Table 4
Average equivalent diameters for all Ba-containing heavy minerals identified by SEM/EDS. Ba-containing grains larger than 6 µm were not detected in any of the samples.

<table>
<thead>
<tr>
<th>Depth [cmbsf]</th>
<th>Grains analysed</th>
<th>Heavy Ba-minerals</th>
<th>Average Equivalent Diameter (AED)</th>
<th>Sum of heavy Ba-mineral grains</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>0.2–0.5 µm</td>
<td>0.5–1 µm</td>
</tr>
<tr>
<td>0–2</td>
<td>3400</td>
<td>BaSO₄</td>
<td>0</td>
<td>55</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Other Ba-containing</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>64–66</td>
<td>2119</td>
<td>BaSO₄</td>
<td>0</td>
<td>55</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Other Ba-containing</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>94–96</td>
<td>1459</td>
<td>BaSO₄</td>
<td>0</td>
<td>86</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Other Ba-containing</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>120–122</td>
<td>1256</td>
<td>BaSO₄</td>
<td>0</td>
<td>26</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Other Ba-containing</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>150–152</td>
<td>957</td>
<td>BaSO₄</td>
<td>0</td>
<td>35</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Other Ba-containing</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Fig. 5. Scenarios A, B, and C used for the geochemical simulations. (A) Abrupt increase of SO₂⁻ and Mg²⁺ in the bottom water immediately after the first seawater intrusion. (B) Gradual increase of SO₂⁻ and Mg²⁺ in the bottom water until 1.2 kyrs after the first seawater intrusion. (C) Slow increase of bottom water concentrations until 7 kyrs after first seawater intrusion.

Fig. 6. Modeled pore water profile of the conservative element Mg²⁺ in comparison to measured concentrations at site 755 (scenarios (A), (B), and (C) according to Fig. 5). The modern upper boundary for Mg²⁺ (34 mM) was inferred from the extended trendline of the gravity core data. The model simulation showed that the observed data values fit best to scenario (C) (first seawater intrusion at 9.3 kyrs BP followed by a slow increase of Mg²⁺ in the bottom water until ~2 kyrs BP).
Ba can also be bound to carbonates (Dymond et al., 1992; Eagle Gonneea and Paytan, 2006), the contribution of carbonate dissolution to an increase in Ba^{2+} is considered to be minor.

At site 755, a broad Ba_{xss} peak of 600 mg kg$^{-1}$ between 150 and 210 cmbsf (Fig. 2 h) represents the actively forming diagenetic barite front. Super-saturation ($\Omega > 1$) in the sulfate zone drives authigenic barite precipitation, producing the Ba^{2+} tailing that extends from 190 to 100 cmbsf. Once barite is buried below the SMT (and into the undersaturated zone, $\Omega < 1$), it dissolves and releases Ba^{2+}, which maintains a steep Ba^{2+} gradient near the SMT (Fig. 3f).

Likewise, at site 214, Ba^{2+} diffuses upwards into the sulfate zone ($\Omega > 1$). Nevertheless, the Ba^{2+} tailing, extending from 130 to 75 cmbsf, indicates a slightly more condensed zone of barite precipitation compared to site 755, which is most likely due to the higher super-saturation levels at site 214 ($\Omega_{\text{max}} \sim 17$ vs. $\Omega_{\text{max}} \sim 8$). The imprint on the pore water profile resulting from Ba^{2+} release directly below the SMT is also more pronounced at this site (upward Ba^{2+} flux from the SMT is 0.0246 μmol cm$^{-2}$ yr$^{-1}$ as opposed to 0.0096 μmol cm$^{-2}$ yr$^{-1}$ at site 755). This may suggest that the barite front at site 214, which is currently buried into the zone of under-saturation, is subject to faster dissolution.

At site 214, two Ba_{xss} peaks are found just above and below the SMT. The shallower peak (>1300 mg kg$^{-1}$ at 151 cmbsf) represents the current authigenic BaSO_4 front. The deeper peak (>700 mg kg$^{-1}$ at 161 cmbsf) partly coincides with a turbidite deposit located at 161–165 cmbsf. Nevertheless, this peak is likely the product of a previous
authigenic BaSO₄ front, similar to the situation in sediments off Namibia (Riedinger et al., 2006), since it occurs mainly in the sediment deposited above the turbidite. As stated above, the deeper peak is associated with a peak in Ba²⁺ concentrations, indicating that it is currently undergoing dissolution and serves as the main Ba²⁺ source at site 214 (compare to the study of Riedinger et al., 2006 and sediments at Blake Ridge in Snyder et al., 2007).

In summary, we propose two Ba²⁺ sources in these Black Sea deposits: Near the SMT, it originates from the dissolution of barite once an older authigenic barite front is buried into the zone of under-saturation with respect to barite. Within Unit III, it originates from desorption processes evoked by the contact of limnic sediment with seawater.

4.5. Numerical modeling of the SMT migration

Three scenarios were tested for the timing and speed of the limnic-marine transition in the Black Sea (Fig. 5, Table 1): (A) catastrophic flooding leading to present-day bottom water conditions directly after the connection to the Mediterranean Sea was established (based on assumptions of Ryan et al., 1997), (B) progressive flooding leading to a relatively fast (1.2 kyr) transition towards contemporary conditions, and C) a sluggish seawater intrusion and a slow adjustment to present-day conditions over a 7-kyr span (based on results of Soulet et al., 2010).

In order to assess which marine intrusion scenario (A-C) best reproduces the data set, we simulated the development of the Mg²⁺ profile at site 755. Dissolved magnesium is considered a conservative element in seawater according to De Lange (1983). Dolomite (CaMg(CO₃)₂) precipitation in the studied deposits can be excluded due to opposing trends of pore water Ca²⁺ and Mg²⁺ (Figs. 3b and 6). An initial Mg²⁺ concentration of 126 μM, determined from a freshwater environment (Falkner et al., 1991), was used for the Black Sea deep water prior to the marine intrusion. Given that the flooding started at ~9.3 kyr BP (Bahr et al., 2008), the measured Mg²⁺ concentration in the pore water of core 755 fit best to the simulated profile of scenario C (Fig. 6). Scenarios A and B would result in excessive present-day Mg²⁺ concentrations in the interstitial water. It should be noted that porosity variations only have a minor effect on the diffusion/advection of Mg²⁺ into the limnic sediments.

Based on the Mg²⁺ simulation results, scenario C was further used to simulate the SMT shift following the marine intrusion into the Black Sea at both sites 755 and 214. For the former, the simulation reveals a gradual deepening of

Fig. 8. Simulated depth of the SMT and depth of the base of the Unit II sapropel with time at site 755 and 214.

Fig. 9. TOC vs. Ba helps, in the gravity cores (a) 755 and (b) 214. A correlation between these parameters is neither discernable above nor below the SMT.
the SMT as a direct response to the increasing bottom water sulfate concentrations (Figs. 7 and 8), as the methane production in Unit III is insufficient to compensate for the progressive increase of the downward sulfate fluxes. Although the deposition of the Unit II sapropel limits the rate of SMT migration through increased organoclastic sulfate reduction, this process is insufficient to reverse the SMT deepening trend. At site 214, Unit III methanogenesis is also insufficient to compensate for the downward sulfate flux (Figs. 7 and 8). However, the almost 5-fold faster sediment accumulation for Unit II is able to somewhat abate and reverse the downward SMT migration. Through the decrease in the TOC flux during the later stage of Unit II, both organoclastic sulfate reduction and deeper methanogenesis decrease, which allows the SMT to further migrate deeper into the sediment. This deepening trend continues (with a small kink due to the slump deposit) until the bottom water sulfate concentration stabilizes and, similar to site 755, the downward migration rate of the SMT considerably decreases.

4.6. Uncoupling of Ba and TOC deposition with implications for the use of Ba in anoxic ocean basins

In the studied cores, TOC and Barx are, as expected, completely uncoupled below the sulfate-bearing zone. At site 214, such a correlation is also absent within the sulfate-bearing zone (Fig. 9b), whereas at site 755, there is some overlap of the Barx maximum (160–180 cmbsf) with the TOC peak (175–210 cmbsf). Correlations between TOC and Barx are common in sediment traps and in sediments largely unaffected by post-depositional organic matter oxidation or diagenetic BarSO₄ redistribution (e.g., Dymond et al., 1992; François et al., 1995; Dymond and Collier, 1996; Martínez-Ruiz et al., 2000). The (de)coupling

Fig. 10. Barite crystal shapes observed at site 214: Ellipsoidal grains at 0–2 cmbsf (a) and 120–122 cmbsf (b); irregular grains at 0–2 cmbsf (c), 120–122 cmbsf (d), and 150–152 cmbsf (e) and (f).
of Ba and TOC has been extensively studied in the Mediterranean Sea; The original extent of sapropels that have undergone partial or complete post-depositional organic matter oxidation (“burn-down”) is still recognizable by their sedimentary Ba enrichments (e.g., van Santvoort et al., 1996, 1997; De Lange et al., 2008). In the Black Sea sediments, the decoupling (Fig. 9) is caused by different processes: (1) The Ba\textsubscript{xs} signal has been overprinted extensively by early diagenetic redistribution of Ba (see also Torres et al., 1996; Brumsack, 2006), and (2) TOC burial in anoxic basins is not only driven by productivity, but also by enhanced TOC preservation (e.g., Arthur and Dean, 1998; Zonneveld et al., 2010). Since biogenic barite formation is associated with TOC degradation in the water column (e.g., Chow and Goldberg, 1960; Bishop, 1988; Bernstein et al., 1992; Ganeshram et al., 2003), the inhibition of aerobic organic matter decay in the Black Sea water column may additionally limit the rate of biogenic barite formation. In fact, Falkner et al. (1993) demonstrated that the establishment of the initial coupling between TOC and Ba\textsubscript{xs} during the deposition of the Black Sea marine units is questionable.

Authigenic and biogenic barite crystals can usually be distinguished by their morphologies and sizes (Torres et al., 1996; Paytan et al., 2002; Paytan and Griffith, 2007). In the surface sediment layer and at 120–122 cmbsf at site 214, typical biogenic barite particles with an ellipsoidal shape were identified (Fig. 10a and b). However, at the same depths and at 150–152 cmbsf, irregular-shaped barites were detected as well (Fig. 10c–f). The differentiation of biogenic and diagenetic barites based on grain size (Table 4) was not possible in the investigated sediments. This stands in contrast to earlier studies (e.g., Paytan et al., 2002; Paytan and Griffith, 2007), where diagenetic barites were identified as “large (20–700 μm), flat, tabular-shaped crystals”. Since barite crystals with irregular shapes occur in the surface sediments that are likely unaffected by Ba redistribution, they do not (exclusively) seem to originate from diagenetic precipitation. It must be considered that (1) irregular-shaped barite is supplied from allochthonous (detrital) sources, (2) the shape of biogenic barite formed in anoxic water column differs from that inoxic ocean basins, or (3) BaSO\textsubscript{4} is partly precipitated from anoxic, barite-oversaturated deep waters without any relationship to marine surface productivity, as suggested by Falkner et al. (1993).

Despite these clear indications for the lack of a linear TOC-Ba\textsubscript{xs} relationship under anoxic conditions, there are numerous studies of anoxic ocean basins (in particular covering OAEs) that apply sedimentary Ba as a productivity indicator with the assumption that the causal relation between Ba and TOC is similar to that in oxic ocean basins. Turgeon and Brumsack (2006) stated that the overall high Ba contents in the sediments of the Furlo section in Italy (Cenomanian/Turonian OAE 2) suggest a high paleoproductivity in that area. The authors also discuss the possibility of early diageneYsis, but interpret the Ba concentrations as a primary signal based on the dominance of small (tens of microns) barite crystals. The present study, however, shows that the size of barite crystals is not necessarily indicative of their origin, especially in anoxic ocean basins. Similar interpretations of Ba-records that cover OAE2 successions include the Serra section in Spain (Dziewiecki and Simo, 1997), the proto-North Atlantic (Kuyers et al., 2002), the Splatwa section of the Skole Nappe, Poland (Bąk, 2007), and the Demerara Rise (Jiménez Berrocoso et al., 2008). Scopelliti et al. (2004) attempted to use Ba\textsubscript{xs} as a productivity proxy for OAE deposits in Sicily and anticipated that Ba\textsubscript{xs} enrichments in the Bonarelli Level equivalent would reflect high productivities. The authors attributed the unexpected low Ba\textsubscript{xs} contents to a low degree of barite saturation in the oxygen-deficient bottom water. The present study, as well as previous ones (e.g., Falkner et al., 1993; Dean et al., 1997; Hendy, 2010), clearly demonstrates that oxygen depletion alone does not lead to significant dissolution of BaSO\textsubscript{4}, and that it is rather the presence/absence of sulfate that controls barite (under)saturation in marine settings.

5. CONCLUSIONS

The cycling of Ba and its relationship to TOC in anoxic ocean basin sediments has been studied in two gravity cores from the northwestern Black Sea. Numerical simulations of pore water Mg2+ suggest a gradual (lasting several thousands of years) increase in bottom water salinity after the first intrusion of Mediterranean seawater into the Black Sea. Over the past thousands of years after the initial seawater intrusion, the SMT has migrated into the limnic deposits of Unit III. Diagenetic Ba\textsubscript{xs} enrichments were found at both sites, 755 and 214, at and slightly above the current SMT. Higher sedimentation rates at site 214 have caused the marine sapropel of Unit II to be buried beneath the sulfate-bearing zone, which led to the complete remobilization of Ba\textsubscript{xs} from this TOC-rich horizon. In the Black Sea and comparable settings, in situ degradation of organic matter at shallow depths might exert a strong control on biogeochemical processes and on the overprint of primary sedimentary Ba signals. Accordingly, oxygen-depleted to anoxic bottom water redox conditions indirectly affect the cycling of Ba in the underlying sediments by favoring TOC preservation and in situ methane production. The investigated Black Sea records provide evidence for a lack of correlation between Ba\textsubscript{xs} and TOC below the SMT, as well as in sections that are unaffected by diagenetic barite redistribution. Within the sulfate-bearing zone, this is probably due to processes taking place in the water column, such as barite precipitation from oversaturated deep waters, lateral transport of Ba-containing minerals, or biogenic barite formation controlled by TOC preservation rather than by productivity alone. The patterns of sedimentary Ba\textsubscript{xs} and TOC distribution in our samples differ from those in the Mediterranean Sea, where oxidized sapropels are identified by productivity-related Ba enrichments. In the Black Sea, it is the TOC that remains comparably unaffected after burial, while Ba\textsubscript{xs} is diagenetically remobilized at the shallow SMT. The remaining uncertainties related to Ba precipitation in the water column and the low preservation of the original Ba signal within the sediments indicate a need for extreme care when interpreting Ba\textsubscript{xs}-based
paleoprodactivity records in modern and ancient depositional settings resembling the modern Black Sea.

ACKNOWLEDGMENTS

We thank the captains, staff members, and scientific parties of cruises P317/2 of RV Poseidon and M72/1 of RV Meteor for their excellent work and collaboration. We are indebted to Brit Kockisch (University of Bremen) and Silvana Pape (MARUM) for TOC measurements and technical assistance. Karsten Enneking (University of Bremen) is thanked for performing the sulfate analyses for core 755. Matthew Jones is highly acknowledged for element analyses on core 755. Birte Oppermann is thanked for support on board measurements of methane and Rolf Lendt (both University of Hamburg) for support with isotope analyses. We thank David Fischer (MARUM), Tim Haarmann (University of Bremen), and Ludmila Baumann (AWI) for sample preparation and laboratory support. Martyn Drury and Tilly Bouten are thanked for their help with SEM analyses at Utrecht University and NWO-EUROPROX for financial support. Two anonymous reviewers, Glen Snyder, and Robert C. Aller are highly acknowledged for their help with SEM analyses at Utrecht University (both University of Hamburg) for support with isotope analyses. We thank David Fischer (MARUM), Tim Haarmann (University of Bremen), and Ludmila Baumann (AWI) for sample preparation and laboratory support. Martyn Drury and Tilly Bouten are thanked for their help with SEM analyses at Utrecht University and NWO-EUROPROX for financial support. Two anonymous reviewers, Glen Snyder, and Robert C. Aller are highly acknowledged for their help with SEM analyses at Utrecht University (both University of Hamburg) for support with isotope analyses. We thank David Fischer (MARUM), Tim Haarmann (University of Bremen), and Ludmila Baumann (AWI) for sample preparation and laboratory support. Martyn Drury and Tilly Bouten are thanked for their help with SEM analyses at Utrecht University and NWO-EUROPROX for financial support. Two anonymous reviewers, Glen Snyder, and Robert C. Aller are highly acknowledged for their help with SEM analyses at Utrecht University (both University of Hamburg) for support with isotope analyses.

REFERENCES

Associate editor: Robert C. Aller